1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
//! This code is kind of an alternate way of doing subtyping,
//! supertyping, and type equating, distinct from the `combine.rs`
//! code but very similar in its effect and design. Eventually the two
//! ought to be merged. This code is intended for use in NLL and chalk.
//!
//! Here are the key differences:
//!
//! - This code may choose to bypass some checks (e.g., the occurs check)
//!   in the case where we know that there are no unbound type inference
//!   variables. This is the case for NLL, because at NLL time types are fully
//!   inferred up-to regions.
//! - This code uses "universes" to handle higher-ranked regions and
//!   not the leak-check. This is "more correct" than what rustc does
//!   and we are generally migrating in this direction, but NLL had to
//!   get there first.
//!
//! Also, this code assumes that there are no bound types at all, not even
//! free ones. This is ok because:
//! - we are not relating anything quantified over some type variable
//! - we will have instantiated all the bound type vars already (the one
//!   thing we relate in chalk are basically domain goals and their
//!   constituents)

use crate::infer::combine::ConstEquateRelation;
use crate::infer::InferCtxt;
use crate::infer::{ConstVarValue, ConstVariableValue};
use rustc_data_structures::fx::FxHashMap;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::fold::{TypeFoldable, TypeVisitor};
use rustc_middle::ty::relate::{self, Relate, RelateResult, TypeRelation};
use rustc_middle::ty::{self, InferConst, Ty, TyCtxt};
use std::fmt::Debug;
use std::ops::ControlFlow;

#[derive(PartialEq)]
pub enum NormalizationStrategy {
    Lazy,
    Eager,
}

pub struct TypeRelating<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    infcx: &'me InferCtxt<'me, 'tcx>,

    /// Callback to use when we deduce an outlives relationship.
    delegate: D,

    /// How are we relating `a` and `b`?
    ///
    /// - Covariant means `a <: b`.
    /// - Contravariant means `b <: a`.
    /// - Invariant means `a == b.
    /// - Bivariant means that it doesn't matter.
    ambient_variance: ty::Variance,

    ambient_variance_info: ty::VarianceDiagInfo<'tcx>,

    /// When we pass through a set of binders (e.g., when looking into
    /// a `fn` type), we push a new bound region scope onto here. This
    /// will contain the instantiated region for each region in those
    /// binders. When we then encounter a `ReLateBound(d, br)`, we can
    /// use the De Bruijn index `d` to find the right scope, and then
    /// bound region name `br` to find the specific instantiation from
    /// within that scope. See `replace_bound_region`.
    ///
    /// This field stores the instantiations for late-bound regions in
    /// the `a` type.
    a_scopes: Vec<BoundRegionScope<'tcx>>,

    /// Same as `a_scopes`, but for the `b` type.
    b_scopes: Vec<BoundRegionScope<'tcx>>,
}

pub trait TypeRelatingDelegate<'tcx> {
    fn param_env(&self) -> ty::ParamEnv<'tcx>;

    /// Push a constraint `sup: sub` -- this constraint must be
    /// satisfied for the two types to be related. `sub` and `sup` may
    /// be regions from the type or new variables created through the
    /// delegate.
    fn push_outlives(
        &mut self,
        sup: ty::Region<'tcx>,
        sub: ty::Region<'tcx>,
        info: ty::VarianceDiagInfo<'tcx>,
    );

    fn const_equate(&mut self, a: &'tcx ty::Const<'tcx>, b: &'tcx ty::Const<'tcx>);

    /// Creates a new universe index. Used when instantiating placeholders.
    fn create_next_universe(&mut self) -> ty::UniverseIndex;

    /// Creates a new region variable representing a higher-ranked
    /// region that is instantiated existentially. This creates an
    /// inference variable, typically.
    ///
    /// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
    /// we will invoke this method to instantiate `'a` with an
    /// inference variable (though `'b` would be instantiated first,
    /// as a placeholder).
    fn next_existential_region_var(&mut self, was_placeholder: bool) -> ty::Region<'tcx>;

    /// Creates a new region variable representing a
    /// higher-ranked region that is instantiated universally.
    /// This creates a new region placeholder, typically.
    ///
    /// So e.g., if you have `for<'a> fn(..) <: for<'b> fn(..)`, then
    /// we will invoke this method to instantiate `'b` with a
    /// placeholder region.
    fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty::Region<'tcx>;

    /// Creates a new existential region in the given universe. This
    /// is used when handling subtyping and type variables -- if we
    /// have that `?X <: Foo<'a>`, for example, we would instantiate
    /// `?X` with a type like `Foo<'?0>` where `'?0` is a fresh
    /// existential variable created by this function. We would then
    /// relate `Foo<'?0>` with `Foo<'a>` (and probably add an outlives
    /// relation stating that `'?0: 'a`).
    fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx>;

