1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
use std::cell::Cell;
use std::fmt;
use std::mem;

use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_hir::{self as hir, def_id::DefId, definitions::DefPathData};
use rustc_index::vec::IndexVec;
use rustc_macros::HashStable;
use rustc_middle::mir;
use rustc_middle::ty::layout::{self, LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout};
use rustc_middle::ty::{
    self, query::TyCtxtAt, subst::SubstsRef, ParamEnv, Ty, TyCtxt, TypeFoldable,
};
use rustc_mir_dataflow::storage::AlwaysLiveLocals;
use rustc_query_system::ich::StableHashingContext;
use rustc_session::Limit;
use rustc_span::{Pos, Span};
use rustc_target::abi::{Align, HasDataLayout, Size, TargetDataLayout};

use super::{
    AllocId, GlobalId, Immediate, InterpErrorInfo, InterpResult, MPlaceTy, Machine, MemPlace,
    MemPlaceMeta, Memory, MemoryKind, Operand, Place, PlaceTy, Pointer, Provenance, Scalar,
    ScalarMaybeUninit, StackPopJump,
};
use crate::transform::validate::equal_up_to_regions;

pub struct InterpCx<'mir, 'tcx, M: Machine<'mir, 'tcx>> {
    /// Stores the `Machine` instance.
    ///
    /// Note: the stack is provided by the machine.
    pub machine: M,

    /// The results of the type checker, from rustc.
    /// The span in this is the "root" of the evaluation, i.e., the const
    /// we are evaluating (if this is CTFE).
    pub tcx: TyCtxtAt<'tcx>,

    /// Bounds in scope for polymorphic evaluations.
    pub(crate) param_env: ty::ParamEnv<'tcx>,

    /// The virtual memory system.
    pub memory: Memory<'mir, 'tcx, M>,

    /// The recursion limit (cached from `tcx.recursion_limit(())`)
    pub recursion_limit: Limit,
}

// The Phantomdata exists to prevent this type from being `Send`. If it were sent across a thread
// boundary and dropped in the other thread, it would exit the span in the other thread.
struct SpanGuard(tracing::Span, std::marker::PhantomData<*const u8>);

impl SpanGuard {
    /// By default a `SpanGuard` does nothing.
    fn new() -> Self {
        Self(tracing::Span::none(), std::marker::PhantomData)
    }

    /// If a span is entered, we exit the previous span (if any, normally none) and enter the
    /// new span. This is mainly so we don't have to use `Option` for the `tracing_span` field of
    /// `Frame` by creating a dummy span to being with and then entering it once the frame has
    /// been pushed.
    fn enter(&mut self, span: tracing::Span) {
        // This executes the destructor on the previous instance of `SpanGuard`, ensuring that
        // we never enter or exit more spans than vice versa. Unless you `mem::leak`, then we
        // can't protect the tracing stack, but that'll just lead to weird logging, no actual
        // problems.
        *self = Self(span, std::marker::PhantomData);
        self.0.with_subscriber(|(id, dispatch)| {
            dispatch.enter(id);
        });
    }
}

impl Drop for SpanGuard {
    fn drop(&mut self) {
        self.0.with_subscriber(|(id, dispatch)| {
            dispatch.exit(id);
        });
    }
}

/// A stack frame.
pub struct Frame<'mir, 'tcx, Tag: Provenance = AllocId, Extra = ()> {
    ////////////////////////////////////////////////////////////////////////////////
    // Function and callsite information
    ////////////////////////////////////////////////////////////////////////////////
    /// The MIR for the function called on this frame.
    pub body: &'mir mir::Body<'tcx>,

    /// The def_id and substs of the current function.
    pub instance: ty::Instance<'tcx>,

    /// Extra data for the machine.
    pub extra: Extra,

    ////////////////////////////////////////////////////////////////////////////////
    // Return place and locals
    ////////////////////////////////////////////////////////////////////////////////
    /// Work to perform when returning from this function.
    pub return_to_block: StackPopCleanup,

    /// The location where the result of the current stack frame should be written to,
    /// and its layout in the caller.
    pub return_place: Option<PlaceTy<'tcx, Tag>>,

    /// The list of locals for this stack frame, stored in order as
    /// `[return_ptr, arguments..., variables..., temporaries...]`.
    /// The locals are stored as `Option<Value>`s.
    /// `None` represents a local that is currently dead, while a live local
    /// can either directly contain `Scalar` or refer to some part of an `Allocation`.
    pub locals: IndexVec<mir::Local, LocalState<'tcx, Tag>>,

    /// The span of the `tracing` crate is stored here.
    /// When the guard is dropped, the span is exited. This gives us
    /// a full stack trace on all tracing statements.
    tracing_span: SpanGuard,

