1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
use super::get_mir::extract_constants_at_top_level;
use super::translate_ctx::*;
use charon_lib::ast::*;
use charon_lib::options::CliOpts;
use charon_lib::transform::ctx::TransformOptions;
use charon_lib::transform::TransformCtx;
use hax_frontend_exporter as hax;
use hax_frontend_exporter::SInto;
use rustc_hir::def_id::DefId;
use rustc_hir::{ForeignItemKind, ItemId, ItemKind};
use rustc_middle::ty::TyCtxt;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
impl<'tcx, 'ctx> TranslateCtx<'tcx, 'ctx> {
/// General function to register a MIR item. It is called on all the top-level
/// items. This includes: crate inclusions and `use` instructions (which are
/// ignored), but also type and functions declarations.
/// Note that this function checks if the item has been registered, and adds
/// its def_id to the list of registered items otherwise.
///
/// `stack`: the stack of definitions we explored before reaching this one.
/// This is useful for debugging purposes, to check how we reached a point
/// (in particular if we want to figure out where we failed to consider a
/// definition as opaque).
fn register_local_hir_item(&mut self, top_item: bool, item_id: ItemId) -> Result<(), Error> {
let hir_map = self.tcx.hir();
let item = hir_map.item(item_id);
trace!("{:?}", item);
// The annoying thing is that when iterating over the items in a crate, we
// iterate over *all* the items, which is a problem with regards to the
// *opaque* modules: we see all the definitions which are in there, and
// not only those which are transitively reachable from the root.
// Because of this, we need the following check: if the item is a "top"
// item (not an item transitively reachable from an item which is not
// opaque) and inside an opaque module (or sub-module), we ignore it.
if top_item {
let def_id = item.owner_id.to_def_id();
match &item.kind {
ItemKind::ExternCrate(..) | ItemKind::Use(..) => {
// This kind of item is to be ignored
trace!("Ignoring {:?} (ignoring item kind)", item.item_id());
return Ok(());
}
ItemKind::OpaqueTy(..)
| ItemKind::Union(..)
| ItemKind::TyAlias(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
| ItemKind::Fn(..)
| ItemKind::Impl(..)
| ItemKind::Mod(..)
| ItemKind::ForeignMod { .. }
| ItemKind::Const(..)
| ItemKind::Static(..)
| ItemKind::Macro(..)
| ItemKind::Trait(..) => {
let name = self.def_id_to_name(def_id)?;
if self.opacity_for_name(&name).is_opaque() {
trace!("Ignoring {:?} (marked as opaque)", item.item_id());
return Ok(());
}
// Continue
}
_ => {
unimplemented!("{:?}", item.kind);
}
}
}
trace!("Registering {:?}", item.item_id());
// Case disjunction on the item kind.
let def_id = item.owner_id.to_def_id();
match &item.kind {
ItemKind::TyAlias(_, _) => {
let _ = self.register_type_decl_id(&None, def_id);
Ok(())
}
ItemKind::OpaqueTy(_) => unimplemented!(),
ItemKind::Enum(..) | ItemKind::Struct(_, _) | ItemKind::Union(..) => {
let _ = self.register_type_decl_id(&None, def_id);
Ok(())
}
ItemKind::Fn(_, _, _) => {
let _ = self.register_fun_decl_id(&None, def_id);
Ok(())
}
ItemKind::Trait(..) => {
let _ = self.register_trait_decl_id(&None, def_id);
// We don't need to explore the associated items: we will
// explore them when translating the trait
Ok(())
}
ItemKind::Const(..) | ItemKind::Static(..) => {
// We ignore the anonymous constants, which are introduced
// by the Rust compiler: those constants will be inlined in the
// function bodies.
//
// Important: if we try to retrieve the MIR of anonymous constants,
// it will steal the MIR of the bodies of the functions in which
// they appear.