    /// Define the normalization strategy to use, eager or lazy.
    fn normalization() -> NormalizationStrategy;

    /// Enables some optimizations if we do not expect inference variables
    /// in the RHS of the relation.
    fn forbid_inference_vars() -> bool;
}

#[derive(Clone, Debug, Default)]
struct BoundRegionScope<'tcx> {
    map: FxHashMap<ty::BoundRegion, ty::Region<'tcx>>,
}

#[derive(Copy, Clone)]
struct UniversallyQuantified(bool);

impl<'me, 'tcx, D> TypeRelating<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    pub fn new(
        infcx: &'me InferCtxt<'me, 'tcx>,
        delegate: D,
        ambient_variance: ty::Variance,
    ) -> Self {
        Self {
            infcx,
            delegate,
            ambient_variance,
            ambient_variance_info: ty::VarianceDiagInfo::default(),
            a_scopes: vec![],
            b_scopes: vec![],
        }
    }

    fn ambient_covariance(&self) -> bool {
        match self.ambient_variance {
            ty::Variance::Covariant | ty::Variance::Invariant => true,
            ty::Variance::Contravariant | ty::Variance::Bivariant => false,
        }
    }

    fn ambient_contravariance(&self) -> bool {
        match self.ambient_variance {
            ty::Variance::Contravariant | ty::Variance::Invariant => true,
            ty::Variance::Covariant | ty::Variance::Bivariant => false,
        }
    }

    fn create_scope(
        &mut self,
        value: ty::Binder<'tcx, impl Relate<'tcx>>,
        universally_quantified: UniversallyQuantified,
    ) -> BoundRegionScope<'tcx> {
        let mut scope = BoundRegionScope::default();

        // Create a callback that creates (via the delegate) either an
        // existential or placeholder region as needed.
        let mut next_region = {
            let delegate = &mut self.delegate;
            let mut lazy_universe = None;
            move |br: ty::BoundRegion| {
                if universally_quantified.0 {
                    // The first time this closure is called, create a
                    // new universe for the placeholders we will make
                    // from here out.
                    let universe = lazy_universe.unwrap_or_else(|| {
                        let universe = delegate.create_next_universe();
                        lazy_universe = Some(universe);
                        universe
                    });

                    let placeholder = ty::PlaceholderRegion { universe, name: br.kind };
                    delegate.next_placeholder_region(placeholder)
                } else {
                    delegate.next_existential_region_var(true)
                }
            }
        };

        value.skip_binder().visit_with(&mut ScopeInstantiator {
            tcx: self.infcx.tcx,
            next_region: &mut next_region,
            target_index: ty::INNERMOST,
            bound_region_scope: &mut scope,
        });

        scope
    }

    /// When we encounter binders during the type traversal, we record
    /// the value to substitute for each of the things contained in
    /// that binder. (This will be either a universal placeholder or
    /// an existential inference variable.) Given the De Bruijn index
    /// `debruijn` (and name `br`) of some binder we have now
    /// encountered, this routine finds the value that we instantiated
    /// the region with; to do so, it indexes backwards into the list
    /// of ambient scopes `scopes`.
    fn lookup_bound_region(
        debruijn: ty::DebruijnIndex,
        br: &ty::BoundRegion,
        first_free_index: ty::DebruijnIndex,
        scopes: &[BoundRegionScope<'tcx>],
    ) -> ty::Region<'tcx> {
        // The debruijn index is a "reverse index" into the
        // scopes listing. So when we have INNERMOST (0), we
        // want the *last* scope pushed, and so forth.
        let debruijn_index = debruijn.index() - first_free_index.index();
        let scope = &scopes[scopes.len() - debruijn_index - 1];

        // Find this bound region in that scope to map to a
        // particular region.
        scope.map[br]
    }

    /// If `r` is a bound region, find the scope in which it is bound
    /// (from `scopes`) and return the value that we instantiated it
    /// with. Otherwise just return `r`.
    fn replace_bound_region(
        &self,
        r: ty::Region<'tcx>,
        first_free_index: ty::DebruijnIndex,
        scopes: &[BoundRegionScope<'tcx>],
    ) -> ty::Region<'tcx> {
        debug!("replace_bound_regions(scopes={:?})", scopes);
        if let ty::ReLateBound(debruijn, br) = r {
            Self::lookup_bound_region(*debruijn, br, first_free_index, scopes)
        } else {
            r
        }
    }