    ////////////////////////////////////////////////////////////////////////////////
    // Current position within the function
    ////////////////////////////////////////////////////////////////////////////////
    /// If this is `Err`, we are not currently executing any particular statement in
    /// this frame (can happen e.g. during frame initialization, and during unwinding on
    /// frames without cleanup code).
    /// We basically abuse `Result` as `Either`.
    pub(super) loc: Result<mir::Location, Span>,
}

/// What we store about a frame in an interpreter backtrace.
#[derive(Debug)]
pub struct FrameInfo<'tcx> {
    pub instance: ty::Instance<'tcx>,
    pub span: Span,
    pub lint_root: Option<hir::HirId>,
}

/// Unwind information.
#[derive(Clone, Copy, Eq, PartialEq, Debug, HashStable)]
pub enum StackPopUnwind {
    /// The cleanup block.
    Cleanup(mir::BasicBlock),
    /// No cleanup needs to be done.
    Skip,
    /// Unwinding is not allowed (UB).
    NotAllowed,
}

#[derive(Clone, Copy, Eq, PartialEq, Debug, HashStable)] // Miri debug-prints these
pub enum StackPopCleanup {
    /// Jump to the next block in the caller, or cause UB if None (that's a function
    /// that may never return). Also store layout of return place so
    /// we can validate it at that layout.
    /// `ret` stores the block we jump to on a normal return, while `unwind`
    /// stores the block used for cleanup during unwinding.
    Goto { ret: Option<mir::BasicBlock>, unwind: StackPopUnwind },
    /// Just do nothing: Used by Main and for the `box_alloc` hook in miri.
    /// `cleanup` says whether locals are deallocated. Static computation
    /// wants them leaked to intern what they need (and just throw away
    /// the entire `ecx` when it is done).
    None { cleanup: bool },
}

/// State of a local variable including a memoized layout
#[derive(Clone, PartialEq, Eq, HashStable)]
pub struct LocalState<'tcx, Tag: Provenance = AllocId> {
    pub value: LocalValue<Tag>,
    /// Don't modify if `Some`, this is only used to prevent computing the layout twice
    #[stable_hasher(ignore)]
    pub layout: Cell<Option<TyAndLayout<'tcx>>>,
}

/// Current value of a local variable
#[derive(Copy, Clone, PartialEq, Eq, HashStable, Debug)] // Miri debug-prints these
pub enum LocalValue<Tag: Provenance = AllocId> {
    /// This local is not currently alive, and cannot be used at all.
    Dead,
    /// This local is alive but not yet initialized. It can be written to
    /// but not read from or its address taken. Locals get initialized on
    /// first write because for unsized locals, we do not know their size
    /// before that.
    Uninitialized,
    /// A normal, live local.
    /// Mostly for convenience, we re-use the `Operand` type here.
    /// This is an optimization over just always having a pointer here;
    /// we can thus avoid doing an allocation when the local just stores
    /// immediate values *and* never has its address taken.
    Live(Operand<Tag>),
}

impl<'tcx, Tag: Provenance + 'static> LocalState<'tcx, Tag> {
    /// Read the local's value or error if the local is not yet live or not live anymore.
    ///
    /// Note: This may only be invoked from the `Machine::access_local` hook and not from
    /// anywhere else. You may be invalidating machine invariants if you do!
    pub fn access(&self) -> InterpResult<'tcx, Operand<Tag>> {
        match self.value {
            LocalValue::Dead => throw_ub!(DeadLocal),
            LocalValue::Uninitialized => {
                bug!("The type checker should prevent reading from a never-written local")
            }
            LocalValue::Live(val) => Ok(val),
        }
    }

    /// Overwrite the local.  If the local can be overwritten in place, return a reference
    /// to do so; otherwise return the `MemPlace` to consult instead.
    ///
    /// Note: This may only be invoked from the `Machine::access_local_mut` hook and not from
    /// anywhere else. You may be invalidating machine invariants if you do!
    pub fn access_mut(
        &mut self,
    ) -> InterpResult<'tcx, Result<&mut LocalValue<Tag>, MemPlace<Tag>>> {
        match self.value {
            LocalValue::Dead => throw_ub!(DeadLocal),
            LocalValue::Live(Operand::Indirect(mplace)) => Ok(Err(mplace)),
            ref mut
            local @ (LocalValue::Live(Operand::Immediate(_)) | LocalValue::Uninitialized) => {
                Ok(Ok(local))
            }
        }
    }
}

impl<'mir, 'tcx, Tag: Provenance> Frame<'mir, 'tcx, Tag> {
    pub fn with_extra<Extra>(self, extra: Extra) -> Frame<'mir, 'tcx, Tag, Extra> {
        Frame {
            body: self.body,
            instance: self.instance,
            return_to_block: self.return_to_block,
            return_place: self.return_place,
            locals: self.locals,
            loc: self.loc,
            extra,
            tracing_span: self.tracing_span,
        }
    }
}

impl<'mir, 'tcx, Tag: Provenance, Extra> Frame<'mir, 'tcx, Tag, Extra> {
    /// Get the current location within the Frame.
    ///
    /// If this is `Err`, we are not currently executing any particular statement in
    /// this frame (can happen e.g. during frame initialization, and during unwinding on
    /// frames without cleanup code).
    /// We basically abuse `Result` as `Either`.
    ///
    /// Used by priroda.
    pub fn current_loc(&self) -> Result<mir::Location, Span> {
        self.loc
    }

