1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
use super::translate_ctx::*;
use super::translate_traits::PredicateLocation;
use charon_lib::ast::*;
use charon_lib::formatter::IntoFormatter;
use charon_lib::ids::Vector;
use charon_lib::pretty::FmtWithCtx;
use hax_frontend_exporter as hax;
impl<'tcx, 'ctx, 'ctx1> BodyTransCtx<'tcx, 'ctx, 'ctx1> {
pub fn count_generics(
&mut self,
generics: &hax::TyGenerics,
predicates: &hax::GenericPredicates,
) -> Result<ParamsInfo, Error> {
use hax::ClauseKind;
use hax::GenericParamDefKind;
use hax::PredicateKind;
let mut num_region_params = 0;
let mut num_type_params = 0;
let mut num_const_generic_params = 0;
let mut num_trait_clauses = 0;
let mut num_regions_outlive = 0;
let mut num_types_outlive = 0;
let mut num_trait_type_constraints = 0;
for param in &generics.params {
match param.kind {
GenericParamDefKind::Lifetime => num_region_params += 1,
GenericParamDefKind::Type { .. } => num_type_params += 1,
GenericParamDefKind::Const { .. } => num_const_generic_params += 1,
}
}
for (pred, _span) in &predicates.predicates {
match &pred.kind.value {
PredicateKind::Clause(ClauseKind::Trait(_)) => num_trait_clauses += 1,
PredicateKind::Clause(ClauseKind::RegionOutlives(_)) => num_regions_outlive += 1,
PredicateKind::Clause(ClauseKind::TypeOutlives(_)) => num_types_outlive += 1,
PredicateKind::Clause(ClauseKind::Projection(_)) => num_trait_type_constraints += 1,
_ => (),
}
}
Ok(ParamsInfo {
num_region_params,
num_type_params,
num_const_generic_params,
num_trait_clauses,
num_regions_outlive,
num_types_outlive,
num_trait_type_constraints,
})
}
/// This function should be called **after** we translated the generics (type parameters,
/// regions...).
pub(crate) fn register_predicates(
&mut self,
preds: &hax::GenericPredicates,
origin: PredicateOrigin,
location: &PredicateLocation,
) -> Result<(), Error> {
// Translate the trait predicates first, because associated type constraints may refer to
// them. E.g. in `fn foo<I: Iterator<Item=usize>>()`, the `I: Iterator` clause must be
// translated before the `<I as Iterator>::Item = usize` predicate.
for (pred, span) in &preds.predicates {
if matches!(
pred.kind.value,
hax::PredicateKind::Clause(hax::ClauseKind::Trait(_))
) {
self.register_predicate(pred, span, origin.clone(), location)?;
}
}
for (pred, span) in &preds.predicates {
if !matches!(
pred.kind.value,
hax::PredicateKind::Clause(hax::ClauseKind::Trait(_))
) {
self.register_predicate(pred, span, origin.clone(), location)?;
}
}
Ok(())
}
pub(crate) fn translate_trait_decl_ref(
&mut self,
span: Span,
erase_regions: bool,
bound_trait_ref: &hax::Binder<hax::TraitRef>,
) -> Result<PolyTraitDeclRef, Error> {
let binder = bound_trait_ref.rebind(());
self.with_locally_bound_regions_group(span, binder, move |ctx| {
let trait_ref = bound_trait_ref.hax_skip_binder_ref();
let trait_id = ctx.register_trait_decl_id(span, &trait_ref.def_id);
let parent_trait_refs = Vec::new();
let generics = ctx.translate_substs_and_trait_refs(
span,
erase_regions,
None,
&trait_ref.generic_args,
&parent_trait_refs,
)?;
Ok(RegionBinder {
regions: ctx.region_vars[0].clone(),
skip_binder: TraitDeclRef { trait_id, generics },
})
})
}
/// Returns an [Option] because we may filter clauses about builtin or
/// auto traits like [core::marker::Sized] and [core::marker::Sync].
///
/// `origin` is where this clause comes from.
pub(crate) fn register_trait_clause(
&mut self,
span: Span,
trait_pred: &hax::TraitPredicate,
origin: PredicateOrigin,
location: &PredicateLocation,
) -> Result<Option<TraitClauseId>, Error> {
let trait_decl_ref = self.translate_trait_predicate(span, trait_pred)?;
let poly_trait_ref = RegionBinder {
// We're under the binder of `hax::Predicate`, we re-wrap it here.