    /// Push a new outlives requirement into our output set of
    /// constraints.
    fn push_outlives(
        &mut self,
        sup: ty::Region<'tcx>,
        sub: ty::Region<'tcx>,
        info: ty::VarianceDiagInfo<'tcx>,
    ) {
        debug!("push_outlives({:?}: {:?})", sup, sub);

        self.delegate.push_outlives(sup, sub, info);
    }

    /// Relate a projection type and some value type lazily. This will always
    /// succeed, but we push an additional `ProjectionEq` goal depending
    /// on the value type:
    /// - if the value type is any type `T` which is not a projection, we push
    ///   `ProjectionEq(projection = T)`.
    /// - if the value type is another projection `other_projection`, we create
    ///   a new inference variable `?U` and push the two goals
    ///   `ProjectionEq(projection = ?U)`, `ProjectionEq(other_projection = ?U)`.
    fn relate_projection_ty(
        &mut self,
        projection_ty: ty::ProjectionTy<'tcx>,
        value_ty: Ty<'tcx>,
    ) -> Ty<'tcx> {
        use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
        use rustc_span::DUMMY_SP;

        match *value_ty.kind() {
            ty::Projection(other_projection_ty) => {
                let var = self.infcx.next_ty_var(TypeVariableOrigin {
                    kind: TypeVariableOriginKind::MiscVariable,
                    span: DUMMY_SP,
                });
                self.relate_projection_ty(projection_ty, var);
                self.relate_projection_ty(other_projection_ty, var);
                var
            }

            _ => bug!("should never be invoked with eager normalization"),
        }
    }

    /// Relate a type inference variable with a value type. This works
    /// by creating a "generalization" G of the value where all the
    /// lifetimes are replaced with fresh inference values. This
    /// generalization G becomes the value of the inference variable,
    /// and is then related in turn to the value. So e.g. if you had
    /// `vid = ?0` and `value = &'a u32`, we might first instantiate
    /// `?0` to a type like `&'0 u32` where `'0` is a fresh variable,
    /// and then relate `&'0 u32` with `&'a u32` (resulting in
    /// relations between `'0` and `'a`).
    ///
    /// The variable `pair` can be either a `(vid, ty)` or `(ty, vid)`
    /// -- in other words, it is always an (unresolved) inference
    /// variable `vid` and a type `ty` that are being related, but the
    /// vid may appear either as the "a" type or the "b" type,
    /// depending on where it appears in the tuple. The trait
    /// `VidValuePair` lets us work with the vid/type while preserving
    /// the "sidedness" when necessary -- the sidedness is relevant in
    /// particular for the variance and set of in-scope things.
    fn relate_ty_var<PAIR: VidValuePair<'tcx>>(
        &mut self,
        pair: PAIR,
    ) -> RelateResult<'tcx, Ty<'tcx>> {
        debug!("relate_ty_var({:?})", pair);

        let vid = pair.vid();
        let value_ty = pair.value_ty();

        // FIXME(invariance) -- this logic assumes invariance, but that is wrong.
        // This only presently applies to chalk integration, as NLL
        // doesn't permit type variables to appear on both sides (and
        // doesn't use lazy norm).
        match *value_ty.kind() {
            ty::Infer(ty::TyVar(value_vid)) => {
                // Two type variables: just equate them.
                self.infcx.inner.borrow_mut().type_variables().equate(vid, value_vid);
                return Ok(value_ty);
            }

            ty::Projection(projection_ty) if D::normalization() == NormalizationStrategy::Lazy => {
                return Ok(self.relate_projection_ty(projection_ty, self.infcx.tcx.mk_ty_var(vid)));
            }

            _ => (),
        }

        let generalized_ty = self.generalize_value(value_ty, vid)?;
        debug!("relate_ty_var: generalized_ty = {:?}", generalized_ty);

        if D::forbid_inference_vars() {
            // In NLL, we don't have type inference variables
            // floating around, so we can do this rather imprecise
            // variant of the occurs-check.
            assert!(!generalized_ty.has_infer_types_or_consts());
        }

        self.infcx.inner.borrow_mut().type_variables().instantiate(vid, generalized_ty);

        // The generalized values we extract from `canonical_var_values` have
        // been fully instantiated and hence the set of scopes we have
        // doesn't matter -- just to be sure, put an empty vector
        // in there.
        let old_a_scopes = std::mem::take(pair.vid_scopes(self));

        // Relate the generalized kind to the original one.
        let result = pair.relate_generalized_ty(self, generalized_ty);