    /// Return the `SourceInfo` of the current instruction.
    pub fn current_source_info(&self) -> Option<&mir::SourceInfo> {
        self.loc.ok().map(|loc| self.body.source_info(loc))
    }

    pub fn current_span(&self) -> Span {
        match self.loc {
            Ok(loc) => self.body.source_info(loc).span,
            Err(span) => span,
        }
    }
}

impl<'tcx> fmt::Display for FrameInfo<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        ty::tls::with(|tcx| {
            if tcx.def_key(self.instance.def_id()).disambiguated_data.data
                == DefPathData::ClosureExpr
            {
                write!(f, "inside closure")?;
            } else {
                write!(f, "inside `{}`", self.instance)?;
            }
            if !self.span.is_dummy() {
                let sm = tcx.sess.source_map();
                let lo = sm.lookup_char_pos(self.span.lo());
                write!(
                    f,
                    " at {}:{}:{}",
                    sm.filename_for_diagnostics(&lo.file.name),
                    lo.line,
                    lo.col.to_usize() + 1
                )?;
            }
            Ok(())
        })
    }
}

impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for InterpCx<'mir, 'tcx, M> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}

impl<'mir, 'tcx, M> layout::HasTyCtxt<'tcx> for InterpCx<'mir, 'tcx, M>
where
    M: Machine<'mir, 'tcx>,
{
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        *self.tcx
    }
}

impl<'mir, 'tcx, M> layout::HasParamEnv<'tcx> for InterpCx<'mir, 'tcx, M>
where
    M: Machine<'mir, 'tcx>,
{
    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }
}

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> LayoutOfHelpers<'tcx> for InterpCx<'mir, 'tcx, M> {
    type LayoutOfResult = InterpResult<'tcx, TyAndLayout<'tcx>>;

    #[inline]
    fn layout_tcx_at_span(&self) -> Span {
        self.tcx.span
    }

    #[inline]
    fn handle_layout_err(
        &self,
        err: LayoutError<'tcx>,
        _: Span,
        _: Ty<'tcx>,
    ) -> InterpErrorInfo<'tcx> {
        err_inval!(Layout(err)).into()
    }
}

/// Test if it is valid for a MIR assignment to assign `src`-typed place to `dest`-typed value.
/// This test should be symmetric, as it is primarily about layout compatibility.
pub(super) fn mir_assign_valid_types<'tcx>(
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    src: TyAndLayout<'tcx>,
    dest: TyAndLayout<'tcx>,
) -> bool {
    // Type-changing assignments can happen when subtyping is used. While
    // all normal lifetimes are erased, higher-ranked types with their
    // late-bound lifetimes are still around and can lead to type
    // differences. So we compare ignoring lifetimes.
    if equal_up_to_regions(tcx, param_env, src.ty, dest.ty) {
        // Make sure the layout is equal, too -- just to be safe. Miri really
        // needs layout equality. For performance reason we skip this check when
        // the types are equal. Equal types *can* have different layouts when
        // enum downcast is involved (as enum variants carry the type of the
        // enum), but those should never occur in assignments.
        if cfg!(debug_assertions) || src.ty != dest.ty {
            assert_eq!(src.layout, dest.layout);
        }
        true
    } else {
        false
    }
}

/// Use the already known layout if given (but sanity check in debug mode),
/// or compute the layout.
#[cfg_attr(not(debug_assertions), inline(always))]
pub(super) fn from_known_layout<'tcx>(
    tcx: TyCtxtAt<'tcx>,
    param_env: ParamEnv<'tcx>,
    known_layout: Option<TyAndLayout<'tcx>>,
    compute: impl FnOnce() -> InterpResult<'tcx, TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
    match known_layout {
        None => compute(),
        Some(known_layout) => {
            if cfg!(debug_assertions) {
                let check_layout = compute()?;
                if !mir_assign_valid_types(tcx.tcx, param_env, check_layout, known_layout) {
                    span_bug!(
                        tcx.span,
                        "expected type differs from actual type.\nexpected: {:?}\nactual: {:?}",
                        known_layout.ty,
                        check_layout.ty,
                    );
                }
            }
            Ok(known_layout)
        }
    }
}