//
// Also note that this is the only place where we need to check
// if an item is an anonymous constant: when translating the bodies,
// as the anonymous constants are inlined in those bodies, they
// disappear completely.
let trans_id: hax::DefId = def_id.sinto(&self.hax_state);
if trans_id.path.last().unwrap().data != hax::DefPathItem::AnonConst {
if extract_constants_at_top_level(self.options.mir_level) {
let _ = self.register_global_decl_id(&None, def_id);
} else {
// Avoid registering globals in optimized MIR (they will be inlined)
}
}
Ok(())
}
ItemKind::Impl(..) => {
trace!("impl");
let def = self.hax_def(def_id);
let hax::FullDefKind::Impl {
items,
impl_subject,
..
} = &def.kind
else {
unreachable!()
};
// If this is a trait implementation, register it
if let hax::ImplSubject::Trait { .. } = impl_subject {
let _ = self.register_trait_impl_id(&None, def_id);
}
// Explore the items
for (item, item_def) in items {
let def_id = item_def.rust_def_id();
// Match on the impl item kind
match &item.kind {
hax::AssocKind::Const => {
// Associated constant:
// ```
// trait Foo {
// const C : usize;
// }
// impl Foo for Bar {
// const C = 32; // HERE
// }
// // or
// impl Bar {
// const C = 32; // HERE
// }
// ```
let _ = self.register_global_decl_id(&None, def_id);
}
hax::AssocKind::Type => {
// Associated type:
// ```
// trait Foo {
// type T;
// }
// impl Foo for Bar {
// type T = bool; // HERE
// }
// // or
// impl Bar {
// type T = bool; // HERE
// }
// ```
//
// Only handle inherent associated types. Associated types in trait
// impls will be processed when translating the impl.
if let hax::ImplSubject::Inherent(_) = impl_subject {
let _ = self.register_type_decl_id(&None, def_id);
}
}
hax::AssocKind::Fn => {
// Trait method implementation or inherent method.
let _ = self.register_fun_decl_id(&None, def_id);
}
}
}
Ok(())
}
ItemKind::Use(_, _) => {
// Ignore
Ok(())
}
ItemKind::ExternCrate(_) => {
// Ignore
Ok(())
}
ItemKind::Mod(module) => {
trace!("module");
// Explore the module, only if it was not marked as "opaque"
// TODO: we may want to accumulate the set of modules we found,
// to check that all the opaque modules given as arguments actually
// exist
trace!("{:?}", def_id);
let def = self.hax_def(def_id);
let name = self.def_id_to_name(def_id)?;
let opacity = self.opacity_for_name(&name);
// Go through `item_meta` to get take into account the `charon::opaque` attribute.
let item_meta = self.translate_item_meta(&def, name, opacity)?;
if item_meta.opacity.is_opaque() || opacity.is_invisible() {
// Ignore
trace!("Ignoring module [{:?}] because marked as opaque", def_id);
} else {
trace!("Diving into module [{:?}]", def_id);
for item_id in module.item_ids {
// Lookup and register the item
self.register_local_hir_item(false, *item_id)?;
}
}
Ok(())
}
ItemKind::ForeignMod { items, .. } => {
trace!("Diving into `extern` block [{:?}]", def_id);
for item in *items {
// Lookup and register the item
let item = hir_map.foreign_item(item.id);
let def_id = item.owner_id.to_def_id();
match item.kind {
ForeignItemKind::Fn(..) => {
let _ = self.register_fun_decl_id(&None, def_id);
}
ForeignItemKind::Static(..) => {
let _ = self.register_global_decl_id(&None, def_id);
}
ForeignItemKind::Type => {
let _ = self.register_type_decl_id(&None, def_id);
}
}
}
Ok(())
}
ItemKind::Macro(..) => {
// We ignore macro definitions. Note that when a macro is applied,
// we directly see the result of its expansion by the Rustc compiler,
// which is why we don't have to care about them.
