rustc_parse/parser/path.rs
1use std::mem;
2
3use ast::token::IdentIsRaw;
4use rustc_ast::ptr::P;
5use rustc_ast::token::{self, Delimiter, MetaVarKind, Token, TokenKind};
6use rustc_ast::{
7 self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
8 AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
9 Path, PathSegment, QSelf,
10};
11use rustc_errors::{Applicability, Diag, PResult};
12use rustc_span::{BytePos, Ident, Span, kw, sym};
13use thin_vec::ThinVec;
14use tracing::debug;
15
16use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
17use super::{Parser, Restrictions, TokenType};
18use crate::errors::{self, PathSingleColon, PathTripleColon};
19use crate::exp;
20use crate::parser::{CommaRecoveryMode, RecoverColon, RecoverComma};
21
22/// Specifies how to parse a path.
23#[derive(Copy, Clone, PartialEq)]
24pub(super) enum PathStyle {
25 /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
26 /// with something else. For example, in expressions `segment < ....` can be interpreted
27 /// as a comparison and `segment ( ....` can be interpreted as a function call.
28 /// In all such contexts the non-path interpretation is preferred by default for practical
29 /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
30 /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
31 ///
32 /// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
33 /// we encounter it.
34 Expr,
35 /// The same as `Expr`, but may be followed by a `:`.
36 /// For example, this code:
37 /// ```rust
38 /// struct S;
39 ///
40 /// let S: S;
41 /// // ^ Followed by a `:`
42 /// ```
43 Pat,
44 /// In other contexts, notably in types, no ambiguity exists and paths can be written
45 /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
46 /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
47 Type,
48 /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
49 /// visibilities or attributes.
50 /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
51 /// (paths in "mod" contexts have to be checked later for absence of generic arguments
52 /// anyway, due to macros), but it is used to avoid weird suggestions about expected
53 /// tokens when something goes wrong.
54 Mod,
55}
56
57impl PathStyle {
58 fn has_generic_ambiguity(&self) -> bool {
59 matches!(self, Self::Expr | Self::Pat)
60 }
61}
62
63impl<'a> Parser<'a> {
64 /// Parses a qualified path.
65 /// Assumes that the leading `<` has been parsed already.
66 ///
67 /// `qualified_path = <type [as trait_ref]>::path`
68 ///
69 /// # Examples
70 /// `<T>::default`
71 /// `<T as U>::a`
72 /// `<T as U>::F::a<S>` (without disambiguator)
73 /// `<T as U>::F::a::<S>` (with disambiguator)
74 pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (P<QSelf>, Path)> {
75 let lo = self.prev_token.span;
76 let ty = self.parse_ty()?;
77
78 // `path` will contain the prefix of the path up to the `>`,
79 // if any (e.g., `U` in the `<T as U>::*` examples
80 // above). `path_span` has the span of that path, or an empty
81 // span in the case of something like `<T>::Bar`.
82 let (mut path, path_span);
83 if self.eat_keyword(exp!(As)) {
84 let path_lo = self.token.span;
85 path = self.parse_path(PathStyle::Type)?;
86 path_span = path_lo.to(self.prev_token.span);
87 } else {
88 path_span = self.token.span.to(self.token.span);
89 path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
90 }
91
92 // See doc comment for `unmatched_angle_bracket_count`.
93 self.expect(exp!(Gt))?;
94 if self.unmatched_angle_bracket_count > 0 {
95 self.unmatched_angle_bracket_count -= 1;
96 debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
97 }
98
99 let is_import_coupler = self.is_import_coupler();
100 if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
101 self.expect(exp!(PathSep))?;
102 }
103
104 let qself = P(QSelf { ty, path_span, position: path.segments.len() });
105 if !is_import_coupler {
106 self.parse_path_segments(&mut path.segments, style, None)?;
107 }
108
109 Ok((
110 qself,
111 Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
112 ))
113 }
114
115 /// Recover from an invalid single colon, when the user likely meant a qualified path.
116 /// We avoid emitting this if not followed by an identifier, as our assumption that the user
117 /// intended this to be a qualified path may not be correct.