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
    pub fn new(
        tcx: TyCtxt<'tcx>,
        root_span: Span,
        param_env: ty::ParamEnv<'tcx>,
        machine: M,
        memory_extra: M::MemoryExtra,
    ) -> Self {
        InterpCx {
            machine,
            tcx: tcx.at(root_span),
            param_env,
            memory: Memory::new(tcx, memory_extra),
            recursion_limit: tcx.recursion_limit(),
        }
    }

    #[inline(always)]
    pub fn cur_span(&self) -> Span {
        self.stack()
            .iter()
            .rev()
            .find(|frame| !frame.instance.def.requires_caller_location(*self.tcx))
            .map_or(self.tcx.span, |f| f.current_span())
    }

    #[inline(always)]
    pub fn scalar_to_ptr(&self, scalar: Scalar<M::PointerTag>) -> Pointer<Option<M::PointerTag>> {
        self.memory.scalar_to_ptr(scalar)
    }

    /// Call this to turn untagged "global" pointers (obtained via `tcx`) into
    /// the machine pointer to the allocation.  Must never be used
    /// for any other pointers, nor for TLS statics.
    ///
    /// Using the resulting pointer represents a *direct* access to that memory
    /// (e.g. by directly using a `static`),
    /// as opposed to access through a pointer that was created by the program.
    ///
    /// This function can fail only if `ptr` points to an `extern static`.
    #[inline(always)]
    pub fn global_base_pointer(&self, ptr: Pointer) -> InterpResult<'tcx, Pointer<M::PointerTag>> {
        self.memory.global_base_pointer(ptr)
    }

    #[inline(always)]
    pub(crate) fn stack(&self) -> &[Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>] {
        M::stack(self)
    }

    #[inline(always)]
    pub(crate) fn stack_mut(
        &mut self,
    ) -> &mut Vec<Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>> {
        M::stack_mut(self)
    }

    #[inline(always)]
    pub fn frame_idx(&self) -> usize {
        let stack = self.stack();
        assert!(!stack.is_empty());
        stack.len() - 1
    }

    #[inline(always)]
    pub fn frame(&self) -> &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra> {
        self.stack().last().expect("no call frames exist")
    }

    #[inline(always)]
    pub fn frame_mut(&mut self) -> &mut Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra> {
        self.stack_mut().last_mut().expect("no call frames exist")
    }

    #[inline(always)]
    pub(super) fn body(&self) -> &'mir mir::Body<'tcx> {
        self.frame().body
    }

    #[inline(always)]
    pub fn sign_extend(&self, value: u128, ty: TyAndLayout<'_>) -> u128 {
        assert!(ty.abi.is_signed());
        ty.size.sign_extend(value)
    }

    #[inline(always)]
    pub fn truncate(&self, value: u128, ty: TyAndLayout<'_>) -> u128 {
        ty.size.truncate(value)
    }

    #[inline]
    pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
        ty.is_freeze(self.tcx, self.param_env)
    }

    pub fn load_mir(
        &self,
        instance: ty::InstanceDef<'tcx>,
        promoted: Option<mir::Promoted>,
    ) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
        // do not continue if typeck errors occurred (can only occur in local crate)
        let def = instance.with_opt_param();
        if let Some(def) = def.as_local() {
            if self.tcx.has_typeck_results(def.did) {
                if let Some(error_reported) = self.tcx.typeck_opt_const_arg(def).tainted_by_errors {
                    throw_inval!(AlreadyReported(error_reported))
                }
            }
        }
        trace!("load mir(instance={:?}, promoted={:?})", instance, promoted);
        if let Some(promoted) = promoted {
            return Ok(&self.tcx.promoted_mir_opt_const_arg(def)[promoted]);
        }
        M::load_mir(self, instance)
    }

    /// Call this on things you got out of the MIR (so it is as generic as the current
    /// stack frame), to bring it into the proper environment for this interpreter.
    pub(super) fn subst_from_current_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
        &self,
        value: T,
    ) -> T {
        self.subst_from_frame_and_normalize_erasing_regions(self.frame(), value)
    }

    /// Call this on things you got out of the MIR (so it is as generic as the provided
    /// stack frame), to bring it into the proper environment for this interpreter.
    pub(super) fn subst_from_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
        &self,
        frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
        value: T,
    ) -> T {
        frame.instance.subst_mir_and_normalize_erasing_regions(*self.tcx, self.param_env, value)
    }

    /// The `substs` are assumed to already be in our interpreter "universe" (param_env).
    pub(super) fn resolve(
        &self,
        def: ty::WithOptConstParam<DefId>,
        substs: SubstsRef<'tcx>,
    ) -> InterpResult<'tcx, ty::Instance<'tcx>> {
        trace!("resolve: {:?}, {:#?}", def, substs);
        trace!("param_env: {:#?}", self.param_env);
        trace!("substs: {:#?}", substs);
        match ty::Instance::resolve_opt_const_arg(*self.tcx, self.param_env, def, substs) {
            Ok(Some(instance)) => Ok(instance),
            Ok(None) => throw_inval!(TooGeneric),

