1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
use super::link::{self, ensure_removed};
use super::lto::{self, SerializedModule};
use super::symbol_export::symbol_name_for_instance_in_crate;

use crate::{
    CachedModuleCodegen, CodegenResults, CompiledModule, CrateInfo, ModuleCodegen, ModuleKind,
};

use crate::traits::*;
use jobserver::{Acquired, Client};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::memmap::Mmap;
use rustc_data_structures::profiling::SelfProfilerRef;
use rustc_data_structures::profiling::TimingGuard;
use rustc_data_structures::profiling::VerboseTimingGuard;
use rustc_data_structures::sync::Lrc;
use rustc_errors::emitter::Emitter;
use rustc_errors::{DiagnosticId, FatalError, Handler, Level};
use rustc_fs_util::link_or_copy;
use rustc_hir::def_id::{CrateNum, LOCAL_CRATE};
use rustc_incremental::{
    copy_cgu_workproduct_to_incr_comp_cache_dir, in_incr_comp_dir, in_incr_comp_dir_sess,
};
use rustc_metadata::EncodedMetadata;
use rustc_middle::dep_graph::{WorkProduct, WorkProductId};
use rustc_middle::middle::exported_symbols::SymbolExportLevel;
use rustc_middle::ty::TyCtxt;
use rustc_session::cgu_reuse_tracker::CguReuseTracker;
use rustc_session::config::{self, CrateType, Lto, OutputFilenames, OutputType};
use rustc_session::config::{Passes, SwitchWithOptPath};
use rustc_session::Session;
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::sym;
use rustc_span::{BytePos, FileName, InnerSpan, Pos, Span};
use rustc_target::spec::{MergeFunctions, PanicStrategy, SanitizerSet};

use std::any::Any;
use std::fs;
use std::io;
use std::mem;
use std::path::{Path, PathBuf};
use std::str;
use std::sync::mpsc::{channel, Receiver, Sender};
use std::sync::Arc;
use std::thread;

const PRE_LTO_BC_EXT: &str = "pre-lto.bc";

/// What kind of object file to emit.
#[derive(Clone, Copy, PartialEq)]
pub enum EmitObj {
    // No object file.
    None,

    // Just uncompressed llvm bitcode. Provides easy compatibility with
    // emscripten's ecc compiler, when used as the linker.
    Bitcode,

    // Object code, possibly augmented with a bitcode section.
    ObjectCode(BitcodeSection),
}

/// What kind of llvm bitcode section to embed in an object file.
#[derive(Clone, Copy, PartialEq)]
pub enum BitcodeSection {
    // No bitcode section.
    None,

    // A full, uncompressed bitcode section.
    Full,
}

/// Module-specific configuration for `optimize_and_codegen`.
pub struct ModuleConfig {
    /// Names of additional optimization passes to run.
    pub passes: Vec<String>,
    /// Some(level) to optimize at a certain level, or None to run
    /// absolutely no optimizations (used for the metadata module).
    pub opt_level: Option<config::OptLevel>,

    /// Some(level) to optimize binary size, or None to not affect program size.
    pub opt_size: Option<config::OptLevel>,

    pub pgo_gen: SwitchWithOptPath,
    pub pgo_use: Option<PathBuf>,
    pub pgo_sample_use: Option<PathBuf>,
    pub debug_info_for_profiling: bool,
    pub instrument_coverage: bool,
    pub instrument_gcov: bool,

    pub sanitizer: SanitizerSet,
    pub sanitizer_recover: SanitizerSet,
    pub sanitizer_memory_track_origins: usize,

    // Flags indicating which outputs to produce.
    pub emit_pre_lto_bc: bool,
    pub emit_no_opt_bc: bool,
    pub emit_bc: bool,
    pub emit_ir: bool,
    pub emit_asm: bool,
    pub emit_obj: EmitObj,
    pub bc_cmdline: String,

    // Miscellaneous flags.  These are mostly copied from command-line
    // options.
    pub verify_llvm_ir: bool,
    pub no_prepopulate_passes: bool,
    pub no_builtins: bool,
    pub time_module: bool,
    pub vectorize_loop: bool,
    pub vectorize_slp: bool,
    pub merge_functions: bool,
    pub inline_threshold: Option<u32>,
    pub new_llvm_pass_manager: Option<bool>,
    pub emit_lifetime_markers: bool,
}

impl ModuleConfig {
    fn new(
        kind: ModuleKind,
        sess: &Session,
        no_builtins: bool,
        is_compiler_builtins: bool,
    ) -> ModuleConfig {
        // If it's a regular module, use `$regular`, otherwise use `$other`.
        // `$regular` and `$other` are evaluated lazily.
        macro_rules! if_regular {
            ($regular: expr, $other: expr) => {
                if let ModuleKind::Regular = kind { $regular } else { $other }
            };
        }

        let opt_level_and_size = if_regular!(Some(sess.opts.optimize), None);

        let save_temps = sess.opts.cg.save_temps;

        let should_emit_obj = sess.opts.output_types.contains_key(&OutputType::Exe)
            || match kind {
                ModuleKind::Regular => sess.opts.output_types.contains_key(&OutputType::Object),
                ModuleKind::Allocator => false,
                ModuleKind::Metadata => sess.opts.output_types.contains_key(&OutputType::Metadata),
            };

        let emit_obj = if !should_emit_obj {
            EmitObj::None
        } else if sess.target.obj_is_bitcode
            || (sess.opts.cg.linker_plugin_lto.enabled() && !no_builtins)
        {
            // This case is selected if the target uses objects as bitcode, or
            // if linker plugin LTO is enabled. In the linker plugin LTO case
            // the assumption is that the final link-step will read the bitcode
            // and convert it to object code. This may be done by either the
            // native linker or rustc itself.
            //
            // Note, however, that the linker-plugin-lto requested here is
            // explicitly ignored for `#![no_builtins]` crates. These crates are
            // specifically ignored by rustc's LTO passes and wouldn't work if
            // loaded into the linker. These crates define symbols that LLVM
            // lowers intrinsics to, and these symbol dependencies aren't known
            // until after codegen. As a result any crate marked
            // `#![no_builtins]` is assumed to not participate in LTO and
            // instead goes on to generate object code.
            EmitObj::Bitcode
        } else if need_bitcode_in_object(sess) {
            EmitObj::ObjectCode(BitcodeSection::Full)
        } else {
            EmitObj::ObjectCode(BitcodeSection::None)
        };

        ModuleConfig {
            passes: if_regular!(sess.opts.cg.passes.clone(), vec![]),

            opt_level: opt_level_and_size,
            opt_size: opt_level_and_size,

            pgo_gen: if_regular!(
                sess.opts.cg.profile_generate.clone(),
                SwitchWithOptPath::Disabled
            ),
            pgo_use: if_regular!(sess.opts.cg.profile_use.clone(), None),
            pgo_sample_use: if_regular!(sess.opts.debugging_opts.profile_sample_use.clone(), None),
            debug_info_for_profiling: sess.opts.debugging_opts.debug_info_for_profiling,
            instrument_coverage: if_regular!(sess.instrument_coverage(), false),
            instrument_gcov: if_regular!(
                // compiler_builtins overrides the codegen-units settings,
                // which is incompatible with -Zprofile which requires that
                // only a single codegen unit is used per crate.
                sess.opts.debugging_opts.profile && !is_compiler_builtins,
                false
            ),

            sanitizer: if_regular!(sess.opts.debugging_opts.sanitizer, SanitizerSet::empty()),
            sanitizer_recover: if_regular!(
                sess.opts.debugging_opts.sanitizer_recover,
                SanitizerSet::empty()
            ),
            sanitizer_memory_track_origins: if_regular!(
                sess.opts.debugging_opts.sanitizer_memory_track_origins,
                0
            ),

            emit_pre_lto_bc: if_regular!(
                save_temps || need_pre_lto_bitcode_for_incr_comp(sess),
                false
            ),
            emit_no_opt_bc: if_regular!(save_temps, false),
            emit_bc: if_regular!(
                save_temps || sess.opts.output_types.contains_key(&OutputType::Bitcode),
                save_temps
            ),
            emit_ir: if_regular!(
                sess.opts.output_types.contains_key(&OutputType::LlvmAssembly),
                false
            ),
            emit_asm: if_regular!(
                sess.opts.output_types.contains_key(&OutputType::Assembly),
                false
            ),
            emit_obj,
            bc_cmdline: sess.target.bitcode_llvm_cmdline.clone(),

            verify_llvm_ir: sess.verify_llvm_ir(),
            no_prepopulate_passes: sess.opts.cg.no_prepopulate_passes,
            no_builtins: no_builtins || sess.target.no_builtins,

            // Exclude metadata and allocator modules from time_passes output,
            // since they throw off the "LLVM passes" measurement.
            time_module: if_regular!(true, false),

            // Copy what clang does by turning on loop vectorization at O2 and
            // slp vectorization at O3.
            vectorize_loop: !sess.opts.cg.no_vectorize_loops
                && (sess.opts.optimize == config::OptLevel::Default
                    || sess.opts.optimize == config::OptLevel::Aggressive),
            vectorize_slp: !sess.opts.cg.no_vectorize_slp
                && sess.opts.optimize == config::OptLevel::Aggressive,