118 ///
119 /// ```ignore (diagnostics)
120 /// <Bar as Baz<T>>:Qux
121 /// ^ help: use double colon
122 /// ```
123 fn recover_colon_before_qpath_proj(&mut self) -> bool {
124 if !self.check_noexpect(&TokenKind::Colon)
125 || self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
126 {
127 return false;
128 }
129
130 self.bump(); // colon
131
132 self.dcx()
133 .struct_span_err(
134 self.prev_token.span,
135 "found single colon before projection in qualified path",
136 )
137 .with_span_suggestion(
138 self.prev_token.span,
139 "use double colon",
140 "::",
141 Applicability::MachineApplicable,
142 )
143 .emit();
144
145 true
146 }
147
148 pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
149 self.parse_path_inner(style, None)
150 }
151
152 /// Parses simple paths.
153 ///
154 /// `path = [::] segment+`
155 /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
156 ///
157 /// # Examples
158 /// `a::b::C<D>` (without disambiguator)
159 /// `a::b::C::<D>` (with disambiguator)
160 /// `Fn(Args)` (without disambiguator)
161 /// `Fn::(Args)` (with disambiguator)
162 pub(super) fn parse_path_inner(
163 &mut self,
164 style: PathStyle,
165 ty_generics: Option<&Generics>,
166 ) -> PResult<'a, Path> {
167 let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
168 // Ensure generic arguments don't end up in attribute paths, such as:
169 //
170 // macro_rules! m {
171 // ($p:path) => { #[$p] struct S; }
172 // }
173 //
174 // m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
175 //
176 if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
177 {
178 let span = path
179 .segments
180 .iter()
181 .filter_map(|segment| segment.args.as_ref())
182 .map(|arg| arg.span())
183 .collect::<Vec<_>>();
184 parser.dcx().emit_err(errors::GenericsInPath { span });
185 // Ignore these arguments to prevent unexpected behaviors.
186 let segments = path
187 .segments
188 .iter()
189 .map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
190 .collect();
191 Path { segments, ..path }
192 } else {
193 path
194 }
195 };
196
197 if let Some(path) =
198 self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
199 {
200 return Ok(reject_generics_if_mod_style(self, path));
201 }
202
203 // If we have a `ty` metavar in the form of a path, reparse it directly as a path, instead
204 // of reparsing it as a `ty` and then extracting the path.
205 if let Some(path) = self.eat_metavar_seq(MetaVarKind::Ty { is_path: true }, |this| {
206 this.parse_path(PathStyle::Type)
207 }) {
208 return Ok(reject_generics_if_mod_style(self, path));
209 }
210
211 let lo = self.token.span;
212 let mut segments = ThinVec::new();
213 let mod_sep_ctxt = self.token.span.ctxt();
214 if self.eat_path_sep() {
215 segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
216 }
217 self.parse_path_segments(&mut segments, style, ty_generics)?;
218 Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
219 }
220
221 pub(super) fn parse_path_segments(
222 &mut self,
223 segments: &mut ThinVec<PathSegment>,
224 style: PathStyle,
225 ty_generics: Option<&Generics>,
226 ) -> PResult<'a, ()> {
227 loop {
228 let segment = self.parse_path_segment(style, ty_generics)?;
229 if style.has_generic_ambiguity() {
230 // In order to check for trailing angle brackets, we must have finished
231 // recursing (`parse_path_segment` can indirectly call this function),
232 // that is, the next token must be the highlighted part of the below example:
233 //
234 // `Foo::<Bar as Baz<T>>::Qux`
235 // ^ here
236 //
237 // As opposed to the below highlight (if we had only finished the first
238 // recursion):
239 //
240 // `Foo::<Bar as Baz<T>>::Qux`
241 // ^ here
242 //
243 // `PathStyle::Expr` is only provided at the root invocation and never in
244 // `parse_path_segment` to recurse and therefore can be checked to maintain
245 // this invariant.