            // FIXME(eddyb) this could be a bit more specific than `AlreadyReported`.
            Err(error_reported) => throw_inval!(AlreadyReported(error_reported)),
        }
    }

    #[inline(always)]
    pub fn layout_of_local(
        &self,
        frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
        local: mir::Local,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
        // `const_prop` runs into this with an invalid (empty) frame, so we
        // have to support that case (mostly by skipping all caching).
        match frame.locals.get(local).and_then(|state| state.layout.get()) {
            None => {
                let layout = from_known_layout(self.tcx, self.param_env, layout, || {
                    let local_ty = frame.body.local_decls[local].ty;
                    let local_ty =
                        self.subst_from_frame_and_normalize_erasing_regions(frame, local_ty);
                    self.layout_of(local_ty)
                })?;
                if let Some(state) = frame.locals.get(local) {
                    // Layouts of locals are requested a lot, so we cache them.
                    state.layout.set(Some(layout));
                }
                Ok(layout)
            }
            Some(layout) => Ok(layout),
        }
    }

    /// Returns the actual dynamic size and alignment of the place at the given type.
    /// Only the "meta" (metadata) part of the place matters.
    /// This can fail to provide an answer for extern types.
    pub(super) fn size_and_align_of(
        &self,
        metadata: &MemPlaceMeta<M::PointerTag>,
        layout: &TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx, Option<(Size, Align)>> {
        if !layout.is_unsized() {
            return Ok(Some((layout.size, layout.align.abi)));
        }
        match layout.ty.kind() {
            ty::Adt(..) | ty::Tuple(..) => {
                // First get the size of all statically known fields.
                // Don't use type_of::sizing_type_of because that expects t to be sized,
                // and it also rounds up to alignment, which we want to avoid,
                // as the unsized field's alignment could be smaller.
                assert!(!layout.ty.is_simd());
                assert!(layout.fields.count() > 0);
                trace!("DST layout: {:?}", layout);

                let sized_size = layout.fields.offset(layout.fields.count() - 1);
                let sized_align = layout.align.abi;
                trace!(
                    "DST {} statically sized prefix size: {:?} align: {:?}",
                    layout.ty,
                    sized_size,
                    sized_align
                );

                // Recurse to get the size of the dynamically sized field (must be
                // the last field).  Can't have foreign types here, how would we
                // adjust alignment and size for them?
                let field = layout.field(self, layout.fields.count() - 1);
                let (unsized_size, unsized_align) =
                    match self.size_and_align_of(metadata, &field)? {
                        Some(size_and_align) => size_and_align,
                        None => {
                            // A field with extern type.  If this field is at offset 0, we behave
                            // like the underlying extern type.
                            // FIXME: Once we have made decisions for how to handle size and alignment
                            // of `extern type`, this should be adapted.  It is just a temporary hack
                            // to get some code to work that probably ought to work.
                            if sized_size == Size::ZERO {
                                return Ok(None);
                            } else {
                                span_bug!(
                                    self.cur_span(),
                                    "Fields cannot be extern types, unless they are at offset 0"
                                )
                            }
                        }
                    };

                // FIXME (#26403, #27023): We should be adding padding
                // to `sized_size` (to accommodate the `unsized_align`
                // required of the unsized field that follows) before
                // summing it with `sized_size`. (Note that since #26403
                // is unfixed, we do not yet add the necessary padding
                // here. But this is where the add would go.)

                // Return the sum of sizes and max of aligns.
                let size = sized_size + unsized_size; // `Size` addition

                // Choose max of two known alignments (combined value must
                // be aligned according to more restrictive of the two).
                let align = sized_align.max(unsized_align);

                // Issue #27023: must add any necessary padding to `size`
                // (to make it a multiple of `align`) before returning it.
                let size = size.align_to(align);

                // Check if this brought us over the size limit.
                if size.bytes() >= self.tcx.data_layout.obj_size_bound() {
                    throw_ub!(InvalidMeta("total size is bigger than largest supported object"));
                }
                Ok(Some((size, align)))
            }
            ty::Dynamic(..) => {
                let vtable = self.scalar_to_ptr(metadata.unwrap_meta());
                // Read size and align from vtable (already checks size).
                Ok(Some(self.read_size_and_align_from_vtable(vtable)?))
            }

            ty::Slice(_) | ty::Str => {
                let len = metadata.unwrap_meta().to_machine_usize(self)?;
                let elem = layout.field(self, 0);