            // Some targets (namely, NVPTX) interact badly with the
            // MergeFunctions pass. This is because MergeFunctions can generate
            // new function calls which may interfere with the target calling
            // convention; e.g. for the NVPTX target, PTX kernels should not
            // call other PTX kernels. MergeFunctions can also be configured to
            // generate aliases instead, but aliases are not supported by some
            // backends (again, NVPTX). Therefore, allow targets to opt out of
            // the MergeFunctions pass, but otherwise keep the pass enabled (at
            // O2 and O3) since it can be useful for reducing code size.
            merge_functions: match sess
                .opts
                .debugging_opts
                .merge_functions
                .unwrap_or(sess.target.merge_functions)
            {
                MergeFunctions::Disabled => false,
                MergeFunctions::Trampolines | MergeFunctions::Aliases => {
                    sess.opts.optimize == config::OptLevel::Default
                        || sess.opts.optimize == config::OptLevel::Aggressive
                }
            },

            inline_threshold: sess.opts.cg.inline_threshold,
            new_llvm_pass_manager: sess.opts.debugging_opts.new_llvm_pass_manager,
            emit_lifetime_markers: sess.emit_lifetime_markers(),
        }
    }

    pub fn bitcode_needed(&self) -> bool {
        self.emit_bc
            || self.emit_obj == EmitObj::Bitcode
            || self.emit_obj == EmitObj::ObjectCode(BitcodeSection::Full)
    }
}

/// Configuration passed to the function returned by the `target_machine_factory`.
pub struct TargetMachineFactoryConfig {
    /// Split DWARF is enabled in LLVM by checking that `TM.MCOptions.SplitDwarfFile` isn't empty,
    /// so the path to the dwarf object has to be provided when we create the target machine.
    /// This can be ignored by backends which do not need it for their Split DWARF support.
    pub split_dwarf_file: Option<PathBuf>,
}

impl TargetMachineFactoryConfig {
    pub fn new(
        cgcx: &CodegenContext<impl WriteBackendMethods>,
        module_name: &str,
    ) -> TargetMachineFactoryConfig {
        let split_dwarf_file = if cgcx.target_can_use_split_dwarf {
            cgcx.output_filenames.split_dwarf_path(cgcx.split_debuginfo, Some(module_name))
        } else {
            None
        };
        TargetMachineFactoryConfig { split_dwarf_file }
    }
}

pub type TargetMachineFactoryFn<B> = Arc<
    dyn Fn(TargetMachineFactoryConfig) -> Result<<B as WriteBackendMethods>::TargetMachine, String>
        + Send
        + Sync,
>;

pub type ExportedSymbols = FxHashMap<CrateNum, Arc<Vec<(String, SymbolExportLevel)>>>;

/// Additional resources used by optimize_and_codegen (not module specific)
#[derive(Clone)]
pub struct CodegenContext<B: WriteBackendMethods> {
    // Resources needed when running LTO
    pub backend: B,
    pub prof: SelfProfilerRef,
    pub lto: Lto,
    pub no_landing_pads: bool,
    pub save_temps: bool,
    pub fewer_names: bool,
    pub exported_symbols: Option<Arc<ExportedSymbols>>,
    pub opts: Arc<config::Options>,
    pub crate_types: Vec<CrateType>,
    pub each_linked_rlib_for_lto: Vec<(CrateNum, PathBuf)>,
    pub output_filenames: Arc<OutputFilenames>,
    pub regular_module_config: Arc<ModuleConfig>,
    pub metadata_module_config: Arc<ModuleConfig>,
    pub allocator_module_config: Arc<ModuleConfig>,
    pub tm_factory: TargetMachineFactoryFn<B>,
    pub msvc_imps_needed: bool,
    pub is_pe_coff: bool,
    pub target_can_use_split_dwarf: bool,
    pub target_pointer_width: u32,
    pub target_arch: String,
    pub debuginfo: config::DebugInfo,
    pub split_debuginfo: rustc_target::spec::SplitDebuginfo,

    // Number of cgus excluding the allocator/metadata modules
    pub total_cgus: usize,
    // Handler to use for diagnostics produced during codegen.
    pub diag_emitter: SharedEmitter,
    // LLVM optimizations for which we want to print remarks.
    pub remark: Passes,
    // Worker thread number
    pub worker: usize,
    // The incremental compilation session directory, or None if we are not
    // compiling incrementally
    pub incr_comp_session_dir: Option<PathBuf>,
    // Used to update CGU re-use information during the thinlto phase.
    pub cgu_reuse_tracker: CguReuseTracker,
    // Channel back to the main control thread to send messages to
    pub coordinator_send: Sender<Box<dyn Any + Send>>,
}

impl<B: WriteBackendMethods> CodegenContext<B> {
    pub fn create_diag_handler(&self) -> Handler {
        Handler::with_emitter(true, None, Box::new(self.diag_emitter.clone()))
    }

    pub fn config(&self, kind: ModuleKind) -> &ModuleConfig {
        match kind {
            ModuleKind::Regular => &self.regular_module_config,
            ModuleKind::Metadata => &self.metadata_module_config,
            ModuleKind::Allocator => &self.allocator_module_config,
        }
    }
}

fn generate_lto_work<B: ExtraBackendMethods>(
    cgcx: &CodegenContext<B>,
    needs_fat_lto: Vec<FatLTOInput<B>>,
    needs_thin_lto: Vec<(String, B::ThinBuffer)>,
    import_only_modules: Vec<(SerializedModule<B::ModuleBuffer>, WorkProduct)>,
) -> Vec<(WorkItem<B>, u64)> {
    let _prof_timer = cgcx.prof.generic_activity("codegen_generate_lto_work");

    let (lto_modules, copy_jobs) = if !needs_fat_lto.is_empty() {
        assert!(needs_thin_lto.is_empty());
        let lto_module =
            B::run_fat_lto(cgcx, needs_fat_lto, import_only_modules).unwrap_or_else(|e| e.raise());
        (vec![lto_module], vec![])
    } else {
        assert!(needs_fat_lto.is_empty());
        B::run_thin_lto(cgcx, needs_thin_lto, import_only_modules).unwrap_or_else(|e| e.raise())
    };

    lto_modules
        .into_iter()
        .map(|module| {
            let cost = module.cost();
            (WorkItem::LTO(module), cost)
        })
        .chain(copy_jobs.into_iter().map(|wp| {
            (
                WorkItem::CopyPostLtoArtifacts(CachedModuleCodegen {
                    name: wp.cgu_name.clone(),
                    source: wp,
                }),
                0,
            )
        }))
        .collect()
}

pub struct CompiledModules {
    pub modules: Vec<CompiledModule>,
    pub metadata_module: Option<CompiledModule>,
    pub allocator_module: Option<CompiledModule>,
}

fn need_bitcode_in_object(sess: &Session) -> bool {
    let requested_for_rlib = sess.opts.cg.embed_bitcode
        && sess.crate_types().contains(&CrateType::Rlib)
        && sess.opts.output_types.contains_key(&OutputType::Exe);
    let forced_by_target = sess.target.forces_embed_bitcode;
    requested_for_rlib || forced_by_target
}

fn need_pre_lto_bitcode_for_incr_comp(sess: &Session) -> bool {
    if sess.opts.incremental.is_none() {
        return false;
    }

    match sess.lto() {
        Lto::No => false,
        Lto::Fat | Lto::Thin | Lto::ThinLocal => true,
    }
}

pub fn start_async_codegen<B: ExtraBackendMethods>(
    backend: B,
    tcx: TyCtxt<'_>,
    target_cpu: String,
    metadata: EncodedMetadata,
    total_cgus: usize,
) -> OngoingCodegen<B> {
    let (coordinator_send, coordinator_receive) = channel();
    let sess = tcx.sess;

    let crate_attrs = tcx.hir().attrs(rustc_hir::CRATE_HIR_ID);
    let no_builtins = tcx.sess.contains_name(crate_attrs, sym::no_builtins);
    let is_compiler_builtins = tcx.sess.contains_name(crate_attrs, sym::compiler_builtins);

    let crate_info = CrateInfo::new(tcx, target_cpu);

    let regular_config =
        ModuleConfig::new(ModuleKind::Regular, sess, no_builtins, is_compiler_builtins);
    let metadata_config =
        ModuleConfig::new(ModuleKind::Metadata, sess, no_builtins, is_compiler_builtins);
    let allocator_config =
        ModuleConfig::new(ModuleKind::Allocator, sess, no_builtins, is_compiler_builtins);

    let (shared_emitter, shared_emitter_main) = SharedEmitter::new();
    let (codegen_worker_send, codegen_worker_receive) = channel();

    let coordinator_thread = start_executing_work(
        backend.clone(),
        tcx,
        &crate_info,
        shared_emitter,
        codegen_worker_send,
        coordinator_receive,
        total_cgus,
        sess.jobserver.clone(),
        Arc::new(regular_config),
        Arc::new(metadata_config),
        Arc::new(allocator_config),
        coordinator_send.clone(),
    );