246 self.check_trailing_angle_brackets(&segment, &[exp!(PathSep)]);
247 }
248 segments.push(segment);
249
250 if self.is_import_coupler() || !self.eat_path_sep() {
251 // IMPORTANT: We can *only ever* treat single colons as typo'ed double colons in
252 // expression contexts (!) since only there paths cannot possibly be followed by
253 // a colon and still form a syntactically valid construct. In pattern contexts,
254 // a path may be followed by a type annotation. E.g., `let pat:ty`. In type
255 // contexts, a path may be followed by a list of bounds. E.g., `where ty:bound`.
256 if self.may_recover()
257 && style == PathStyle::Expr // (!)
258 && self.token == token::Colon
259 && self.look_ahead(1, |token| token.is_ident() && !token.is_reserved_ident())
260 {
261 // Emit a special error message for `a::b:c` to help users
262 // otherwise, `a: c` might have meant to introduce a new binding
263 if self.token.span.lo() == self.prev_token.span.hi()
264 && self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
265 {
266 self.bump(); // bump past the colon
267 self.dcx().emit_err(PathSingleColon {
268 span: self.prev_token.span,
269 suggestion: self.prev_token.span.shrink_to_hi(),
270 type_ascription: self.psess.unstable_features.is_nightly_build(),
271 });
272 }
273 continue;
274 }
275
276 return Ok(());
277 }
278 }
279 }
280
281 /// Eat `::` or, potentially, `:::`.
282 #[must_use]
283 pub(super) fn eat_path_sep(&mut self) -> bool {
284 let result = self.eat(exp!(PathSep));
285 if result && self.may_recover() {
286 if self.eat_noexpect(&token::Colon) {
287 self.dcx().emit_err(PathTripleColon { span: self.prev_token.span });
288 }
289 }
290 result
291 }
292
293 pub(super) fn parse_path_segment(
294 &mut self,
295 style: PathStyle,
296 ty_generics: Option<&Generics>,
297 ) -> PResult<'a, PathSegment> {
298 let ident = self.parse_path_segment_ident()?;
299 let is_args_start = |token: &Token| {
300 matches!(
301 token.kind,
302 token::Lt | token::Shl | token::OpenDelim(Delimiter::Parenthesis) | token::LArrow
303 )
304 };
305 let check_args_start = |this: &mut Self| {
306 this.expected_token_types.insert(TokenType::Lt);
307 this.expected_token_types.insert(TokenType::OpenParen);
308 is_args_start(&this.token)
309 };
310
311 Ok(
312 if style == PathStyle::Type && check_args_start(self)
313 || style != PathStyle::Mod && self.check_path_sep_and_look_ahead(is_args_start)
314 {
315 // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
316 // it isn't, then we reset the unmatched angle bracket count as we're about to start
317 // parsing a new path.
318 if style == PathStyle::Expr {
319 self.unmatched_angle_bracket_count = 0;
320 }
321
322 // Generic arguments are found - `<`, `(`, `::<` or `::(`.
323 // First, eat `::` if it exists.
324 let _ = self.eat_path_sep();
325
326 let lo = self.token.span;
327 let args = if self.eat_lt() {
328 // `<'a, T, A = U>`
329 let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
330 style,
331 lo,
332 ty_generics,
333 )?;
334 self.expect_gt().map_err(|mut err| {
335 // Try to recover a `:` into a `::`
336 if self.token == token::Colon
337 && self.look_ahead(1, |token| {
338 token.is_ident() && !token.is_reserved_ident()
339 })
340 {
341 err.cancel();
342 err = self.dcx().create_err(PathSingleColon {
343 span: self.token.span,
344 suggestion: self.prev_token.span.shrink_to_hi(),
345 type_ascription: self.psess.unstable_features.is_nightly_build(),
346 });
347 }
348 // Attempt to find places where a missing `>` might belong.
349 else if let Some(arg) = args
350 .iter()
351 .rev()
352 .find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
353 {
354 err.span_suggestion_verbose(
355 arg.span().shrink_to_hi(),
356 "you might have meant to end the type parameters here",
357 ">",
358 Applicability::MaybeIncorrect,
359 );
360 }
361 err
362 })?;
363 let span = lo.to(self.prev_token.span);
364 AngleBracketedArgs { args, span }.into()
365 } else if self.token == token::OpenDelim(Delimiter::Parenthesis)
366 // FIXME(return_type_notation): Could also recover `...` here.