regions: self.region_vars[0].clone(),
skip_binder: trait_decl_ref,
};
let vec = match location {
PredicateLocation::Base => &mut self.generic_params.trait_clauses,
PredicateLocation::Parent => &mut self.parent_trait_clauses,
PredicateLocation::Item(item_name) => self
.item_trait_clauses
.entry(item_name.clone())
.or_default(),
};
let clause_id = vec.push_with(|clause_id| TraitClause {
clause_id,
origin,
span: Some(span),
trait_: poly_trait_ref,
});
Ok(Some(clause_id))
}
pub(crate) fn translate_trait_predicate(
&mut self,
span: Span,
trait_pred: &hax::TraitPredicate,
) -> Result<TraitDeclRef, Error> {
// Note sure what this is about
assert!(trait_pred.is_positive);
// We translate trait clauses for signatures, etc. so we do not erase the regions
let erase_regions = false;
let trait_ref = &trait_pred.trait_ref;
let trait_id = self.register_trait_decl_id(span, &trait_ref.def_id);
let (regions, types, const_generics) =
self.translate_substs(span, erase_regions, None, &trait_ref.generic_args)?;
// There are no trait refs
let generics = GenericArgs::new(regions, types, const_generics, Default::default());
Ok(TraitDeclRef { trait_id, generics })
}
pub(crate) fn register_predicate(
&mut self,
pred: &hax::Predicate,
hspan: &hax::Span,
origin: PredicateOrigin,
location: &PredicateLocation,
) -> Result<(), Error> {
trace!("{:?}", pred);
// Predicates are always used in signatures/type definitions, etc.
// For this reason, we do not erase the regions.
let erase_regions = false;
let span = self.translate_span_from_hax(hspan);
let binder = pred.kind.rebind(());
self.with_locally_bound_regions_group(span, binder, move |ctx| {
let pred_kind = pred.kind.hax_skip_binder_ref();
use hax::{ClauseKind, PredicateKind};
match pred_kind {
PredicateKind::Clause(kind) => {
// We're under the binder of `hax::Predicate`, we re-wrap that binder here
// except in the clause case where this is done already.
let regions = ctx.region_vars[0].clone();
match kind {
ClauseKind::Trait(trait_pred) => {
ctx.register_trait_clause(span, trait_pred, origin, location)?;
}
ClauseKind::RegionOutlives(p) => {
// TODO: we're under a binder, we should re-bind
let r0 = ctx.translate_region(span, erase_regions, &p.lhs)?;
let r1 = ctx.translate_region(span, erase_regions, &p.rhs)?;
ctx.generic_params.regions_outlive.push(RegionBinder {
regions,
skip_binder: OutlivesPred(r0, r1),
});
}
ClauseKind::TypeOutlives(p) => {
let ty = ctx.translate_ty(span, erase_regions, &p.lhs)?;
let r = ctx.translate_region(span, erase_regions, &p.rhs)?;
ctx.generic_params.types_outlive.push(RegionBinder {
regions,
skip_binder: OutlivesPred(ty, r),
});
}
ClauseKind::Projection(p) => {
// TODO: we're under a binder, we should re-bind
// This is used to express constraints over associated types.
// For instance:
// ```
// T : Foo<S = String>
// ^^^^^^^^^^
// ```
let hax::ProjectionPredicate {
impl_expr,
assoc_item,
ty,
} = p;
let trait_ref =
ctx.translate_trait_impl_expr(span, erase_regions, impl_expr)?;
let ty = ctx.translate_ty(span, erase_regions, ty)?;
let type_name = TraitItemName(assoc_item.name.clone().into());
ctx.generic_params
.trait_type_constraints
.push(RegionBinder {
regions,
skip_binder: TraitTypeConstraint {
trait_ref,
type_name,
ty,
},
});
}
ClauseKind::ConstArgHasType(..) => {
// I don't really understand that one. Why don't they put
// the type information in the const generic parameters
// directly? For now we just ignore it.
}
ClauseKind::WellFormed(_) => {
error_or_panic!(
ctx,
span,
format!("Well-formedness clauses are unsupported")
)
}
ClauseKind::ConstEvaluatable(_) => {
error_or_panic!(ctx, span, format!("Unsupported clause: {:?}", kind))
}
}
}
PredicateKind::AliasRelate(..)