    OngoingCodegen {
        backend,
        metadata,
        crate_info,

        coordinator_send,
        codegen_worker_receive,
        shared_emitter_main,
        future: coordinator_thread,
        output_filenames: tcx.output_filenames(()),
    }
}

fn copy_all_cgu_workproducts_to_incr_comp_cache_dir(
    sess: &Session,
    compiled_modules: &CompiledModules,
) -> FxHashMap<WorkProductId, WorkProduct> {
    let mut work_products = FxHashMap::default();

    if sess.opts.incremental.is_none() {
        return work_products;
    }

    let _timer = sess.timer("copy_all_cgu_workproducts_to_incr_comp_cache_dir");

    for module in compiled_modules.modules.iter().filter(|m| m.kind == ModuleKind::Regular) {
        let path = module.object.as_ref().cloned();

        if let Some((id, product)) =
            copy_cgu_workproduct_to_incr_comp_cache_dir(sess, &module.name, &path)
        {
            work_products.insert(id, product);
        }
    }

    work_products
}

fn produce_final_output_artifacts(
    sess: &Session,
    compiled_modules: &CompiledModules,
    crate_output: &OutputFilenames,
) {
    let mut user_wants_bitcode = false;
    let mut user_wants_objects = false;

    // Produce final compile outputs.
    let copy_gracefully = |from: &Path, to: &Path| {
        if let Err(e) = fs::copy(from, to) {
            sess.err(&format!("could not copy {:?} to {:?}: {}", from, to, e));
        }
    };

    let copy_if_one_unit = |output_type: OutputType, keep_numbered: bool| {
        if compiled_modules.modules.len() == 1 {
            // 1) Only one codegen unit.  In this case it's no difficulty
            //    to copy `foo.0.x` to `foo.x`.
            let module_name = Some(&compiled_modules.modules[0].name[..]);
            let path = crate_output.temp_path(output_type, module_name);
            copy_gracefully(&path, &crate_output.path(output_type));
            if !sess.opts.cg.save_temps && !keep_numbered {
                // The user just wants `foo.x`, not `foo.#module-name#.x`.
                ensure_removed(sess.diagnostic(), &path);
            }
        } else {
            let ext = crate_output
                .temp_path(output_type, None)
                .extension()
                .unwrap()
                .to_str()
                .unwrap()
                .to_owned();

            if crate_output.outputs.contains_key(&output_type) {
                // 2) Multiple codegen units, with `--emit foo=some_name`.  We have
                //    no good solution for this case, so warn the user.
                sess.warn(&format!(
                    "ignoring emit path because multiple .{} files \
                                    were produced",
                    ext
                ));
            } else if crate_output.single_output_file.is_some() {
                // 3) Multiple codegen units, with `-o some_name`.  We have
                //    no good solution for this case, so warn the user.
                sess.warn(&format!(
                    "ignoring -o because multiple .{} files \
                                    were produced",
                    ext
                ));
            } else {
                // 4) Multiple codegen units, but no explicit name.  We
                //    just leave the `foo.0.x` files in place.
                // (We don't have to do any work in this case.)
            }
        }
    };

    // Flag to indicate whether the user explicitly requested bitcode.
    // Otherwise, we produced it only as a temporary output, and will need
    // to get rid of it.
    for output_type in crate_output.outputs.keys() {
        match *output_type {
            OutputType::Bitcode => {
                user_wants_bitcode = true;
                // Copy to .bc, but always keep the .0.bc.  There is a later
                // check to figure out if we should delete .0.bc files, or keep
                // them for making an rlib.
                copy_if_one_unit(OutputType::Bitcode, true);
            }
            OutputType::LlvmAssembly => {
                copy_if_one_unit(OutputType::LlvmAssembly, false);
            }
            OutputType::Assembly => {
                copy_if_one_unit(OutputType::Assembly, false);
            }
            OutputType::Object => {
                user_wants_objects = true;
                copy_if_one_unit(OutputType::Object, true);
            }
            OutputType::Mir | OutputType::Metadata | OutputType::Exe | OutputType::DepInfo => {}
        }
    }

    // Clean up unwanted temporary files.

    // We create the following files by default:
    //  - #crate#.#module-name#.bc
    //  - #crate#.#module-name#.o
    //  - #crate#.crate.metadata.bc
    //  - #crate#.crate.metadata.o
    //  - #crate#.o (linked from crate.##.o)
    //  - #crate#.bc (copied from crate.##.bc)
    // We may create additional files if requested by the user (through
    // `-C save-temps` or `--emit=` flags).

    if !sess.opts.cg.save_temps {
        // Remove the temporary .#module-name#.o objects.  If the user didn't
        // explicitly request bitcode (with --emit=bc), and the bitcode is not
        // needed for building an rlib, then we must remove .#module-name#.bc as
        // well.

        // Specific rules for keeping .#module-name#.bc:
        //  - If the user requested bitcode (`user_wants_bitcode`), and
        //    codegen_units > 1, then keep it.
        //  - If the user requested bitcode but codegen_units == 1, then we
        //    can toss .#module-name#.bc because we copied it to .bc earlier.
        //  - If we're not building an rlib and the user didn't request
        //    bitcode, then delete .#module-name#.bc.
        // If you change how this works, also update back::link::link_rlib,
        // where .#module-name#.bc files are (maybe) deleted after making an
        // rlib.
        let needs_crate_object = crate_output.outputs.contains_key(&OutputType::Exe);

        let keep_numbered_bitcode = user_wants_bitcode && sess.codegen_units() > 1;

        let keep_numbered_objects =
            needs_crate_object || (user_wants_objects && sess.codegen_units() > 1);

        for module in compiled_modules.modules.iter() {
            if let Some(ref path) = module.object {
                if !keep_numbered_objects {
                    ensure_removed(sess.diagnostic(), path);
                }
            }

            if let Some(ref path) = module.dwarf_object {
                if !keep_numbered_objects {
                    ensure_removed(sess.diagnostic(), path);
                }
            }

            if let Some(ref path) = module.bytecode {
                if !keep_numbered_bitcode {
                    ensure_removed(sess.diagnostic(), path);
                }
            }
        }

        if !user_wants_bitcode {
            if let Some(ref metadata_module) = compiled_modules.metadata_module {
                if let Some(ref path) = metadata_module.bytecode {
                    ensure_removed(sess.diagnostic(), &path);
                }
            }

            if let Some(ref allocator_module) = compiled_modules.allocator_module {
                if let Some(ref path) = allocator_module.bytecode {
                    ensure_removed(sess.diagnostic(), path);
                }
            }
        }
    }

    // We leave the following files around by default:
    //  - #crate#.o
    //  - #crate#.crate.metadata.o
    //  - #crate#.bc
    // These are used in linking steps and will be cleaned up afterward.
}

pub enum WorkItem<B: WriteBackendMethods> {
    /// Optimize a newly codegened, totally unoptimized module.
    Optimize(ModuleCodegen<B::Module>),
    /// Copy the post-LTO artifacts from the incremental cache to the output
    /// directory.
    CopyPostLtoArtifacts(CachedModuleCodegen),
    /// Performs (Thin)LTO on the given module.
    LTO(lto::LtoModuleCodegen<B>),
}

impl<B: WriteBackendMethods> WorkItem<B> {
    pub fn module_kind(&self) -> ModuleKind {
        match *self {
            WorkItem::Optimize(ref m) => m.kind,
            WorkItem::CopyPostLtoArtifacts(_) | WorkItem::LTO(_) => ModuleKind::Regular,
        }
    }

    fn start_profiling<'a>(&self, cgcx: &'a CodegenContext<B>) -> TimingGuard<'a> {
        match *self {
            WorkItem::Optimize(ref m) => {
                cgcx.prof.generic_activity_with_arg("codegen_module_optimize", &m.name[..])
            }
            WorkItem::CopyPostLtoArtifacts(ref m) => cgcx
                .prof
                .generic_activity_with_arg("codegen_copy_artifacts_from_incr_cache", &m.name[..]),
            WorkItem::LTO(ref m) => {
                cgcx.prof.generic_activity_with_arg("codegen_module_perform_lto", m.name())
            }
        }
    }

    /// Generate a short description of this work item suitable for use as a thread name.
    fn short_description(&self) -> String {
        // `pthread_setname()` on *nix is limited to 15 characters and longer names are ignored.
        // Use very short descriptions in this case to maximize the space available for the module name.
        // Windows does not have that limitation so use slightly more descriptive names there.
        match self {
            WorkItem::Optimize(m) => {
                #[cfg(windows)]
                return format!("optimize module {}", m.name);
                #[cfg(not(windows))]
                return format!("opt {}", m.name);
            }
            WorkItem::CopyPostLtoArtifacts(m) => {
                #[cfg(windows)]
                return format!("copy LTO artifacts for {}", m.name);
                #[cfg(not(windows))]
                return format!("copy {}", m.name);
            }
            WorkItem::LTO(m) => {
                #[cfg(windows)]
                return format!("LTO module {}", m.name());
                #[cfg(not(windows))]
                return format!("LTO {}", m.name());
            }
        }
    }
}

enum WorkItemResult<B: WriteBackendMethods> {
    Compiled(CompiledModule),
    NeedsLink(ModuleCodegen<B::Module>),
    NeedsFatLTO(FatLTOInput<B>),
    NeedsThinLTO(String, B::ThinBuffer),
}

pub enum FatLTOInput<B: WriteBackendMethods> {
    Serialized { name: String, buffer: B::ModuleBuffer },
    InMemory(ModuleCodegen<B::Module>),
}

fn execute_work_item<B: ExtraBackendMethods>(
    cgcx: &CodegenContext<B>,
    work_item: WorkItem<B>,
) -> Result<WorkItemResult<B>, FatalError> {
    let module_config = cgcx.config(work_item.module_kind());

    match work_item {
        WorkItem::Optimize(module) => execute_optimize_work_item(cgcx, module, module_config),
        WorkItem::CopyPostLtoArtifacts(module) => {
            Ok(execute_copy_from_cache_work_item(cgcx, module, module_config))
        }
        WorkItem::LTO(module) => execute_lto_work_item(cgcx, module, module_config),
    }
}