367 && self.look_ahead(1, |t| *t == token::DotDot)
368 {
369 self.bump(); // (
370 self.bump(); // ..
371 self.expect(exp!(CloseParen))?;
372 let span = lo.to(self.prev_token.span);
373
374 self.psess.gated_spans.gate(sym::return_type_notation, span);
375
376 let prev_lo = self.prev_token.span.shrink_to_hi();
377 if self.eat_noexpect(&token::RArrow) {
378 let lo = self.prev_token.span;
379 let ty = self.parse_ty()?;
380 let span = lo.to(ty.span);
381 let suggestion = prev_lo.to(ty.span);
382 self.dcx()
383 .emit_err(errors::BadReturnTypeNotationOutput { span, suggestion });
384 }
385
386 P(ast::GenericArgs::ParenthesizedElided(span))
387 } else {
388 // `(T, U) -> R`
389
390 let prev_token_before_parsing = self.prev_token.clone();
391 let token_before_parsing = self.token.clone();
392 let mut snapshot = None;
393 if self.may_recover()
394 && prev_token_before_parsing == token::PathSep
395 && (style == PathStyle::Expr && self.token.can_begin_expr()
396 || style == PathStyle::Pat
397 && self.token.can_begin_pattern(token::NtPatKind::PatParam {
398 inferred: false,
399 }))
400 {
401 snapshot = Some(self.create_snapshot_for_diagnostic());
402 }
403
404 let (inputs, _) = match self.parse_paren_comma_seq(|p| p.parse_ty()) {
405 Ok(output) => output,
406 Err(mut error) if prev_token_before_parsing == token::PathSep => {
407 error.span_label(
408 prev_token_before_parsing.span.to(token_before_parsing.span),
409 "while parsing this parenthesized list of type arguments starting here",
410 );
411
412 if let Some(mut snapshot) = snapshot {
413 snapshot.recover_fn_call_leading_path_sep(
414 style,
415 prev_token_before_parsing,
416 &mut error,
417 )
418 }
419
420 return Err(error);
421 }
422 Err(error) => return Err(error),
423 };
424 let inputs_span = lo.to(self.prev_token.span);
425 let output =
426 self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
427 let span = ident.span.to(self.prev_token.span);
428 ParenthesizedArgs { span, inputs, inputs_span, output }.into()
429 };
430
431 PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
432 } else {
433 // Generic arguments are not found.
434 PathSegment::from_ident(ident)
435 },
436 )
437 }
438
439 pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
440 match self.token.ident() {
441 Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
442 self.bump();
443 Ok(ident)
444 }
445 _ => self.parse_ident(),
446 }
447 }
448
449 /// Recover `$path::(...)` as `$path(...)`.
450 ///
451 /// ```ignore (diagnostics)
452 /// foo::(420, "bar")
453 /// ^^ remove extra separator to make the function call
454 /// // or
455 /// match x {
456 /// Foo::(420, "bar") => { ... },
457 /// ^^ remove extra separator to turn this into tuple struct pattern
458 /// _ => { ... },
459 /// }
460 /// ```
461 fn recover_fn_call_leading_path_sep(
462 &mut self,
463 style: PathStyle,
464 prev_token_before_parsing: Token,
465 error: &mut Diag<'_>,
466 ) {
467 match style {
468 PathStyle::Expr
469 if let Ok(_) = self
470 .parse_paren_comma_seq(|p| p.parse_expr())
471 .map_err(|error| error.cancel()) => {}
472 PathStyle::Pat
473 if let Ok(_) = self
474 .parse_paren_comma_seq(|p| {
475 p.parse_pat_allow_top_guard(
476 None,
477 RecoverComma::No,
478 RecoverColon::No,
479 CommaRecoveryMode::LikelyTuple,
480 )
481 })
482 .map_err(|error| error.cancel()) => {}
483 _ => {
484 return;
485 }
486 }
487
488 if let token::PathSep | token::RArrow = self.token.kind {
489 return;
490 }
491
492 error.span_suggestion_verbose(
493 prev_token_before_parsing.span,
494 format!(
495 "consider removing the `::` here to {}",
496 match style {
497 PathStyle::Expr => "call the expression",
498 PathStyle::Pat => "turn this into a tuple struct pattern",
499 _ => {
500 return;
501 }
502 }
503 ),
504 "",
505 Applicability::MaybeIncorrect,
506 );
507 }
508
509 /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
510 /// For the purposes of understanding the parsing logic of generic arguments, this function
511 /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
512 /// had the correct amount of leading angle brackets.