        // Restore the old scopes now.
        *pair.vid_scopes(self) = old_a_scopes;

        debug!("relate_ty_var: complete, result = {:?}", result);
        result
    }

    fn generalize_value<T: Relate<'tcx>>(
        &mut self,
        value: T,
        for_vid: ty::TyVid,
    ) -> RelateResult<'tcx, T> {
        let universe = self.infcx.probe_ty_var(for_vid).unwrap_err();

        let mut generalizer = TypeGeneralizer {
            infcx: self.infcx,
            delegate: &mut self.delegate,
            first_free_index: ty::INNERMOST,
            ambient_variance: self.ambient_variance,
            for_vid_sub_root: self.infcx.inner.borrow_mut().type_variables().sub_root_var(for_vid),
            universe,
        };

        generalizer.relate(value, value)
    }
}

/// When we instantiate an inference variable with a value in
/// `relate_ty_var`, we always have the pair of a `TyVid` and a `Ty`,
/// but the ordering may vary (depending on whether the inference
/// variable was found on the `a` or `b` sides). Therefore, this trait
/// allows us to factor out common code, while preserving the order
/// when needed.
trait VidValuePair<'tcx>: Debug {
    /// Extract the inference variable (which could be either the
    /// first or second part of the tuple).
    fn vid(&self) -> ty::TyVid;

    /// Extract the value it is being related to (which will be the
    /// opposite part of the tuple from the vid).
    fn value_ty(&self) -> Ty<'tcx>;

    /// Extract the scopes that apply to whichever side of the tuple
    /// the vid was found on.  See the comment where this is called
    /// for more details on why we want them.
    fn vid_scopes<D: TypeRelatingDelegate<'tcx>>(
        &self,
        relate: &'r mut TypeRelating<'_, 'tcx, D>,
    ) -> &'r mut Vec<BoundRegionScope<'tcx>>;

    /// Given a generalized type G that should replace the vid, relate
    /// G to the value, putting G on whichever side the vid would have
    /// appeared.
    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>;
}

impl VidValuePair<'tcx> for (ty::TyVid, Ty<'tcx>) {
    fn vid(&self) -> ty::TyVid {
        self.0
    }

    fn value_ty(&self) -> Ty<'tcx> {
        self.1
    }

    fn vid_scopes<D>(
        &self,
        relate: &'r mut TypeRelating<'_, 'tcx, D>,
    ) -> &'r mut Vec<BoundRegionScope<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        &mut relate.a_scopes
    }

    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        relate.relate(&generalized_ty, &self.value_ty())
    }
}

// In this case, the "vid" is the "b" type.
impl VidValuePair<'tcx> for (Ty<'tcx>, ty::TyVid) {
    fn vid(&self) -> ty::TyVid {
        self.1
    }

    fn value_ty(&self) -> Ty<'tcx> {
        self.0
    }

    fn vid_scopes<D>(
        &self,
        relate: &'r mut TypeRelating<'_, 'tcx, D>,
    ) -> &'r mut Vec<BoundRegionScope<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        &mut relate.b_scopes
    }

    fn relate_generalized_ty<D>(
        &self,
        relate: &mut TypeRelating<'_, 'tcx, D>,
        generalized_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        D: TypeRelatingDelegate<'tcx>,
    {
        relate.relate(&self.value_ty(), &generalized_ty)
    }
}

impl<D> TypeRelation<'tcx> for TypeRelating<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.delegate.param_env()
    }

    fn tag(&self) -> &'static str {
        "nll::subtype"
    }

    fn a_is_expected(&self) -> bool {
        true
    }

    #[instrument(skip(self, info), level = "trace")]
    fn relate_with_variance<T: Relate<'tcx>>(
        &mut self,
        variance: ty::Variance,
        info: ty::VarianceDiagInfo<'tcx>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        let old_ambient_variance = self.ambient_variance;
        self.ambient_variance = self.ambient_variance.xform(variance);
        self.ambient_variance_info = self.ambient_variance_info.xform(info);

        debug!(?self.ambient_variance);

        let r = self.relate(a, b)?;

        self.ambient_variance = old_ambient_variance;

        debug!(?r);

        Ok(r)
    }

    #[instrument(skip(self), level = "debug")]
    fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        let a = self.infcx.shallow_resolve(a);

        if !D::forbid_inference_vars() {
            b = self.infcx.shallow_resolve(b);
        }

        if a == b {
            // Subtle: if a or b has a bound variable that we are lazilly
            // substituting, then even if a == b, it could be that the values we
            // will substitute for those bound variables are *not* the same, and
            // hence returning `Ok(a)` is incorrect.
            if !a.has_escaping_bound_vars() && !b.has_escaping_bound_vars() {
                return Ok(a);
            }
        }

        match (a.kind(), b.kind()) {
            (_, &ty::Infer(ty::TyVar(vid))) => {
                if D::forbid_inference_vars() {
                    // Forbid inference variables in the RHS.
                    bug!("unexpected inference var {:?}", b)
                } else {
                    self.relate_ty_var((a, vid))
                }
            }