// Actual LTO type we end up choosing based on multiple factors.
pub enum ComputedLtoType {
    No,
    Thin,
    Fat,
}

pub fn compute_per_cgu_lto_type(
    sess_lto: &Lto,
    opts: &config::Options,
    sess_crate_types: &[CrateType],
    module_kind: ModuleKind,
) -> ComputedLtoType {
    // Metadata modules never participate in LTO regardless of the lto
    // settings.
    if module_kind == ModuleKind::Metadata {
        return ComputedLtoType::No;
    }

    // If the linker does LTO, we don't have to do it. Note that we
    // keep doing full LTO, if it is requested, as not to break the
    // assumption that the output will be a single module.
    let linker_does_lto = opts.cg.linker_plugin_lto.enabled();

    // When we're automatically doing ThinLTO for multi-codegen-unit
    // builds we don't actually want to LTO the allocator modules if
    // it shows up. This is due to various linker shenanigans that
    // we'll encounter later.
    let is_allocator = module_kind == ModuleKind::Allocator;

    // We ignore a request for full crate grath LTO if the cate type
    // is only an rlib, as there is no full crate graph to process,
    // that'll happen later.
    //
    // This use case currently comes up primarily for targets that
    // require LTO so the request for LTO is always unconditionally
    // passed down to the backend, but we don't actually want to do
    // anything about it yet until we've got a final product.
    let is_rlib = sess_crate_types.len() == 1 && sess_crate_types[0] == CrateType::Rlib;

    match sess_lto {
        Lto::ThinLocal if !linker_does_lto && !is_allocator => ComputedLtoType::Thin,
        Lto::Thin if !linker_does_lto && !is_rlib => ComputedLtoType::Thin,
        Lto::Fat if !is_rlib => ComputedLtoType::Fat,
        _ => ComputedLtoType::No,
    }
}

fn execute_optimize_work_item<B: ExtraBackendMethods>(
    cgcx: &CodegenContext<B>,
    module: ModuleCodegen<B::Module>,
    module_config: &ModuleConfig,
) -> Result<WorkItemResult<B>, FatalError> {
    let diag_handler = cgcx.create_diag_handler();

    unsafe {
        B::optimize(cgcx, &diag_handler, &module, module_config)?;
    }

    // After we've done the initial round of optimizations we need to
    // decide whether to synchronously codegen this module or ship it
    // back to the coordinator thread for further LTO processing (which
    // has to wait for all the initial modules to be optimized).

    let lto_type = compute_per_cgu_lto_type(&cgcx.lto, &cgcx.opts, &cgcx.crate_types, module.kind);

    // If we're doing some form of incremental LTO then we need to be sure to
    // save our module to disk first.
    let bitcode = if cgcx.config(module.kind).emit_pre_lto_bc {
        let filename = pre_lto_bitcode_filename(&module.name);
        cgcx.incr_comp_session_dir.as_ref().map(|path| path.join(&filename))
    } else {
        None
    };

    match lto_type {
        ComputedLtoType::No => finish_intra_module_work(cgcx, module, module_config),
        ComputedLtoType::Thin => {
            let (name, thin_buffer) = B::prepare_thin(module);
            if let Some(path) = bitcode {
                fs::write(&path, thin_buffer.data()).unwrap_or_else(|e| {
                    panic!("Error writing pre-lto-bitcode file `{}`: {}", path.display(), e);
                });
            }
            Ok(WorkItemResult::NeedsThinLTO(name, thin_buffer))
        }
        ComputedLtoType::Fat => match bitcode {
            Some(path) => {
                let (name, buffer) = B::serialize_module(module);
                fs::write(&path, buffer.data()).unwrap_or_else(|e| {
                    panic!("Error writing pre-lto-bitcode file `{}`: {}", path.display(), e);
                });
                Ok(WorkItemResult::NeedsFatLTO(FatLTOInput::Serialized { name, buffer }))
            }
            None => Ok(WorkItemResult::NeedsFatLTO(FatLTOInput::InMemory(module))),
        },
    }
}

fn execute_copy_from_cache_work_item<B: ExtraBackendMethods>(
    cgcx: &CodegenContext<B>,
    module: CachedModuleCodegen,
    module_config: &ModuleConfig,
) -> WorkItemResult<B> {
    let incr_comp_session_dir = cgcx.incr_comp_session_dir.as_ref().unwrap();
    let mut object = None;
    if let Some(saved_file) = module.source.saved_file {
        let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, Some(&module.name));
        object = Some(obj_out.clone());
        let source_file = in_incr_comp_dir(&incr_comp_session_dir, &saved_file);
        debug!(
            "copying pre-existing module `{}` from {:?} to {}",
            module.name,
            source_file,
            obj_out.display()
        );
        if let Err(err) = link_or_copy(&source_file, &obj_out) {
            let diag_handler = cgcx.create_diag_handler();
            diag_handler.err(&format!(
                "unable to copy {} to {}: {}",
                source_file.display(),
                obj_out.display(),
                err
            ));
        }
    }

    assert_eq!(object.is_some(), module_config.emit_obj != EmitObj::None);

    WorkItemResult::Compiled(CompiledModule {
        name: module.name,
        kind: ModuleKind::Regular,
        object,
        dwarf_object: None,
        bytecode: None,
    })
}

fn execute_lto_work_item<B: ExtraBackendMethods>(
    cgcx: &CodegenContext<B>,
    mut module: lto::LtoModuleCodegen<B>,
    module_config: &ModuleConfig,
) -> Result<WorkItemResult<B>, FatalError> {
    let module = unsafe { module.optimize(cgcx)? };
    finish_intra_module_work(cgcx, module, module_config)
}

fn finish_intra_module_work<B: ExtraBackendMethods>(
    cgcx: &CodegenContext<B>,
    module: ModuleCodegen<B::Module>,
    module_config: &ModuleConfig,
) -> Result<WorkItemResult<B>, FatalError> {
    let diag_handler = cgcx.create_diag_handler();

    if !cgcx.opts.debugging_opts.combine_cgu
        || module.kind == ModuleKind::Metadata
        || module.kind == ModuleKind::Allocator
    {
        let module = unsafe { B::codegen(cgcx, &diag_handler, module, module_config)? };
        Ok(WorkItemResult::Compiled(module))
    } else {
        Ok(WorkItemResult::NeedsLink(module))
    }
}

pub enum Message<B: WriteBackendMethods> {
    Token(io::Result<Acquired>),
    NeedsFatLTO {
        result: FatLTOInput<B>,
        worker_id: usize,
    },
    NeedsThinLTO {
        name: String,
        thin_buffer: B::ThinBuffer,
        worker_id: usize,
    },
    NeedsLink {
        module: ModuleCodegen<B::Module>,
        worker_id: usize,
    },
    Done {
        result: Result<CompiledModule, Option<WorkerFatalError>>,
        worker_id: usize,
    },
    CodegenDone {
        llvm_work_item: WorkItem<B>,
        cost: u64,
    },
    AddImportOnlyModule {
        module_data: SerializedModule<B::ModuleBuffer>,
        work_product: WorkProduct,
    },
    CodegenComplete,
    CodegenItem,
    CodegenAborted,
}

struct Diagnostic {
    msg: String,
    code: Option<DiagnosticId>,
    lvl: Level,
}

#[derive(PartialEq, Clone, Copy, Debug)]
enum MainThreadWorkerState {
    Idle,
    Codegenning,
    LLVMing,
}

fn start_executing_work<B: ExtraBackendMethods>(
    backend: B,
    tcx: TyCtxt<'_>,
    crate_info: &CrateInfo,
    shared_emitter: SharedEmitter,
    codegen_worker_send: Sender<Message<B>>,
    coordinator_receive: Receiver<Box<dyn Any + Send>>,
    total_cgus: usize,
    jobserver: Client,
    regular_config: Arc<ModuleConfig>,
    metadata_config: Arc<ModuleConfig>,
    allocator_config: Arc<ModuleConfig>,
    tx_to_llvm_workers: Sender<Box<dyn Any + Send>>,
) -> thread::JoinHandle<Result<CompiledModules, ()>> {
    let coordinator_send = tx_to_llvm_workers;
    let sess = tcx.sess;

    // Compute the set of symbols we need to retain when doing LTO (if we need to)
    let exported_symbols = {
        let mut exported_symbols = FxHashMap::default();

        let copy_symbols = |cnum| {
            let symbols = tcx
                .exported_symbols(cnum)
                .iter()
                .map(|&(s, lvl)| (symbol_name_for_instance_in_crate(tcx, s, cnum), lvl))
                .collect();
            Arc::new(symbols)
        };

        match sess.lto() {
            Lto::No => None,
            Lto::ThinLocal => {
                exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
                Some(Arc::new(exported_symbols))
            }
            Lto::Fat | Lto::Thin => {
                exported_symbols.insert(LOCAL_CRATE, copy_symbols(LOCAL_CRATE));
                for &cnum in tcx.crates(()).iter() {
                    exported_symbols.insert(cnum, copy_symbols(cnum));
                }
                Some(Arc::new(exported_symbols))
            }
        }
    };