513 ///
514 /// ```ignore (diagnostics)
515 /// bar::<<<<T as Foo>::Output>();
516 /// ^^ help: remove extra angle brackets
517 /// ```
518 fn parse_angle_args_with_leading_angle_bracket_recovery(
519 &mut self,
520 style: PathStyle,
521 lo: Span,
522 ty_generics: Option<&Generics>,
523 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
524 // We need to detect whether there are extra leading left angle brackets and produce an
525 // appropriate error and suggestion. This cannot be implemented by looking ahead at
526 // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
527 // then there won't be matching `>` tokens to find.
528 //
529 // To explain how this detection works, consider the following example:
530 //
531 // ```ignore (diagnostics)
532 // bar::<<<<T as Foo>::Output>();
533 // ^^ help: remove extra angle brackets
534 // ```
535 //
536 // Parsing of the left angle brackets starts in this function. We start by parsing the
537 // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
538 // `eat_lt`):
539 //
540 // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
541 // *Unmatched count:* 1
542 // *`parse_path_segment` calls deep:* 0
543 //
544 // This has the effect of recursing as this function is called if a `<` character
545 // is found within the expected generic arguments:
546 //
547 // *Upcoming tokens:* `<<<T as Foo>::Output>;`
548 // *Unmatched count:* 2
549 // *`parse_path_segment` calls deep:* 1
550 //
551 // Eventually we will have recursed until having consumed all of the `<` tokens and
552 // this will be reflected in the count:
553 //
554 // *Upcoming tokens:* `T as Foo>::Output>;`
555 // *Unmatched count:* 4
556 // `parse_path_segment` calls deep:* 3
557 //
558 // The parser will continue until reaching the first `>` - this will decrement the
559 // unmatched angle bracket count and return to the parent invocation of this function
560 // having succeeded in parsing:
561 //
562 // *Upcoming tokens:* `::Output>;`
563 // *Unmatched count:* 3
564 // *`parse_path_segment` calls deep:* 2
565 //
566 // This will continue until the next `>` character which will also return successfully
567 // to the parent invocation of this function and decrement the count:
568 //
569 // *Upcoming tokens:* `;`
570 // *Unmatched count:* 2
571 // *`parse_path_segment` calls deep:* 1
572 //
573 // At this point, this function will expect to find another matching `>` character but
574 // won't be able to and will return an error. This will continue all the way up the
575 // call stack until the first invocation:
576 //
577 // *Upcoming tokens:* `;`
578 // *Unmatched count:* 2
579 // *`parse_path_segment` calls deep:* 0
580 //
581 // In doing this, we have managed to work out how many unmatched leading left angle
582 // brackets there are, but we cannot recover as the unmatched angle brackets have
583 // already been consumed. To remedy this, we keep a snapshot of the parser state
584 // before we do the above. We can then inspect whether we ended up with a parsing error
585 // and unmatched left angle brackets and if so, restore the parser state before we
586 // consumed any `<` characters to emit an error and consume the erroneous tokens to
587 // recover by attempting to parse again.
588 //
589 // In practice, the recursion of this function is indirect and there will be other
590 // locations that consume some `<` characters - as long as we update the count when
591 // this happens, it isn't an issue.
592
593 let is_first_invocation = style == PathStyle::Expr;
594 // Take a snapshot before attempting to parse - we can restore this later.