                // Make sure the slice is not too big.
                let size = elem.size.checked_mul(len, self).ok_or_else(|| {
                    err_ub!(InvalidMeta("slice is bigger than largest supported object"))
                })?;
                Ok(Some((size, elem.align.abi)))
            }

            ty::Foreign(_) => Ok(None),

            _ => span_bug!(self.cur_span(), "size_and_align_of::<{:?}> not supported", layout.ty),
        }
    }
    #[inline]
    pub fn size_and_align_of_mplace(
        &self,
        mplace: &MPlaceTy<'tcx, M::PointerTag>,
    ) -> InterpResult<'tcx, Option<(Size, Align)>> {
        self.size_and_align_of(&mplace.meta, &mplace.layout)
    }

    pub fn push_stack_frame(
        &mut self,
        instance: ty::Instance<'tcx>,
        body: &'mir mir::Body<'tcx>,
        return_place: Option<&PlaceTy<'tcx, M::PointerTag>>,
        return_to_block: StackPopCleanup,
    ) -> InterpResult<'tcx> {
        // first push a stack frame so we have access to the local substs
        let pre_frame = Frame {
            body,
            loc: Err(body.span), // Span used for errors caused during preamble.
            return_to_block,
            return_place: return_place.copied(),
            // empty local array, we fill it in below, after we are inside the stack frame and
            // all methods actually know about the frame
            locals: IndexVec::new(),
            instance,
            tracing_span: SpanGuard::new(),
            extra: (),
        };
        let frame = M::init_frame_extra(self, pre_frame)?;
        self.stack_mut().push(frame);

        // Make sure all the constants required by this frame evaluate successfully (post-monomorphization check).
        for const_ in &body.required_consts {
            let span = const_.span;
            let const_ =
                self.subst_from_current_frame_and_normalize_erasing_regions(const_.literal);
            self.mir_const_to_op(&const_, None).map_err(|err| {
                // If there was an error, set the span of the current frame to this constant.
                // Avoiding doing this when evaluation succeeds.
                self.frame_mut().loc = Err(span);
                err
            })?;
        }

        // Locals are initially uninitialized.
        let dummy = LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None) };
        let mut locals = IndexVec::from_elem(dummy, &body.local_decls);

        // Now mark those locals as dead that we do not want to initialize
        // Mark locals that use `Storage*` annotations as dead on function entry.
        let always_live = AlwaysLiveLocals::new(self.body());
        for local in locals.indices() {
            if !always_live.contains(local) {
                locals[local].value = LocalValue::Dead;
            }
        }
        // done
        self.frame_mut().locals = locals;
        M::after_stack_push(self)?;
        self.frame_mut().loc = Ok(mir::Location::START);

        let span = info_span!("frame", "{}", instance);
        self.frame_mut().tracing_span.enter(span);

        Ok(())
    }

    /// Jump to the given block.
    #[inline]
    pub fn go_to_block(&mut self, target: mir::BasicBlock) {
        self.frame_mut().loc = Ok(mir::Location { block: target, statement_index: 0 });
    }

    /// *Return* to the given `target` basic block.
    /// Do *not* use for unwinding! Use `unwind_to_block` instead.
    ///
    /// If `target` is `None`, that indicates the function cannot return, so we raise UB.
    pub fn return_to_block(&mut self, target: Option<mir::BasicBlock>) -> InterpResult<'tcx> {
        if let Some(target) = target {
            self.go_to_block(target);
            Ok(())
        } else {
            throw_ub!(Unreachable)
        }
    }

    /// *Unwind* to the given `target` basic block.
    /// Do *not* use for returning! Use `return_to_block` instead.
    ///
    /// If `target` is `StackPopUnwind::Skip`, that indicates the function does not need cleanup
    /// during unwinding, and we will just keep propagating that upwards.
    ///
    /// If `target` is `StackPopUnwind::NotAllowed`, that indicates the function does not allow
    /// unwinding, and doing so is UB.
    pub fn unwind_to_block(&mut self, target: StackPopUnwind) -> InterpResult<'tcx> {
        self.frame_mut().loc = match target {
            StackPopUnwind::Cleanup(block) => Ok(mir::Location { block, statement_index: 0 }),
            StackPopUnwind::Skip => Err(self.frame_mut().body.span),
            StackPopUnwind::NotAllowed => {
                throw_ub_format!("unwinding past a stack frame that does not allow unwinding")
            }
        };
        Ok(())
    }

    /// Pops the current frame from the stack, deallocating the
    /// memory for allocated locals.
    ///
    /// If `unwinding` is `false`, then we are performing a normal return
    /// from a function. In this case, we jump back into the frame of the caller,
    /// and continue execution as normal.
    ///
    /// If `unwinding` is `true`, then we are in the middle of a panic,
    /// and need to unwind this frame. In this case, we jump to the
    /// `cleanup` block for the function, which is responsible for running
    /// `Drop` impls for any locals that have been initialized at this point.
    /// The cleanup block ends with a special `Resume` terminator, which will
    /// cause us to continue unwinding.
    pub(super) fn pop_stack_frame(&mut self, unwinding: bool) -> InterpResult<'tcx> {
        info!(
            "popping stack frame ({})",
            if unwinding { "during unwinding" } else { "returning from function" }
        );