    // First up, convert our jobserver into a helper thread so we can use normal
    // mpsc channels to manage our messages and such.
    // After we've requested tokens then we'll, when we can,
    // get tokens on `coordinator_receive` which will
    // get managed in the main loop below.
    let coordinator_send2 = coordinator_send.clone();
    let helper = jobserver
        .into_helper_thread(move |token| {
            drop(coordinator_send2.send(Box::new(Message::Token::<B>(token))));
        })
        .expect("failed to spawn helper thread");

    let mut each_linked_rlib_for_lto = Vec::new();
    drop(link::each_linked_rlib(crate_info, &mut |cnum, path| {
        if link::ignored_for_lto(sess, crate_info, cnum) {
            return;
        }
        each_linked_rlib_for_lto.push((cnum, path.to_path_buf()));
    }));

    let ol = if tcx.sess.opts.debugging_opts.no_codegen
        || !tcx.sess.opts.output_types.should_codegen()
    {
        // If we know that we won’t be doing codegen, create target machines without optimisation.
        config::OptLevel::No
    } else {
        tcx.backend_optimization_level(())
    };
    let cgcx = CodegenContext::<B> {
        backend: backend.clone(),
        crate_types: sess.crate_types().to_vec(),
        each_linked_rlib_for_lto,
        lto: sess.lto(),
        no_landing_pads: sess.panic_strategy() == PanicStrategy::Abort,
        fewer_names: sess.fewer_names(),
        save_temps: sess.opts.cg.save_temps,
        opts: Arc::new(sess.opts.clone()),
        prof: sess.prof.clone(),
        exported_symbols,
        remark: sess.opts.cg.remark.clone(),
        worker: 0,
        incr_comp_session_dir: sess.incr_comp_session_dir_opt().map(|r| r.clone()),
        cgu_reuse_tracker: sess.cgu_reuse_tracker.clone(),
        coordinator_send,
        diag_emitter: shared_emitter.clone(),
        output_filenames: tcx.output_filenames(()),
        regular_module_config: regular_config,
        metadata_module_config: metadata_config,
        allocator_module_config: allocator_config,
        tm_factory: backend.target_machine_factory(tcx.sess, ol),
        total_cgus,
        msvc_imps_needed: msvc_imps_needed(tcx),
        is_pe_coff: tcx.sess.target.is_like_windows,
        target_can_use_split_dwarf: tcx.sess.target_can_use_split_dwarf(),
        target_pointer_width: tcx.sess.target.pointer_width,
        target_arch: tcx.sess.target.arch.clone(),
        debuginfo: tcx.sess.opts.debuginfo,
        split_debuginfo: tcx.sess.split_debuginfo(),
    };

    // This is the "main loop" of parallel work happening for parallel codegen.
    // It's here that we manage parallelism, schedule work, and work with
    // messages coming from clients.
    //
    // There are a few environmental pre-conditions that shape how the system
    // is set up:
    //
    // - Error reporting only can happen on the main thread because that's the
    //   only place where we have access to the compiler `Session`.
    // - LLVM work can be done on any thread.
    // - Codegen can only happen on the main thread.
    // - Each thread doing substantial work must be in possession of a `Token`
    //   from the `Jobserver`.
    // - The compiler process always holds one `Token`. Any additional `Tokens`
    //   have to be requested from the `Jobserver`.
    //
    // Error Reporting
    // ===============
    // The error reporting restriction is handled separately from the rest: We
    // set up a `SharedEmitter` the holds an open channel to the main thread.
    // When an error occurs on any thread, the shared emitter will send the
    // error message to the receiver main thread (`SharedEmitterMain`). The
    // main thread will periodically query this error message queue and emit
    // any error messages it has received. It might even abort compilation if
    // has received a fatal error. In this case we rely on all other threads
    // being torn down automatically with the main thread.
    // Since the main thread will often be busy doing codegen work, error
    // reporting will be somewhat delayed, since the message queue can only be
    // checked in between to work packages.
    //
    // Work Processing Infrastructure
    // ==============================
    // The work processing infrastructure knows three major actors:
    //
    // - the coordinator thread,
    // - the main thread, and
    // - LLVM worker threads
    //
    // The coordinator thread is running a message loop. It instructs the main
    // thread about what work to do when, and it will spawn off LLVM worker
    // threads as open LLVM WorkItems become available.
    //
    // The job of the main thread is to codegen CGUs into LLVM work package
    // (since the main thread is the only thread that can do this). The main
    // thread will block until it receives a message from the coordinator, upon
    // which it will codegen one CGU, send it to the coordinator and block
    // again. This way the coordinator can control what the main thread is
    // doing.
    //
    // The coordinator keeps a queue of LLVM WorkItems, and when a `Token` is
    // available, it will spawn off a new LLVM worker thread and let it process
    // that a WorkItem. When a LLVM worker thread is done with its WorkItem,
    // it will just shut down, which also frees all resources associated with
    // the given LLVM module, and sends a message to the coordinator that the
    // has been completed.
    //
    // Work Scheduling
    // ===============
    // The scheduler's goal is to minimize the time it takes to complete all
    // work there is, however, we also want to keep memory consumption low
    // if possible. These two goals are at odds with each other: If memory
    // consumption were not an issue, we could just let the main thread produce
    // LLVM WorkItems at full speed, assuring maximal utilization of
    // Tokens/LLVM worker threads. However, since codegen is usually faster
    // than LLVM processing, the queue of LLVM WorkItems would fill up and each
    // WorkItem potentially holds on to a substantial amount of memory.
    //
    // So the actual goal is to always produce just enough LLVM WorkItems as
    // not to starve our LLVM worker threads. That means, once we have enough
    // WorkItems in our queue, we can block the main thread, so it does not
    // produce more until we need them.
    //
    // Doing LLVM Work on the Main Thread
    // ----------------------------------
    // Since the main thread owns the compiler processes implicit `Token`, it is
    // wasteful to keep it blocked without doing any work. Therefore, what we do
    // in this case is: We spawn off an additional LLVM worker thread that helps
    // reduce the queue. The work it is doing corresponds to the implicit
    // `Token`. The coordinator will mark the main thread as being busy with
    // LLVM work. (The actual work happens on another OS thread but we just care
    // about `Tokens`, not actual threads).
    //
    // When any LLVM worker thread finishes while the main thread is marked as
    // "busy with LLVM work", we can do a little switcheroo: We give the Token
    // of the just finished thread to the LLVM worker thread that is working on
    // behalf of the main thread's implicit Token, thus freeing up the main
    // thread again. The coordinator can then again decide what the main thread
    // should do. This allows the coordinator to make decisions at more points
    // in time.
    //
    // Striking a Balance between Throughput and Memory Consumption
    // ------------------------------------------------------------
    // Since our two goals, (1) use as many Tokens as possible and (2) keep
    // memory consumption as low as possible, are in conflict with each other,
    // we have to find a trade off between them. Right now, the goal is to keep
    // all workers busy, which means that no worker should find the queue empty
    // when it is ready to start.
    // How do we do achieve this? Good question :) We actually never know how
    // many `Tokens` are potentially available so it's hard to say how much to
    // fill up the queue before switching the main thread to LLVM work. Also we
    // currently don't have a means to estimate how long a running LLVM worker
    // will still be busy with it's current WorkItem. However, we know the
    // maximal count of available Tokens that makes sense (=the number of CPU
    // cores), so we can take a conservative guess. The heuristic we use here
    // is implemented in the `queue_full_enough()` function.
    //
    // Some Background on Jobservers
    // -----------------------------
    // It's worth also touching on the management of parallelism here. We don't
    // want to just spawn a thread per work item because while that's optimal
    // parallelism it may overload a system with too many threads or violate our
    // configuration for the maximum amount of cpu to use for this process. To
    // manage this we use the `jobserver` crate.
    //
    // Job servers are an artifact of GNU make and are used to manage
    // parallelism between processes. A jobserver is a glorified IPC semaphore
    // basically. Whenever we want to run some work we acquire the semaphore,
    // and whenever we're done with that work we release the semaphore. In this
    // manner we can ensure that the maximum number of parallel workers is
    // capped at any one point in time.
    //
    // LTO and the coordinator thread
    // ------------------------------
    //
    // The final job the coordinator thread is responsible for is managing LTO
    // and how that works. When LTO is requested what we'll to is collect all
    // optimized LLVM modules into a local vector on the coordinator. Once all
    // modules have been codegened and optimized we hand this to the `lto`
    // module for further optimization. The `lto` module will return back a list
    // of more modules to work on, which the coordinator will continue to spawn
    // work for.
    //
    // Each LLVM module is automatically sent back to the coordinator for LTO if
    // necessary. There's already optimizations in place to avoid sending work
    // back to the coordinator if LTO isn't requested.
    return thread::spawn(move || {
        let mut worker_id_counter = 0;
        let mut free_worker_ids = Vec::new();
        let mut get_worker_id = |free_worker_ids: &mut Vec<usize>| {
            if let Some(id) = free_worker_ids.pop() {
                id
            } else {
                let id = worker_id_counter;
                worker_id_counter += 1;
                id
            }
        };