595 let snapshot = is_first_invocation.then(|| self.clone());
596
597 self.angle_bracket_nesting += 1;
598 debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
599 match self.parse_angle_args(ty_generics) {
600 Ok(args) => {
601 self.angle_bracket_nesting -= 1;
602 Ok(args)
603 }
604 Err(e) if self.angle_bracket_nesting > 10 => {
605 self.angle_bracket_nesting -= 1;
606 // When encountering severely malformed code where there are several levels of
607 // nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
608 // behavior by bailing out earlier (#117080).
609 e.emit().raise_fatal();
610 }
611 Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
612 self.angle_bracket_nesting -= 1;
613
614 // Swap `self` with our backup of the parser state before attempting to parse
615 // generic arguments.
616 let snapshot = mem::replace(self, snapshot.unwrap());
617
618 // Eat the unmatched angle brackets.
619 let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
620 .fold(true, |a, _| a && self.eat_lt());
621
622 if !all_angle_brackets {
623 // If there are other tokens in between the extraneous `<`s, we cannot simply
624 // suggest to remove them. This check also prevents us from accidentally ending
625 // up in the middle of a multibyte character (issue #84104).
626 let _ = mem::replace(self, snapshot);
627 Err(e)
628 } else {
629 // Cancel error from being unable to find `>`. We know the error
630 // must have been this due to a non-zero unmatched angle bracket
631 // count.
632 e.cancel();
633
634 debug!(
635 "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
636 snapshot.count={:?}",
637 snapshot.unmatched_angle_bracket_count,
638 );
639
640 // Make a span over ${unmatched angle bracket count} characters.
641 // This is safe because `all_angle_brackets` ensures that there are only `<`s,
642 // i.e. no multibyte characters, in this range.
643 let span = lo
644 .with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
645 self.dcx().emit_err(errors::UnmatchedAngle {
646 span,
647 plural: snapshot.unmatched_angle_bracket_count > 1,
648 });
649
650 // Try again without unmatched angle bracket characters.
651 self.parse_angle_args(ty_generics)
652 }
653 }
654 Err(e) => {
655 self.angle_bracket_nesting -= 1;
656 Err(e)
657 }
658 }
659 }
660
661 /// Parses (possibly empty) list of generic arguments / associated item constraints,
662 /// possibly including trailing comma.
663 pub(super) fn parse_angle_args(
664 &mut self,
665 ty_generics: Option<&Generics>,
666 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
667 let mut args = ThinVec::new();
668 while let Some(arg) = self.parse_angle_arg(ty_generics)? {
669 args.push(arg);
670 if !self.eat(exp!(Comma)) {
671 if self.check_noexpect(&TokenKind::Semi)
672 && self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
673 {
674 // Add `>` to the list of expected tokens.
675 self.check(exp!(Gt));
676 // Handle `,` to `;` substitution
677 let mut err = self.unexpected().unwrap_err();
678 self.bump();
679 err.span_suggestion_verbose(
680 self.prev_token.span.until(self.token.span),
681 "use a comma to separate type parameters",
682 ", ",
683 Applicability::MachineApplicable,
684 );
685 err.emit();
686 continue;
687 }
688 if !self.token.kind.should_end_const_arg()
689 && self.handle_ambiguous_unbraced_const_arg(&mut args)?
690 {
691 // We've managed to (partially) recover, so continue trying to parse
692 // arguments.
693 continue;
694 }
695 break;
696 }
697 }
698 Ok(args)
699 }
700
701 /// Parses a single argument in the angle arguments `<...>` of a path segment.
702 fn parse_angle_arg(
703 &mut self,
704 ty_generics: Option<&Generics>,
705 ) -> PResult<'a, Option<AngleBracketedArg>> {
706 let lo = self.token.span;
707 let arg = self.parse_generic_arg(ty_generics)?;
708 match arg {
709 Some(arg) => {
710 // we are using noexpect here because we first want to find out if either `=` or `:`
711 // is present and then use that info to push the other token onto the tokens list
712 let separated =
713 self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
714 if separated && (self.check(exp!(Colon)) | self.check(exp!(Eq))) {
715 let arg_span = arg.span();
716 let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
717 Ok(ident_gen_args) => ident_gen_args,
718 Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
719 };
720 if binder {
721 // FIXME(compiler-errors): this could be improved by suggesting lifting
722 // this up to the trait, at least before this becomes real syntax.