| PredicateKind::Ambiguous
| PredicateKind::Coerce(_)
| PredicateKind::ConstEquate(_, _)
| PredicateKind::ObjectSafe(_)
| PredicateKind::NormalizesTo(_)
| PredicateKind::Subtype(_) => {
error_or_panic!(ctx, span, format!("Unsupported predicate: {:?}", pred_kind))
}
}
Ok(())
})?;
Ok(())
}
pub(crate) fn translate_trait_impl_exprs(
&mut self,
span: Span,
erase_regions: bool,
impl_sources: &[hax::ImplExpr],
) -> Result<Vector<TraitClauseId, TraitRef>, Error> {
impl_sources
.iter()
.map(|x| self.translate_trait_impl_expr(span, erase_regions, x))
.try_collect()
}
#[tracing::instrument(skip(self, span, erase_regions, impl_expr))]
pub(crate) fn translate_trait_impl_expr(
&mut self,
span: Span,
erase_regions: bool,
impl_expr: &hax::ImplExpr,
) -> Result<TraitRef, Error> {
let trait_decl_ref =
self.translate_trait_decl_ref(span, erase_regions, &impl_expr.r#trait)?;
match self.translate_trait_impl_expr_aux(
span,
erase_regions,
impl_expr,
trait_decl_ref.clone(),
) {
Ok(res) => Ok(res),
Err(err) => {
if !self.t_ctx.continue_on_failure() {
panic!("Error during trait resolution: {}", err.msg)
} else {
let msg = format!("Error during trait resolution: {}", &err.msg);
self.span_err(span, &msg);
Ok(TraitRef {
kind: TraitRefKind::Unknown(err.msg),
trait_decl_ref,
})
}
}
}
}
pub(crate) fn translate_trait_impl_expr_aux(
&mut self,
span: Span,
erase_regions: bool,
impl_source: &hax::ImplExpr,
trait_decl_ref: PolyTraitDeclRef,
) -> Result<TraitRef, Error> {
trace!("impl_expr: {:#?}", impl_source);
use hax::ImplExprAtom;
let nested = &impl_source.args;
let trait_ref = match &impl_source.r#impl {
ImplExprAtom::Concrete {
id: impl_def_id,
generics,
} => {
let impl_id = self.register_trait_impl_id(span, impl_def_id);
let generics = self.translate_substs_and_trait_refs(
span,
erase_regions,
None,
generics,
nested,
)?;
TraitRef {
kind: TraitRefKind::TraitImpl(impl_id, generics),
trait_decl_ref,
}
}
// The self clause and the other clauses are handled in a similar manner
ImplExprAtom::SelfImpl {
r#trait: trait_ref,
path,
}
| ImplExprAtom::LocalBound {
r#trait: trait_ref,
path,
..
} => {
assert!(nested.is_empty());
trace!(
"impl source (self or clause): param:\n- trait_ref: {:?}\n- path: {:?}",
trait_ref,
path,
);
// If we are refering to a trait clause, we need to find the
// relevant one.
let mut trait_id = match &impl_source.r#impl {
ImplExprAtom::SelfImpl { .. } => TraitRefKind::SelfId,
ImplExprAtom::LocalBound { index, .. } => {
TraitRefKind::Clause(TraitClauseId::from_usize(*index))
}
_ => unreachable!(),
};
let mut current_trait_decl_id =
self.register_trait_decl_id(span, &trait_ref.hax_skip_binder_ref().def_id);
// Apply the path
for path_elem in path {
use hax::ImplExprPathChunk::*;
match path_elem {
AssocItem {
item,
generic_args,
predicate,
index,
..
} => {
if !generic_args.is_empty() {
error_or_panic!(
self,
span,
format!(
"Found unsupported GAT `{}` when resolving trait `{}`",
item.name,
trait_decl_ref.fmt_with_ctx(&self.into_fmt())
)
)
}
trait_id = TraitRefKind::ItemClause(
Box::new(trait_id),
current_trait_decl_id,
TraitItemName(item.name.clone()),
TraitClauseId::new(*index),
);
current_trait_decl_id = self.register_trait_decl_id(
span,
&predicate.hax_skip_binder_ref().trait_ref.def_id,
);
}
Parent {
predicate, index, ..
} => {
trait_id = TraitRefKind::ParentClause(
Box::new(trait_id),
current_trait_decl_id,
TraitClauseId::new(*index),
);
current_trait_decl_id = self.register_trait_decl_id(
span,
&predicate.hax_skip_binder_ref().trait_ref.def_id,
);
}
}
}
// Ignore the arguments: we forbid using universal quantifiers
// on the trait clauses for now.
TraitRef {
kind: trait_id,
trait_decl_ref,
}
}
ImplExprAtom::Dyn => TraitRef {
kind: TraitRefKind::Dyn(trait_decl_ref.clone()),
trait_decl_ref,
},
ImplExprAtom::Builtin { .. } => TraitRef {
kind: TraitRefKind::BuiltinOrAuto(trait_decl_ref.clone()),
trait_decl_ref,
},
ImplExprAtom::Error(msg) => {
let trait_ref = TraitRef {
kind: TraitRefKind::Unknown(msg.clone()),
trait_decl_ref,
};
if self.error_on_impl_expr_error {
let error = format!("Error during trait resolution: {}", msg);
self.span_err(span, &error);
if !self.t_ctx.continue_on_failure() {
panic!("{}", error)
}
}
trait_ref
}
};
Ok(trait_ref)
}
}