        // This is where we collect codegen units that have gone all the way
        // through codegen and LLVM.
        let mut compiled_modules = vec![];
        let mut compiled_metadata_module = None;
        let mut compiled_allocator_module = None;
        let mut needs_link = Vec::new();
        let mut needs_fat_lto = Vec::new();
        let mut needs_thin_lto = Vec::new();
        let mut lto_import_only_modules = Vec::new();
        let mut started_lto = false;
        let mut codegen_aborted = false;

        // This flag tracks whether all items have gone through codegens
        let mut codegen_done = false;

        // This is the queue of LLVM work items that still need processing.
        let mut work_items = Vec::<(WorkItem<B>, u64)>::new();

        // This are the Jobserver Tokens we currently hold. Does not include
        // the implicit Token the compiler process owns no matter what.
        let mut tokens = Vec::new();

        let mut main_thread_worker_state = MainThreadWorkerState::Idle;
        let mut running = 0;

        let prof = &cgcx.prof;
        let mut llvm_start_time: Option<VerboseTimingGuard<'_>> = None;

        // Run the message loop while there's still anything that needs message
        // processing. Note that as soon as codegen is aborted we simply want to
        // wait for all existing work to finish, so many of the conditions here
        // only apply if codegen hasn't been aborted as they represent pending
        // work to be done.
        while !codegen_done
            || running > 0
            || (!codegen_aborted
                && !(work_items.is_empty()
                    && needs_fat_lto.is_empty()
                    && needs_thin_lto.is_empty()
                    && lto_import_only_modules.is_empty()
                    && main_thread_worker_state == MainThreadWorkerState::Idle))
        {
            // While there are still CGUs to be codegened, the coordinator has
            // to decide how to utilize the compiler processes implicit Token:
            // For codegenning more CGU or for running them through LLVM.
            if !codegen_done {
                if main_thread_worker_state == MainThreadWorkerState::Idle {
                    // Compute the number of workers that will be running once we've taken as many
                    // items from the work queue as we can, plus one for the main thread. It's not
                    // critically important that we use this instead of just `running`, but it
                    // prevents the `queue_full_enough` heuristic from fluctuating just because a
                    // worker finished up and we decreased the `running` count, even though we're
                    // just going to increase it right after this when we put a new worker to work.
                    let extra_tokens = tokens.len().checked_sub(running).unwrap();
                    let additional_running = std::cmp::min(extra_tokens, work_items.len());
                    let anticipated_running = running + additional_running + 1;

                    if !queue_full_enough(work_items.len(), anticipated_running) {
                        // The queue is not full enough, codegen more items:
                        if codegen_worker_send.send(Message::CodegenItem).is_err() {
                            panic!("Could not send Message::CodegenItem to main thread")
                        }
                        main_thread_worker_state = MainThreadWorkerState::Codegenning;
                    } else {
                        // The queue is full enough to not let the worker
                        // threads starve. Use the implicit Token to do some
                        // LLVM work too.
                        let (item, _) =
                            work_items.pop().expect("queue empty - queue_full_enough() broken?");
                        let cgcx = CodegenContext {
                            worker: get_worker_id(&mut free_worker_ids),
                            ..cgcx.clone()
                        };
                        maybe_start_llvm_timer(
                            prof,
                            cgcx.config(item.module_kind()),
                            &mut llvm_start_time,
                        );
                        main_thread_worker_state = MainThreadWorkerState::LLVMing;
                        spawn_work(cgcx, item);
                    }
                }
            } else if codegen_aborted {
                // don't queue up any more work if codegen was aborted, we're
                // just waiting for our existing children to finish
            } else {
                // If we've finished everything related to normal codegen
                // then it must be the case that we've got some LTO work to do.
                // Perform the serial work here of figuring out what we're
                // going to LTO and then push a bunch of work items onto our
                // queue to do LTO
                if work_items.is_empty()
                    && running == 0
                    && main_thread_worker_state == MainThreadWorkerState::Idle
                {
                    assert!(!started_lto);
                    started_lto = true;

                    let needs_fat_lto = mem::take(&mut needs_fat_lto);
                    let needs_thin_lto = mem::take(&mut needs_thin_lto);
                    let import_only_modules = mem::take(&mut lto_import_only_modules);

                    for (work, cost) in
                        generate_lto_work(&cgcx, needs_fat_lto, needs_thin_lto, import_only_modules)
                    {
                        let insertion_index = work_items
                            .binary_search_by_key(&cost, |&(_, cost)| cost)
                            .unwrap_or_else(|e| e);
                        work_items.insert(insertion_index, (work, cost));
                        if !cgcx.opts.debugging_opts.no_parallel_llvm {
                            helper.request_token();
                        }
                    }
                }

                // In this branch, we know that everything has been codegened,
                // so it's just a matter of determining whether the implicit
                // Token is free to use for LLVM work.
                match main_thread_worker_state {
                    MainThreadWorkerState::Idle => {
                        if let Some((item, _)) = work_items.pop() {
                            let cgcx = CodegenContext {
                                worker: get_worker_id(&mut free_worker_ids),
                                ..cgcx.clone()
                            };
                            maybe_start_llvm_timer(
                                prof,
                                cgcx.config(item.module_kind()),
                                &mut llvm_start_time,
                            );
                            main_thread_worker_state = MainThreadWorkerState::LLVMing;
                            spawn_work(cgcx, item);
                        } else {
                            // There is no unstarted work, so let the main thread
                            // take over for a running worker. Otherwise the
                            // implicit token would just go to waste.
                            // We reduce the `running` counter by one. The
                            // `tokens.truncate()` below will take care of
                            // giving the Token back.
                            debug_assert!(running > 0);
                            running -= 1;
                            main_thread_worker_state = MainThreadWorkerState::LLVMing;
                        }
                    }
                    MainThreadWorkerState::Codegenning => bug!(
                        "codegen worker should not be codegenning after \
                              codegen was already completed"
                    ),
                    MainThreadWorkerState::LLVMing => {
                        // Already making good use of that token
                    }
                }
            }

            // Spin up what work we can, only doing this while we've got available
            // parallelism slots and work left to spawn.
            while !codegen_aborted && !work_items.is_empty() && running < tokens.len() {
                let (item, _) = work_items.pop().unwrap();

                maybe_start_llvm_timer(prof, cgcx.config(item.module_kind()), &mut llvm_start_time);

                let cgcx =
                    CodegenContext { worker: get_worker_id(&mut free_worker_ids), ..cgcx.clone() };

                spawn_work(cgcx, item);
                running += 1;
            }

            // Relinquish accidentally acquired extra tokens
            tokens.truncate(running);

            // If a thread exits successfully then we drop a token associated
            // with that worker and update our `running` count. We may later
            // re-acquire a token to continue running more work. We may also not
            // actually drop a token here if the worker was running with an
            // "ephemeral token"
            let mut free_worker = |worker_id| {
                if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                } else {
                    running -= 1;
                }

                free_worker_ids.push(worker_id);
            };

            let msg = coordinator_receive.recv().unwrap();
            match *msg.downcast::<Message<B>>().ok().unwrap() {
                // Save the token locally and the next turn of the loop will use
                // this to spawn a new unit of work, or it may get dropped
                // immediately if we have no more work to spawn.
                Message::Token(token) => {
                    match token {
                        Ok(token) => {
                            tokens.push(token);

                            if main_thread_worker_state == MainThreadWorkerState::LLVMing {
                                // If the main thread token is used for LLVM work
                                // at the moment, we turn that thread into a regular
                                // LLVM worker thread, so the main thread is free
                                // to react to codegen demand.
                                main_thread_worker_state = MainThreadWorkerState::Idle;
                                running += 1;
                            }
                        }
                        Err(e) => {
                            let msg = &format!("failed to acquire jobserver token: {}", e);
                            shared_emitter.fatal(msg);
                            // Exit the coordinator thread
                            panic!("{}", msg)
                        }
                    }
                }

                Message::CodegenDone { llvm_work_item, cost } => {
                    // We keep the queue sorted by estimated processing cost,
                    // so that more expensive items are processed earlier. This
                    // is good for throughput as it gives the main thread more
                    // time to fill up the queue and it avoids scheduling
                    // expensive items to the end.
                    // Note, however, that this is not ideal for memory
                    // consumption, as LLVM module sizes are not evenly
                    // distributed.
                    let insertion_index = work_items.binary_search_by_key(&cost, |&(_, cost)| cost);
                    let insertion_index = match insertion_index {
                        Ok(idx) | Err(idx) => idx,
                    };
                    work_items.insert(insertion_index, (llvm_work_item, cost));

                    if !cgcx.opts.debugging_opts.no_parallel_llvm {
                        helper.request_token();
                    }
                    assert!(!codegen_aborted);
                    assert_eq!(main_thread_worker_state, MainThreadWorkerState::Codegenning);
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }

                Message::CodegenComplete => {
                    codegen_done = true;
                    assert!(!codegen_aborted);
                    assert_eq!(main_thread_worker_state, MainThreadWorkerState::Codegenning);
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }

                // If codegen is aborted that means translation was aborted due
                // to some normal-ish compiler error. In this situation we want
                // to exit as soon as possible, but we want to make sure all
                // existing work has finished. Flag codegen as being done, and
                // then conditions above will ensure no more work is spawned but
                // we'll keep executing this loop until `running` hits 0.
                Message::CodegenAborted => {
                    assert!(!codegen_aborted);
                    codegen_done = true;
                    codegen_aborted = true;
                    assert_eq!(main_thread_worker_state, MainThreadWorkerState::Codegenning);
                }
                Message::Done { result: Ok(compiled_module), worker_id } => {
                    free_worker(worker_id);
                    match compiled_module.kind {
                        ModuleKind::Regular => {
                            compiled_modules.push(compiled_module);
                        }
                        ModuleKind::Metadata => {
                            assert!(compiled_metadata_module.is_none());
                            compiled_metadata_module = Some(compiled_module);
                        }
                        ModuleKind::Allocator => {
                            assert!(compiled_allocator_module.is_none());
                            compiled_allocator_module = Some(compiled_module);
                        }
                    }
                }
                Message::NeedsLink { module, worker_id } => {
                    free_worker(worker_id);
                    needs_link.push(module);
                }
                Message::NeedsFatLTO { result, worker_id } => {
                    assert!(!started_lto);
                    free_worker(worker_id);
                    needs_fat_lto.push(result);
                }
                Message::NeedsThinLTO { name, thin_buffer, worker_id } => {
                    assert!(!started_lto);
                    free_worker(worker_id);
                    needs_thin_lto.push((name, thin_buffer));
                }
                Message::AddImportOnlyModule { module_data, work_product } => {
                    assert!(!started_lto);
                    assert!(!codegen_done);
                    assert_eq!(main_thread_worker_state, MainThreadWorkerState::Codegenning);
                    lto_import_only_modules.push((module_data, work_product));
                    main_thread_worker_state = MainThreadWorkerState::Idle;
                }
                // If the thread failed that means it panicked, so we abort immediately.
                Message::Done { result: Err(None), worker_id: _ } => {
                    bug!("worker thread panicked");
                }
                Message::Done { result: Err(Some(WorkerFatalError)), worker_id: _ } => {
                    return Err(());
                }
                Message::CodegenItem => bug!("the coordinator should not receive codegen requests"),
            }
        }

        let needs_link = mem::take(&mut needs_link);
        if !needs_link.is_empty() {
            assert!(compiled_modules.is_empty());
            let diag_handler = cgcx.create_diag_handler();
            let module = B::run_link(&cgcx, &diag_handler, needs_link).map_err(|_| ())?;
            let module = unsafe {
                B::codegen(&cgcx, &diag_handler, module, cgcx.config(ModuleKind::Regular))
                    .map_err(|_| ())?
            };
            compiled_modules.push(module);
        }

        // Drop to print timings
        drop(llvm_start_time);

        // Regardless of what order these modules completed in, report them to
        // the backend in the same order every time to ensure that we're handing
        // out deterministic results.
        compiled_modules.sort_by(|a, b| a.name.cmp(&b.name));

        Ok(CompiledModules {
            modules: compiled_modules,
            metadata_module: compiled_metadata_module,
            allocator_module: compiled_allocator_module,
        })
    });

    // A heuristic that determines if we have enough LLVM WorkItems in the
    // queue so that the main thread can do LLVM work instead of codegen
    fn queue_full_enough(items_in_queue: usize, workers_running: usize) -> bool {
        // This heuristic scales ahead-of-time codegen according to available
        // concurrency, as measured by `workers_running`. The idea is that the
        // more concurrency we have available, the more demand there will be for
        // work items, and the fuller the queue should be kept to meet demand.
        // An important property of this approach is that we codegen ahead of
        // time only as much as necessary, so as to keep fewer LLVM modules in
        // memory at once, thereby reducing memory consumption.
        //
        // When the number of workers running is less than the max concurrency
        // available to us, this heuristic can cause us to instruct the main
        // thread to work on an LLVM item (that is, tell it to "LLVM") instead
        // of codegen, even though it seems like it *should* be codegenning so
        // that we can create more work items and spawn more LLVM workers.
        //
        // But this is not a problem. When the main thread is told to LLVM,
        // according to this heuristic and how work is scheduled, there is
        // always at least one item in the queue, and therefore at least one
        // pending jobserver token request. If there *is* more concurrency
        // available, we will immediately receive a token, which will upgrade
        // the main thread's LLVM worker to a real one (conceptually), and free
        // up the main thread to codegen if necessary. On the other hand, if
        // there isn't more concurrency, then the main thread working on an LLVM
        // item is appropriate, as long as the queue is full enough for demand.
        //
        // Speaking of which, how full should we keep the queue? Probably less
        // full than you'd think. A lot has to go wrong for the queue not to be
        // full enough and for that to have a negative effect on compile times.
        //
        // Workers are unlikely to finish at exactly the same time, so when one
        // finishes and takes another work item off the queue, we often have
        // ample time to codegen at that point before the next worker finishes.
        // But suppose that codegen takes so long that the workers exhaust the
        // queue, and we have one or more workers that have nothing to work on.
        // Well, it might not be so bad. Of all the LLVM modules we create and
        // optimize, one has to finish last. It's not necessarily the case that
        // by losing some concurrency for a moment, we delay the point at which
        // that last LLVM module is finished and the rest of compilation can
        // proceed. Also, when we can't take advantage of some concurrency, we
        // give tokens back to the job server. That enables some other rustc to
        // potentially make use of the available concurrency. That could even
        // *decrease* overall compile time if we're lucky. But yes, if no other
        // rustc can make use of the concurrency, then we've squandered it.
        //
        // However, keeping the queue full is also beneficial when we have a
        // surge in available concurrency. Then items can be taken from the
        // queue immediately, without having to wait for codegen.
        //
        // So, the heuristic below tries to keep one item in the queue for every
        // four running workers. Based on limited benchmarking, this appears to
        // be more than sufficient to avoid increasing compilation times.
        let quarter_of_workers = workers_running - 3 * workers_running / 4;
        items_in_queue > 0 && items_in_queue >= quarter_of_workers
    }

    fn maybe_start_llvm_timer<'a>(
        prof: &'a SelfProfilerRef,
        config: &ModuleConfig,
        llvm_start_time: &mut Option<VerboseTimingGuard<'a>>,
    ) {
        if config.time_module && llvm_start_time.is_none() {
            *llvm_start_time = Some(prof.extra_verbose_generic_activity("LLVM_passes", "crate"));
        }
    }
}

/// `FatalError` is explicitly not `Send`.
#[must_use]
pub struct WorkerFatalError;

fn spawn_work<B: ExtraBackendMethods>(cgcx: CodegenContext<B>, work: WorkItem<B>) {
    let builder = thread::Builder::new().name(work.short_description());
    builder
        .spawn(move || {
            // Set up a destructor which will fire off a message that we're done as
            // we exit.
            struct Bomb<B: ExtraBackendMethods> {
                coordinator_send: Sender<Box<dyn Any + Send>>,
                result: Option<Result<WorkItemResult<B>, FatalError>>,
                worker_id: usize,
            }
            impl<B: ExtraBackendMethods> Drop for Bomb<B> {
                fn drop(&mut self) {
                    let worker_id = self.worker_id;
                    let msg = match self.result.take() {
                        Some(Ok(WorkItemResult::Compiled(m))) => {
                            Message::Done::<B> { result: Ok(m), worker_id }
                        }
                        Some(Ok(WorkItemResult::NeedsLink(m))) => {
                            Message::NeedsLink::<B> { module: m, worker_id }
                        }
                        Some(Ok(WorkItemResult::NeedsFatLTO(m))) => {
                            Message::NeedsFatLTO::<B> { result: m, worker_id }
                        }
                        Some(Ok(WorkItemResult::NeedsThinLTO(name, thin_buffer))) => {
                            Message::NeedsThinLTO::<B> { name, thin_buffer, worker_id }
                        }
                        Some(Err(FatalError)) => {
                            Message::Done::<B> { result: Err(Some(WorkerFatalError)), worker_id }
                        }
                        None => Message::Done::<B> { result: Err(None), worker_id },
                    };
                    drop(self.coordinator_send.send(Box::new(msg)));
                }
            }

            let mut bomb = Bomb::<B> {
                coordinator_send: cgcx.coordinator_send.clone(),
                result: None,
                worker_id: cgcx.worker,
            };

            // Execute the work itself, and if it finishes successfully then flag
            // ourselves as a success as well.
            //
            // Note that we ignore any `FatalError` coming out of `execute_work_item`,
            // as a diagnostic was already sent off to the main thread - just
            // surface that there was an error in this worker.
            bomb.result = {
                let _prof_timer = work.start_profiling(&cgcx);
                Some(execute_work_item(&cgcx, work))
            };
        })
        .expect("failed to spawn thread");
}

enum SharedEmitterMessage {
    Diagnostic(Diagnostic),
    InlineAsmError(u32, String, Level, Option<(String, Vec<InnerSpan>)>),
    AbortIfErrors,
    Fatal(String),
}

#[derive(Clone)]
pub struct SharedEmitter {
    sender: Sender<SharedEmitterMessage>,
}

pub struct SharedEmitterMain {
    receiver: Receiver<SharedEmitterMessage>,
}

impl SharedEmitter {
    pub fn new() -> (SharedEmitter, SharedEmitterMain) {
        let (sender, receiver) = channel();