        // Sanity check `unwinding`.
        assert_eq!(
            unwinding,
            match self.frame().loc {
                Ok(loc) => self.body().basic_blocks()[loc.block].is_cleanup,
                Err(_) => true,
            }
        );

        if unwinding && self.frame_idx() == 0 {
            throw_ub_format!("unwinding past the topmost frame of the stack");
        }

        let frame =
            self.stack_mut().pop().expect("tried to pop a stack frame, but there were none");

        if !unwinding {
            // Copy the return value to the caller's stack frame.
            if let Some(ref return_place) = frame.return_place {
                let op = self.access_local(&frame, mir::RETURN_PLACE, None)?;
                self.copy_op_transmute(&op, return_place)?;
                trace!("{:?}", self.dump_place(**return_place));
            } else {
                throw_ub!(Unreachable);
            }
        }

        let return_to_block = frame.return_to_block;

        // Now where do we jump next?

        // Usually we want to clean up (deallocate locals), but in a few rare cases we don't.
        // In that case, we return early. We also avoid validation in that case,
        // because this is CTFE and the final value will be thoroughly validated anyway.
        let cleanup = match return_to_block {
            StackPopCleanup::Goto { .. } => true,
            StackPopCleanup::None { cleanup, .. } => cleanup,
        };

        if !cleanup {
            assert!(self.stack().is_empty(), "only the topmost frame should ever be leaked");
            assert!(!unwinding, "tried to skip cleanup during unwinding");
            // Leak the locals, skip validation, skip machine hook.
            return Ok(());
        }

        // Cleanup: deallocate all locals that are backed by an allocation.
        for local in &frame.locals {
            self.deallocate_local(local.value)?;
        }

        if M::after_stack_pop(self, frame, unwinding)? == StackPopJump::NoJump {
            // The hook already did everything.
            // We want to skip the `info!` below, hence early return.
            return Ok(());
        }
        // Normal return, figure out where to jump.
        if unwinding {
            // Follow the unwind edge.
            let unwind = match return_to_block {
                StackPopCleanup::Goto { unwind, .. } => unwind,
                StackPopCleanup::None { .. } => {
                    panic!("Encountered StackPopCleanup::None when unwinding!")
                }
            };
            self.unwind_to_block(unwind)
        } else {
            // Follow the normal return edge.
            match return_to_block {
                StackPopCleanup::Goto { ret, .. } => self.return_to_block(ret),
                StackPopCleanup::None { .. } => Ok(()),
            }
        }
    }

    /// Mark a storage as live, killing the previous content.
    pub fn storage_live(&mut self, local: mir::Local) -> InterpResult<'tcx> {
        assert!(local != mir::RETURN_PLACE, "Cannot make return place live");
        trace!("{:?} is now live", local);

        let local_val = LocalValue::Uninitialized;
        // StorageLive expects the local to be dead, and marks it live.
        let old = mem::replace(&mut self.frame_mut().locals[local].value, local_val);
        if !matches!(old, LocalValue::Dead) {
            throw_ub_format!("StorageLive on a local that was already live");
        }
        Ok(())
    }

    pub fn storage_dead(&mut self, local: mir::Local) -> InterpResult<'tcx> {
        assert!(local != mir::RETURN_PLACE, "Cannot make return place dead");
        trace!("{:?} is now dead", local);

        // It is entirely okay for this local to be already dead (at least that's how we currently generate MIR)
        let old = mem::replace(&mut self.frame_mut().locals[local].value, LocalValue::Dead);
        self.deallocate_local(old)?;
        Ok(())
    }

    fn deallocate_local(&mut self, local: LocalValue<M::PointerTag>) -> InterpResult<'tcx> {
        if let LocalValue::Live(Operand::Indirect(MemPlace { ptr, .. })) = local {
            // All locals have a backing allocation, even if the allocation is empty
            // due to the local having ZST type. Hence we can `unwrap`.
            trace!(
                "deallocating local {:?}: {:?}",
                local,
                self.memory.dump_alloc(ptr.provenance.unwrap().get_alloc_id())
            );
            self.memory.deallocate(ptr, None, MemoryKind::Stack)?;
        };
        Ok(())
    }

    pub fn eval_to_allocation(
        &self,
        gid: GlobalId<'tcx>,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
        // For statics we pick `ParamEnv::reveal_all`, because statics don't have generics
        // and thus don't care about the parameter environment. While we could just use
        // `self.param_env`, that would mean we invoke the query to evaluate the static
        // with different parameter environments, thus causing the static to be evaluated
        // multiple times.
        let param_env = if self.tcx.is_static(gid.instance.def_id()) {
            ty::ParamEnv::reveal_all()
        } else {
            self.param_env
        };
        let val = self.tcx.eval_to_allocation_raw(param_env.and(gid))?;
        self.raw_const_to_mplace(val)
    }