Ok(())
}
_ => {
unimplemented!("{:?}", item.kind);
}
}
}
pub(crate) fn translate_item(&mut self, rust_id: DefId, trans_id: AnyTransId) {
if self.errors.ignored_failed_decls.contains(&trans_id)
|| self.translated.get_item(trans_id).is_some()
{
return;
}
self.with_def_id(rust_id, trans_id, |mut ctx| {
let span = ctx.def_span(rust_id);
// Catch cycles
let res = if ctx.translate_stack.contains(&trans_id) {
ctx.span_err(
span,
&format!(
"Cycle detected while translating {rust_id:?}! Stack: {:?}",
&ctx.translate_stack
),
);
Err(())
} else {
ctx.translate_stack.push(trans_id);
let res = {
// Stopgap measure because there are still many panics in charon and hax.
let mut ctx = std::panic::AssertUnwindSafe(&mut ctx);
std::panic::catch_unwind(move || ctx.translate_item_aux(rust_id, trans_id))
};
let res = match res {
Ok(Ok(())) => Ok(()),
// Translation error
Ok(Err(_)) => Err(()),
// Panic
Err(_) => {
register_error_or_panic!(
ctx,
span,
format!("Thread panicked when extracting item `{rust_id:?}`.")
);
Err(())
}
};
// let res = ctx.translate_item_aux(rust_id, trans_id);
ctx.translate_stack.pop();
res
};
if res.is_err() {
ctx.span_err(
span,
&format!("Ignoring the following item due to a previous error: {rust_id:?}"),
);
ctx.errors.ignore_failed_decl(trans_id);
}
})
}
pub(crate) fn translate_item_aux(
&mut self,
rust_id: DefId,
trans_id: AnyTransId,
) -> Result<(), Error> {
// Translate the meta information
let name = self.def_id_to_name(rust_id)?;
self.translated.item_names.insert(trans_id, name.clone());
let opacity = self.opacity_for_name(&name);
if opacity.is_invisible() {
// Don't even start translating the item. In particular don't call `hax_def` on it.
return Ok(());
}
let def: Arc<hax::FullDef> = self.hax_def(rust_id);
let item_meta = self.translate_item_meta(&def, name, opacity)?;
// Initialize the body translation context
let bt_ctx = BodyTransCtx::new(rust_id, Some(trans_id), self);
match trans_id {
AnyTransId::Type(id) => {
let ty = bt_ctx.translate_type(id, item_meta, &def)?;
self.translated.type_decls.set_slot(id, ty);
}
AnyTransId::Fun(id) => {
let fun_decl = bt_ctx.translate_function(id, rust_id, item_meta, &def)?;
self.translated.fun_decls.set_slot(id, fun_decl);
}
AnyTransId::Global(id) => {
let global_decl = bt_ctx.translate_global(id, rust_id, item_meta, &def)?;
self.translated.global_decls.set_slot(id, global_decl);
}
AnyTransId::TraitDecl(id) => {
let trait_decl = bt_ctx.translate_trait_decl(id, rust_id, item_meta, &def)?;
self.translated.trait_decls.set_slot(id, trait_decl);
}
AnyTransId::TraitImpl(id) => {
let trait_impl = bt_ctx.translate_trait_impl(id, rust_id, item_meta, &def)?;
self.translated.trait_impls.set_slot(id, trait_impl);
}
}
Ok(())
}
/// While translating an item you may need the contents of another. Use this to retreive the
/// translated version of this item.
#[allow(dead_code)]
pub(crate) fn get_or_translate(&mut self, id: AnyTransId) -> Result<AnyTransItem<'_>, Error> {
let rust_id = *self.reverse_id_map.get(&id).unwrap();
// Translate if not already translated.
self.translate_item(rust_id, id);
if self.errors.ignored_failed_decls.contains(&id) {
let span = self.def_span(rust_id);
error_or_panic!(self, span, format!("Failed to translate item {id:?}."))