        (SharedEmitter { sender }, SharedEmitterMain { receiver })
    }

    pub fn inline_asm_error(
        &self,
        cookie: u32,
        msg: String,
        level: Level,
        source: Option<(String, Vec<InnerSpan>)>,
    ) {
        drop(self.sender.send(SharedEmitterMessage::InlineAsmError(cookie, msg, level, source)));
    }

    pub fn fatal(&self, msg: &str) {
        drop(self.sender.send(SharedEmitterMessage::Fatal(msg.to_string())));
    }
}

impl Emitter for SharedEmitter {
    fn emit_diagnostic(&mut self, diag: &rustc_errors::Diagnostic) {
        drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
            msg: diag.message(),
            code: diag.code.clone(),
            lvl: diag.level,
        })));
        for child in &diag.children {
            drop(self.sender.send(SharedEmitterMessage::Diagnostic(Diagnostic {
                msg: child.message(),
                code: None,
                lvl: child.level,
            })));
        }
        drop(self.sender.send(SharedEmitterMessage::AbortIfErrors));
    }
    fn source_map(&self) -> Option<&Lrc<SourceMap>> {
        None
    }
}

impl SharedEmitterMain {
    pub fn check(&self, sess: &Session, blocking: bool) {
        loop {
            let message = if blocking {
                match self.receiver.recv() {
                    Ok(message) => Ok(message),
                    Err(_) => Err(()),
                }
            } else {
                match self.receiver.try_recv() {
                    Ok(message) => Ok(message),
                    Err(_) => Err(()),
                }
            };

            match message {
                Ok(SharedEmitterMessage::Diagnostic(diag)) => {
                    let handler = sess.diagnostic();
                    let mut d = rustc_errors::Diagnostic::new(diag.lvl, &diag.msg);
                    if let Some(code) = diag.code {
                        d.code(code);
                    }
                    handler.emit_diagnostic(&d);
                }
                Ok(SharedEmitterMessage::InlineAsmError(cookie, msg, level, source)) => {
                    let msg = msg.strip_prefix("error: ").unwrap_or(&msg);

                    let mut err = match level {
                        Level::Error => sess.struct_err(&msg),
                        Level::Warning => sess.struct_warn(&msg),
                        Level::Note => sess.struct_note_without_error(&msg),
                        _ => bug!("Invalid inline asm diagnostic level"),
                    };

                    // If the cookie is 0 then we don't have span information.
                    if cookie != 0 {
                        let pos = BytePos::from_u32(cookie);
                        let span = Span::with_root_ctxt(pos, pos);
                        err.set_span(span);
                    };

                    // Point to the generated assembly if it is available.
                    if let Some((buffer, spans)) = source {
                        let source = sess
                            .source_map()
                            .new_source_file(FileName::inline_asm_source_code(&buffer), buffer);
                        let source_span = Span::with_root_ctxt(source.start_pos, source.end_pos);
                        let spans: Vec<_> =
                            spans.iter().map(|sp| source_span.from_inner(*sp)).collect();
                        err.span_note(spans, "instantiated into assembly here");
                    }

                    err.emit();
                }
                Ok(SharedEmitterMessage::AbortIfErrors) => {
                    sess.abort_if_errors();
                }
                Ok(SharedEmitterMessage::Fatal(msg)) => {
                    sess.fatal(&msg);
                }
                Err(_) => {
                    break;
                }
            }
        }
    }
}

pub struct OngoingCodegen<B: ExtraBackendMethods> {
    pub backend: B,
    pub metadata: EncodedMetadata,
    pub crate_info: CrateInfo,
    pub coordinator_send: Sender<Box<dyn Any + Send>>,
    pub codegen_worker_receive: Receiver<Message<B>>,
    pub shared_emitter_main: SharedEmitterMain,
    pub future: thread::JoinHandle<Result<CompiledModules, ()>>,
    pub output_filenames: Arc<OutputFilenames>,
}

impl<B: ExtraBackendMethods> OngoingCodegen<B> {
    pub fn join(self, sess: &Session) -> (CodegenResults, FxHashMap<WorkProductId, WorkProduct>) {
        let _timer = sess.timer("finish_ongoing_codegen");

        self.shared_emitter_main.check(sess, true);
        let future = self.future;
        let compiled_modules = sess.time("join_worker_thread", || match future.join() {
            Ok(Ok(compiled_modules)) => compiled_modules,
            Ok(Err(())) => {
                sess.abort_if_errors();
                panic!("expected abort due to worker thread errors")
            }
            Err(_) => {
                bug!("panic during codegen/LLVM phase");
            }
        });

        sess.cgu_reuse_tracker.check_expected_reuse(sess.diagnostic());

        sess.abort_if_errors();

        let work_products =
            copy_all_cgu_workproducts_to_incr_comp_cache_dir(sess, &compiled_modules);
        produce_final_output_artifacts(sess, &compiled_modules, &self.output_filenames);

        // FIXME: time_llvm_passes support - does this use a global context or
        // something?
        if sess.codegen_units() == 1 && sess.time_llvm_passes() {
            self.backend.print_pass_timings()
        }

        (
            CodegenResults {
                metadata: self.metadata,
                crate_info: self.crate_info,

                modules: compiled_modules.modules,
                allocator_module: compiled_modules.allocator_module,
                metadata_module: compiled_modules.metadata_module,
            },
            work_products,
        )
    }

    pub fn submit_pre_codegened_module_to_llvm(
        &self,
        tcx: TyCtxt<'_>,
        module: ModuleCodegen<B::Module>,
    ) {
        self.wait_for_signal_to_codegen_item();
        self.check_for_errors(tcx.sess);

        // These are generally cheap and won't throw off scheduling.
        let cost = 0;
        submit_codegened_module_to_llvm(&self.backend, &self.coordinator_send, module, cost);
    }

    pub fn codegen_finished(&self, tcx: TyCtxt<'_>) {
        self.wait_for_signal_to_codegen_item();
        self.check_for_errors(tcx.sess);
        drop(self.coordinator_send.send(Box::new(Message::CodegenComplete::<B>)));
    }

    /// Consumes this context indicating that codegen was entirely aborted, and
    /// we need to exit as quickly as possible.
    ///
    /// This method blocks the current thread until all worker threads have
    /// finished, and all worker threads should have exited or be real close to
    /// exiting at this point.
    pub fn codegen_aborted(self) {
        // Signal to the coordinator it should spawn no more work and start
        // shutdown.
        drop(self.coordinator_send.send(Box::new(Message::CodegenAborted::<B>)));
        drop(self.future.join());
    }

    pub fn check_for_errors(&self, sess: &Session) {
        self.shared_emitter_main.check(sess, false);
    }

    pub fn wait_for_signal_to_codegen_item(&self) {
        match self.codegen_worker_receive.recv() {
            Ok(Message::CodegenItem) => {
                // Nothing to do
            }
            Ok(_) => panic!("unexpected message"),
            Err(_) => {
                // One of the LLVM threads must have panicked, fall through so
                // error handling can be reached.
            }
        }
    }
}

pub fn submit_codegened_module_to_llvm<B: ExtraBackendMethods>(
    _backend: &B,
    tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
    module: ModuleCodegen<B::Module>,
    cost: u64,
) {
    let llvm_work_item = WorkItem::Optimize(module);
    drop(tx_to_llvm_workers.send(Box::new(Message::CodegenDone::<B> { llvm_work_item, cost })));
}

pub fn submit_post_lto_module_to_llvm<B: ExtraBackendMethods>(
    _backend: &B,
    tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
    module: CachedModuleCodegen,
) {
    let llvm_work_item = WorkItem::CopyPostLtoArtifacts(module);
    drop(tx_to_llvm_workers.send(Box::new(Message::CodegenDone::<B> { llvm_work_item, cost: 0 })));
}

pub fn submit_pre_lto_module_to_llvm<B: ExtraBackendMethods>(
    _backend: &B,
    tcx: TyCtxt<'_>,
    tx_to_llvm_workers: &Sender<Box<dyn Any + Send>>,
    module: CachedModuleCodegen,
) {
    let filename = pre_lto_bitcode_filename(&module.name);
    let bc_path = in_incr_comp_dir_sess(tcx.sess, &filename);
    let file = fs::File::open(&bc_path)
        .unwrap_or_else(|e| panic!("failed to open bitcode file `{}`: {}", bc_path.display(), e));

    let mmap = unsafe {
        Mmap::map(file).unwrap_or_else(|e| {
            panic!("failed to mmap bitcode file `{}`: {}", bc_path.display(), e)
        })
    };
    // Schedule the module to be loaded
    drop(tx_to_llvm_workers.send(Box::new(Message::AddImportOnlyModule::<B> {
        module_data: SerializedModule::FromUncompressedFile(mmap),
        work_product: module.source,
    })));
}

pub fn pre_lto_bitcode_filename(module_name: &str) -> String {
    format!("{}.{}", module_name, PRE_LTO_BC_EXT)
}

fn msvc_imps_needed(tcx: TyCtxt<'_>) -> bool {
    // This should never be true (because it's not supported). If it is true,
    // something is wrong with commandline arg validation.
    assert!(
        !(tcx.sess.opts.cg.linker_plugin_lto.enabled()
            && tcx.sess.target.is_like_windows
            && tcx.sess.opts.cg.prefer_dynamic)
    );

    tcx.sess.target.is_like_windows &&
        tcx.sess.crate_types().iter().any(|ct| *ct == CrateType::Rlib) &&
    // ThinLTO can't handle this workaround in all cases, so we don't
    // emit the `__imp_` symbols. Instead we make them unnecessary by disallowing
    // dynamic linking when linker plugin LTO is enabled.
    !tcx.sess.opts.cg.linker_plugin_lto.enabled()
}