723 // e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
724 return Err(self.dcx().struct_span_err(
725 arg_span,
726 "`for<...>` is not allowed on associated type bounds",
727 ));
728 }
729 let kind = if self.eat(exp!(Colon)) {
730 AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
731 } else if self.eat(exp!(Eq)) {
732 self.parse_assoc_equality_term(
733 ident,
734 gen_args.as_ref(),
735 self.prev_token.span,
736 )?
737 } else {
738 unreachable!();
739 };
740
741 let span = lo.to(self.prev_token.span);
742
743 let constraint =
744 AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
745 Ok(Some(AngleBracketedArg::Constraint(constraint)))
746 } else {
747 // we only want to suggest `:` and `=` in contexts where the previous token
748 // is an ident and the current token or the next token is an ident
749 if self.prev_token.is_ident()
750 && (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
751 {
752 self.check(exp!(Colon));
753 self.check(exp!(Eq));
754 }
755 Ok(Some(AngleBracketedArg::Arg(arg)))
756 }
757 }
758 _ => Ok(None),
759 }
760 }
761
762 /// Parse the term to the right of an associated item equality constraint.
763 ///
764 /// That is, parse `$term` in `Item = $term` where `$term` is a type or
765 /// a const expression (wrapped in curly braces if complex).
766 fn parse_assoc_equality_term(
767 &mut self,
768 ident: Ident,
769 gen_args: Option<&GenericArgs>,
770 eq: Span,
771 ) -> PResult<'a, AssocItemConstraintKind> {
772 let arg = self.parse_generic_arg(None)?;
773 let span = ident.span.to(self.prev_token.span);
774 let term = match arg {
775 Some(GenericArg::Type(ty)) => ty.into(),
776 Some(GenericArg::Const(c)) => {
777 self.psess.gated_spans.gate(sym::associated_const_equality, span);
778 c.into()
779 }
780 Some(GenericArg::Lifetime(lt)) => {
781 let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
782 span: lt.ident.span,
783 lifetime: lt.ident,
784 binding_label: span,
785 colon_sugg: gen_args
786 .map_or(ident.span, |args| args.span())
787 .between(lt.ident.span),
788 });
789 self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
790 }
791 None => {
792 let after_eq = eq.shrink_to_hi();
793 let before_next = self.token.span.shrink_to_lo();
794 let mut err = self
795 .dcx()
796 .struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
797 if matches!(self.token.kind, token::Comma | token::Gt) {
798 err.span_suggestion(
799 self.psess.source_map().next_point(eq).to(before_next),
800 "to constrain the associated type, add a type after `=`",
801 " TheType",
802 Applicability::HasPlaceholders,
803 );
804 err.span_suggestion(
805 eq.to(before_next),
806 format!("remove the `=` if `{ident}` is a type"),
807 "",
808 Applicability::MaybeIncorrect,
809 )
810 } else {
811 err.span_label(
812 self.token.span,
813 format!("expected type, found {}", super::token_descr(&self.token)),
814 )
815 };
816 return Err(err);
817 }
818 };
819 Ok(AssocItemConstraintKind::Equality { term })
820 }
821
822 /// We do not permit arbitrary expressions as const arguments. They must be one of:
823 /// - An expression surrounded in `{}`.
824 /// - A literal.
825 /// - A numeric literal prefixed by `-`.
826 /// - A single-segment path.
827 pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
828 match &expr.kind {
829 ast::ExprKind::Block(_, _)
830 | ast::ExprKind::Lit(_)
831 | ast::ExprKind::IncludedBytes(..) => true,
832 ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
833 matches!(expr.kind, ast::ExprKind::Lit(_))
834 }
835 // We can only resolve single-segment paths at the moment, because multi-segment paths
836 // require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
837 ast::ExprKind::Path(None, path)
838 if let [segment] = path.segments.as_slice()
839 && segment.args.is_none() =>
840 {
841 true
842 }
843 _ => false,
844 }
845 }
846
847 /// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
848 /// the caller.
