1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
use crate::translate::translate_crate_to_ullbc;
use charon_lib::export;
use charon_lib::formatter::IntoFormatter;
use charon_lib::options;
use charon_lib::reorder_decls::compute_reordered_decls;
use charon_lib::transform::{LLBC_PASSES, ULLBC_PASSES};
use charon_lib::ullbc_to_llbc;
use regex::Regex;
use rustc_driver::{Callbacks, Compilation};
use rustc_interface::{interface::Compiler, Queries};
use rustc_middle::ty::TyCtxt;
use std::fmt;
use std::ops::Deref;
use std::panic::{self, AssertUnwindSafe};
/// The callbacks for Charon
pub struct CharonCallbacks {
pub options: options::CliOpts,
/// This is to be filled during the extraction
pub crate_data: Option<export::CrateData>,
pub error_count: usize,
}
pub enum CharonFailure {
RustcError(usize),
Panic,
Serialize,
}
impl fmt::Display for CharonFailure {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
CharonFailure::RustcError(error_count) => {
write!(f, "Compilation encountered {} errors", error_count)?
}
CharonFailure::Panic => write!(f, "Compilation panicked")?,
CharonFailure::Serialize => write!(f, "Could not serialize output file")?,
}
Ok(())
}
}
impl CharonCallbacks {
pub fn new(options: options::CliOpts) -> Self {
Self {
options,
crate_data: None,
error_count: 0,
}
}
/// Run rustc with our custom callbacks. `args` is the arguments passed to `rustc`'s
/// command-line.
pub fn run_compiler(&mut self, mut args: Vec<String>) -> Result<(), CharonFailure> {
// Arguments list always start with the executable name. We put a silly value to ensure
// it's not used for anything.
args.insert(0, "__CHARON_MYSTERIOUS_FIRST_ARG__".to_string());
let mut this = AssertUnwindSafe(self);
panic::catch_unwind(move || {
let res = rustc_driver::RunCompiler::new(&args, *this).run();
res.map_err(|_| CharonFailure::RustcError(this.error_count))
})
.map_err(|_| CharonFailure::Panic)??;
Ok(())
}
}
/// Custom `DefId` debug routine that doesn't print unstable values like ids and hashes.
fn def_id_debug(def_id: rustc_hir::def_id::DefId, f: &mut fmt::Formatter<'_>) -> fmt::Result {
rustc_middle::ty::tls::with_opt(|opt_tcx| {
if let Some(tcx) = opt_tcx {
let crate_name = if def_id.is_local() {
tcx.crate_name(rustc_hir::def_id::LOCAL_CRATE)
} else {
tcx.cstore_untracked().crate_name(def_id.krate)
};
write!(
f,
"{}{}",
crate_name,
tcx.def_path(def_id).to_string_no_crate_verbose()
)?;
} else {
write!(f, "<can't access `tcx` to print `DefId` path>")?;
}
Ok(())
})
}
impl Callbacks for CharonCallbacks {
/// We have to be careful here: we can plug ourselves at several places
/// (after parsing, after expansion, after analysis). However, the MIR is
/// modified in place: this means that if we at some point we compute, say,
/// the promoted MIR, it is possible to query the optimized MIR (because
/// optimized MIR is further down in the compilation process). However,
/// it is not possible to query, say, the built MIR (which results from
/// the conversion to HIR to MIR) because it has been lost.
/// For this reason, and as we may want to plug ourselves at different
/// phases of the compilation process, we query the context as early as
/// possible (i.e., after parsing). See [charon_lib::get_mir].
fn after_crate_root_parsing<'tcx>(
&mut self,
_c: &Compiler,
queries: &'tcx Queries<'tcx>,
) -> Compilation {
// Set up our own `DefId` debug routine.
rustc_hir::def_id::DEF_ID_DEBUG
.swap(&(def_id_debug as fn(_, &mut fmt::Formatter<'_>) -> _));
queries.global_ctxt().unwrap().get_mut().enter(|tcx| {
let crate_data = translate(tcx, self);
self.crate_data = Some(crate_data);
});
Compilation::Stop
}
}
/// Dummy callbacks used to run the compiler normally when we shouldn't be analyzing the crate.
pub struct RunCompilerNormallyCallbacks;
impl Callbacks for RunCompilerNormallyCallbacks {}
impl RunCompilerNormallyCallbacks {
/// Run rustc normally. `args` is the arguments passed to `rustc`'s command-line.
pub fn run_compiler(&mut self, mut args: Vec<String>) -> Result<(), ()> {
// Arguments list always start with the executable name. We put a silly value to ensure
// it's not used for anything.
args.insert(0, "__CHARON_MYSTERIOUS_FIRST_ARG__".to_string());
rustc_driver::RunCompiler::new(&args, self)
.run()
.map_err(|_| ())
}
}
/// Returns the values of the command-line options that match `find_arg`. The options are built-in
/// to be of the form `--arg=value` or `--arg value`.