    #[must_use]
    pub fn dump_place(&'a self, place: Place<M::PointerTag>) -> PlacePrinter<'a, 'mir, 'tcx, M> {
        PlacePrinter { ecx: self, place }
    }

    #[must_use]
    pub fn generate_stacktrace(&self) -> Vec<FrameInfo<'tcx>> {
        let mut frames = Vec::new();
        for frame in self
            .stack()
            .iter()
            .rev()
            .skip_while(|frame| frame.instance.def.requires_caller_location(*self.tcx))
        {
            let lint_root = frame.current_source_info().and_then(|source_info| {
                match &frame.body.source_scopes[source_info.scope].local_data {
                    mir::ClearCrossCrate::Set(data) => Some(data.lint_root),
                    mir::ClearCrossCrate::Clear => None,
                }
            });
            let span = frame.current_span();

            frames.push(FrameInfo { span, instance: frame.instance, lint_root });
        }
        trace!("generate stacktrace: {:#?}", frames);
        frames
    }
}

#[doc(hidden)]
/// Helper struct for the `dump_place` function.
pub struct PlacePrinter<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> {
    ecx: &'a InterpCx<'mir, 'tcx, M>,
    place: Place<M::PointerTag>,
}

impl<'a, 'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> std::fmt::Debug
    for PlacePrinter<'a, 'mir, 'tcx, M>
{
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self.place {
            Place::Local { frame, local } => {
                let mut allocs = Vec::new();
                write!(fmt, "{:?}", local)?;
                if frame != self.ecx.frame_idx() {
                    write!(fmt, " ({} frames up)", self.ecx.frame_idx() - frame)?;
                }
                write!(fmt, ":")?;

                match self.ecx.stack()[frame].locals[local].value {
                    LocalValue::Dead => write!(fmt, " is dead")?,
                    LocalValue::Uninitialized => write!(fmt, " is uninitialized")?,
                    LocalValue::Live(Operand::Indirect(mplace)) => {
                        write!(
                            fmt,
                            " by align({}){} ref {:?}:",
                            mplace.align.bytes(),
                            match mplace.meta {
                                MemPlaceMeta::Meta(meta) => format!(" meta({:?})", meta),
                                MemPlaceMeta::Poison | MemPlaceMeta::None => String::new(),
                            },
                            mplace.ptr,
                        )?;
                        allocs.extend(mplace.ptr.provenance.map(Provenance::get_alloc_id));
                    }
                    LocalValue::Live(Operand::Immediate(Immediate::Scalar(val))) => {
                        write!(fmt, " {:?}", val)?;
                        if let ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _size)) = val {
                            allocs.push(ptr.provenance.get_alloc_id());
                        }
                    }
                    LocalValue::Live(Operand::Immediate(Immediate::ScalarPair(val1, val2))) => {
                        write!(fmt, " ({:?}, {:?})", val1, val2)?;
                        if let ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _size)) = val1 {
                            allocs.push(ptr.provenance.get_alloc_id());
                        }
                        if let ScalarMaybeUninit::Scalar(Scalar::Ptr(ptr, _size)) = val2 {
                            allocs.push(ptr.provenance.get_alloc_id());
                        }
                    }
                }

                write!(fmt, ": {:?}", self.ecx.memory.dump_allocs(allocs))
            }
            Place::Ptr(mplace) => match mplace.ptr.provenance.map(Provenance::get_alloc_id) {
                Some(alloc_id) => write!(
                    fmt,
                    "by align({}) ref {:?}: {:?}",
                    mplace.align.bytes(),
                    mplace.ptr,
                    self.ecx.memory.dump_alloc(alloc_id)
                ),
                ptr => write!(fmt, " integral by ref: {:?}", ptr),
            },
        }
    }
}

impl<'ctx, 'mir, 'tcx, Tag: Provenance, Extra> HashStable<StableHashingContext<'ctx>>
    for Frame<'mir, 'tcx, Tag, Extra>
where
    Extra: HashStable<StableHashingContext<'ctx>>,
    Tag: HashStable<StableHashingContext<'ctx>>,
{
    fn hash_stable(&self, hcx: &mut StableHashingContext<'ctx>, hasher: &mut StableHasher) {
        // Exhaustive match on fields to make sure we forget no field.
        let Frame {
            body,
            instance,
            return_to_block,
            return_place,
            locals,
            loc,
            extra,
            tracing_span: _,
        } = self;
        body.hash_stable(hcx, hasher);
        instance.hash_stable(hcx, hasher);
        return_to_block.hash_stable(hcx, hasher);
        return_place.as_ref().map(|r| &**r).hash_stable(hcx, hasher);
        locals.hash_stable(hcx, hasher);
        loc.hash_stable(hcx, hasher);
        extra.hash_stable(hcx, hasher);
    }
}