849 pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
850 // Parse const argument.
851 let value = if let token::OpenDelim(Delimiter::Brace) = self.token.kind {
852 self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
853 } else {
854 self.handle_unambiguous_unbraced_const_arg()?
855 };
856 Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
857 }
858
859 /// Parse a generic argument in a path segment.
860 /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
861 pub(super) fn parse_generic_arg(
862 &mut self,
863 ty_generics: Option<&Generics>,
864 ) -> PResult<'a, Option<GenericArg>> {
865 let start = self.token.span;
866 let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
867 // Parse lifetime argument.
868 GenericArg::Lifetime(self.expect_lifetime())
869 } else if self.check_const_arg() {
870 // Parse const argument.
871 GenericArg::Const(self.parse_const_arg()?)
872 } else if self.check_type() {
873 // Parse type argument.
874
875 // Proactively create a parser snapshot enabling us to rewind and try to reparse the
876 // input as a const expression in case we fail to parse a type. If we successfully
877 // do so, we will report an error that it needs to be wrapped in braces.
878 let mut snapshot = None;
879 if self.may_recover() && self.token.can_begin_expr() {
880 snapshot = Some(self.create_snapshot_for_diagnostic());
881 }
882
883 match self.parse_ty() {
884 Ok(ty) => {
885 // Since the type parser recovers from some malformed slice and array types and
886 // successfully returns a type, we need to look for `TyKind::Err`s in the
887 // type to determine if error recovery has occurred and if the input is not a
888 // syntactically valid type after all.
889 if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
890 && let ast::TyKind::Err(_) = inner_ty.kind
891 && let Some(snapshot) = snapshot
892 && let Some(expr) =
893 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
894 {
895 return Ok(Some(
896 self.dummy_const_arg_needs_braces(
897 self.dcx()
898 .struct_span_err(expr.span, "invalid const generic expression"),
899 expr.span,
900 ),
901 ));
902 }
903
904 GenericArg::Type(ty)
905 }
906 Err(err) => {
907 if let Some(snapshot) = snapshot
908 && let Some(expr) =
909 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
910 {
911 return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
912 }
913 // Try to recover from possible `const` arg without braces.
914 return self.recover_const_arg(start, err).map(Some);
915 }
916 }
917 } else if self.token.is_keyword(kw::Const) {
918 return self.recover_const_param_declaration(ty_generics);
919 } else {
920 // Fall back by trying to parse a const-expr expression. If we successfully do so,
921 // then we should report an error that it needs to be wrapped in braces.
922 let snapshot = self.create_snapshot_for_diagnostic();
923 let attrs = self.parse_outer_attributes()?;
924 match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
925 Ok((expr, _)) => {
926 return Ok(Some(self.dummy_const_arg_needs_braces(
927 self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
928 expr.span,
929 )));
930 }
931 Err(err) => {
932 self.restore_snapshot(snapshot);
933 err.cancel();
934 return Ok(None);
935 }
936 }
937 };
938 Ok(Some(arg))
939 }
940
941 /// Given a arg inside of generics, we try to destructure it as if it were the LHS in
942 /// `LHS = ...`, i.e. an associated item binding.
943 /// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
944 /// identifier, and any GAT arguments.
945 fn get_ident_from_generic_arg(
946 &self,
947 gen_arg: &GenericArg,
948 ) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
949 if let GenericArg::Type(ty) = gen_arg {
950 if let ast::TyKind::Path(qself, path) = &ty.kind
951 && qself.is_none()
952 && let [seg] = path.segments.as_slice()
953 {
954 return Ok((false, seg.ident, seg.args.as_deref().cloned()));
955 } else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
956 && let [ast::GenericBound::Trait(trait_ref)] = bounds.as_slice()
957 && trait_ref.modifiers == ast::TraitBoundModifiers::NONE
958 && let [seg] = trait_ref.trait_ref.path.segments.as_slice()
959 {
960 return Ok((true, seg.ident, seg.args.as_deref().cloned()));
961 }
962 }
963 Err(())
964 }
965}