pub fn arg_values<'a, T: Deref<Target = str>>(
args: &'a [T],
needle: &'a str,
) -> impl Iterator<Item = &'a str> {
struct ArgFilter<'a, T> {
args: std::slice::Iter<'a, T>,
needle: &'a str,
}
impl<'a, T: Deref<Target = str>> Iterator for ArgFilter<'a, T> {
type Item = &'a str;
fn next(&mut self) -> Option<Self::Item> {
while let Some(arg) = self.args.next() {
let mut split_arg = arg.splitn(2, '=');
if split_arg.next() == Some(self.needle) {
return match split_arg.next() {
// `--arg=value` form
arg @ Some(_) => arg,
// `--arg value` form
None => self.args.next().map(|x| x.deref()),
};
}
}
None
}
}
ArgFilter {
args: args.iter(),
needle,
}
}
/// Given a list of arguments, return the index of the source rust file.
/// This works by looking for the first argument matching *.rs, while
/// checking there is at most one such argument.
///
/// Note that the driver is sometimes called without a source, for Cargo to
/// retrieve information about the crate for instance.
pub fn get_args_source_index<T: Deref<Target = str>>(args: &[T]) -> Option<usize> {
let re = Regex::new(r".*\.rs").unwrap();
let indices: Vec<usize> = args
.iter()
.enumerate()
.filter_map(|(i, s)| if re.is_match(s) { Some(i) } else { None })
.collect();
assert!(indices.len() <= 1);
if indices.len() == 1 {
Some(indices[0])
} else {
None
}
}
/// Given a list of arguments, return the index of the crate name
pub fn get_args_crate_index<T: Deref<Target = str>>(args: &[T]) -> Option<usize> {
args.iter()
.enumerate()
.find(|(_i, s)| Deref::deref(*s) == "--crate-name")
.map(|(i, _)| {
assert!(i + 1 < args.len()); // Sanity check
// The argument giving the crate name is the next one
i + 1
})
}
/// Translate a crate to LLBC (Low-Level Borrow Calculus).
///
/// This function is a callback function for the Rust compiler.
pub fn translate(tcx: TyCtxt, internal: &mut CharonCallbacks) -> export::CrateData {
trace!();
let options = &internal.options;
// Some important notes about crates and how to interact with rustc:
// - when calling rustc, we should give it the root of the crate, for
// instance the "main.rs" file. From there, rustc will load all the
// *modules* (i.e., files) in the crate
// - whenever there is a `mod MODULE` in a file (for instance, in the
// "main.rs" file), it becomes a Module HIR item
// # Translate the declarations in the crate.
// We translate the declarations in an ad-hoc order, and do not group
// the mutually recursive groups - we do this in the next step.
let mut ctx = translate_crate_to_ullbc::translate(options, tcx);
if options.print_original_ullbc {
println!("# ULLBC after translation from MIR:\n\n{ctx}\n");
} else {
trace!("# ULLBC after translation from MIR:\n\n{ctx}\n");
}
//
// =================
// **Micro-passes**:
// =================
// At this point, the bulk of the translation is done. From now onwards,
// we simply apply some micro-passes to make the code cleaner, before
// serializing the result.
// Run the micro-passes that clean up bodies.
for pass in ULLBC_PASSES.iter() {
trace!("# Starting pass {}", pass.name());
pass.run(&mut ctx)
}
let next_phase = if options.ullbc {
"serialization"
} else {
"control-flow reconstruction"
};
if options.print_ullbc {
println!("# Final ULLBC before {next_phase}:\n\n{ctx}\n");
} else {
trace!("# Final ULLBC before {next_phase}:\n\n{ctx}\n");
}
// # There are two options:
// - either the user wants the unstructured LLBC, in which case we stop there
// - or they want the structured LLBC, in which case we reconstruct the
// control-flow and apply micro-passes
if !options.ullbc {
// # Go from ULLBC to LLBC (Low-Level Borrow Calculus) by reconstructing
// the control flow.
ullbc_to_llbc::translate_functions(&mut ctx);
if options.print_built_llbc {
info!("# LLBC resulting from control-flow reconstruction:\n\n{ctx}\n",);
}
// Run the micro-passes that clean up bodies.
for pass in LLBC_PASSES.iter() {
trace!("# Starting pass {}", pass.name());
pass.run(&mut ctx)
}
// # Reorder the graph of dependencies and compute the strictly
// connex components to:
// - compute the order in which to extract the definitions
// - find the recursive definitions
// - group the mutually recursive definitions
let reordered_decls = compute_reordered_decls(&ctx);
ctx.translated.ordered_decls = Some(reordered_decls);
if options.print_llbc {
println!("# Final LLBC before serialization:\n\n{ctx}\n");
} else {
trace!("# Final LLBC before serialization:\n\n{ctx}\n");
}
// Display an error report about the external dependencies, if necessary
ctx.errors.report_external_deps_errors(ctx.into_fmt());
}
trace!("Done");
// Update the error count
internal.error_count = ctx.errors.error_count;
export::CrateData::new(&ctx)
}