}
Ok(self.translated.get_item(id).unwrap())
}
}
#[tracing::instrument(skip(tcx))]
pub fn translate<'tcx, 'ctx>(options: &CliOpts, tcx: TyCtxt<'tcx>) -> TransformCtx<'tcx> {
let hax_state = hax::state::State::new(
tcx,
hax::options::Options {
inline_macro_calls: Vec::new(),
},
);
// Retrieve the crate name: if the user specified a custom name, use
// it, otherwise retrieve it from rustc.
let real_crate_name = tcx
.crate_name(rustc_span::def_id::LOCAL_CRATE)
.to_ident_string();
let requested_crate_name: String = options
.crate_name
.as_ref()
.unwrap_or(&real_crate_name)
.clone();
trace!("# Crate: {}", requested_crate_name);
let mut error_ctx = ErrorCtx {
continue_on_failure: !options.abort_on_error,
error_on_warnings: options.error_on_warnings,
dcx: tcx.dcx(),
external_decls_with_errors: HashSet::new(),
ignored_failed_decls: HashSet::new(),
external_dep_sources: HashMap::new(),
def_id: None,
def_id_is_local: false,
error_count: 0,
};
let translate_options = TranslateOptions::new(&mut error_ctx, options);
let mut ctx = TranslateCtx {
tcx,
hax_state,
options: translate_options,
errors: error_ctx,
translated: TranslatedCrate {
crate_name: requested_crate_name,
real_crate_name,
..TranslatedCrate::default()
},
id_map: Default::default(),
reverse_id_map: Default::default(),
priority_queue: Default::default(),
translate_stack: Default::default(),
cached_path_elems: Default::default(),
cached_names: Default::default(),
};
// First push all the items in the stack of items to translate.
//
// We explore the crate by starting with the root module.
//
// Remark: It is important to do like this (and not iterate over all the items)
// if we want the "opaque" options (to ignore parts of the crate) to work.
// For instance, if we mark "foo::bar" as opaque, we will ignore the module
// "foo::bar" altogether (we will not even look at the items).
// If we look at the items, we risk registering items just by looking
// at their name. For instance, if we check the item `foo::bar::{foo::bar::Ty}::f`,
// then by converting the Rust name to an LLBC name, we will actually register
// the name "foo::bar::Ty" (so that we can generate the "impl" path element
// `{foo::bar::Ty}`), which means we will register the item `foo::bar::Ty`.
// We could make the name translation work differently if we do have to
// explore all the items in the crate.
let hir = tcx.hir();
for item_id in hir.root_module().item_ids {
let mut ctx = std::panic::AssertUnwindSafe(&mut ctx);
// Stopgap measure because there are still many panics in charon and hax.
// If registration fails we simply skip the item.
let _ = std::panic::catch_unwind(move || ctx.register_local_hir_item(true, *item_id));
}
trace!(
"Queue after we explored the crate:\n{:?}",
&ctx.priority_queue
);
// Translate.
//
// For as long as the queue of items to translate is not empty, we pop the top item and
// translate it. If an item refers to non-translated (potentially external) items, we add them
// to the queue.
//
// Note that the order in which we translate the definitions doesn't matter:
// we never need to lookup a translated definition, and only use the map
// from Rust ids to translated ids.
while let Some((ord_id, trans_id)) = ctx.priority_queue.pop_first() {
trace!("About to translate id: {:?}", ord_id);
ctx.translate_item(ord_id.get_id(), trans_id);
}
// Return the context, dropping the hax state and rustc `tcx`.
let transform_options = TransformOptions {
no_code_duplication: options.no_code_duplication,
hide_marker_traits: options.hide_marker_traits,
no_merge_goto_chains: options.no_merge_goto_chains,
item_opacities: ctx.options.item_opacities,
};
TransformCtx {
options: transform_options,
translated: ctx.translated,
errors: ctx.errors,
}
}