            (&ty::Infer(ty::TyVar(vid)), _) => self.relate_ty_var((vid, b)),

            (&ty::Projection(projection_ty), _)
                if D::normalization() == NormalizationStrategy::Lazy =>
            {
                Ok(self.relate_projection_ty(projection_ty, b))
            }

            (_, &ty::Projection(projection_ty))
                if D::normalization() == NormalizationStrategy::Lazy =>
            {
                Ok(self.relate_projection_ty(projection_ty, a))
            }

            _ => {
                debug!(?a, ?b, ?self.ambient_variance);

                // Will also handle unification of `IntVar` and `FloatVar`.
                self.infcx.super_combine_tys(self, a, b)
            }
        }
    }

    #[instrument(skip(self), level = "trace")]
    fn regions(
        &mut self,
        a: ty::Region<'tcx>,
        b: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        debug!(?self.ambient_variance);

        let v_a = self.replace_bound_region(a, ty::INNERMOST, &self.a_scopes);
        let v_b = self.replace_bound_region(b, ty::INNERMOST, &self.b_scopes);

        debug!(?v_a);
        debug!(?v_b);

        if self.ambient_covariance() {
            // Covariance: a <= b. Hence, `b: a`.
            self.push_outlives(v_b, v_a, self.ambient_variance_info);
        }

        if self.ambient_contravariance() {
            // Contravariant: b <= a. Hence, `a: b`.
            self.push_outlives(v_a, v_b, self.ambient_variance_info);
        }

        Ok(a)
    }

    fn consts(
        &mut self,
        a: &'tcx ty::Const<'tcx>,
        mut b: &'tcx ty::Const<'tcx>,
    ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
        let a = self.infcx.shallow_resolve(a);

        if !D::forbid_inference_vars() {
            b = self.infcx.shallow_resolve(b);
        }

        match b.val {
            ty::ConstKind::Infer(InferConst::Var(_)) if D::forbid_inference_vars() => {
                // Forbid inference variables in the RHS.
                bug!("unexpected inference var {:?}", b)
            }
            // FIXME(invariance): see the related FIXME above.
            _ => self.infcx.super_combine_consts(self, a, b),
        }
    }

    #[instrument(skip(self), level = "trace")]
    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        b: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<'tcx>,
    {
        // We want that
        //
        // ```
        // for<'a> fn(&'a u32) -> &'a u32 <:
        //   fn(&'b u32) -> &'b u32
        // ```
        //
        // but not
        //
        // ```
        // fn(&'a u32) -> &'a u32 <:
        //   for<'b> fn(&'b u32) -> &'b u32
        // ```
        //
        // We therefore proceed as follows:
        //
        // - Instantiate binders on `b` universally, yielding a universe U1.
        // - Instantiate binders on `a` existentially in U1.

        debug!(?self.ambient_variance);

        if let (Some(a), Some(b)) = (a.no_bound_vars(), b.no_bound_vars()) {
            // Fast path for the common case.
            self.relate(a, b)?;
            return Ok(ty::Binder::dummy(a));
        }

        if self.ambient_covariance() {
            // Covariance, so we want `for<..> A <: for<..> B` --
            // therefore we compare any instantiation of A (i.e., A
            // instantiated with existentials) against every
            // instantiation of B (i.e., B instantiated with
            // universals).

            let b_scope = self.create_scope(b, UniversallyQuantified(true));
            let a_scope = self.create_scope(a, UniversallyQuantified(false));

            debug!(?a_scope, "(existential)");
            debug!(?b_scope, "(universal)");

            self.b_scopes.push(b_scope);
            self.a_scopes.push(a_scope);

            // Reset the ambient variance to covariant. This is needed
            // to correctly handle cases like
            //
            //     for<'a> fn(&'a u32, &'a u32) == for<'b, 'c> fn(&'b u32, &'c u32)
            //
            // Somewhat surprisingly, these two types are actually
            // **equal**, even though the one on the right looks more
            // polymorphic. The reason is due to subtyping. To see it,
            // consider that each function can call the other:
            //
            // - The left function can call the right with `'b` and
            //   `'c` both equal to `'a`
            //
            // - The right function can call the left with `'a` set to
            //   `{P}`, where P is the point in the CFG where the call
            //   itself occurs. Note that `'b` and `'c` must both
            //   include P. At the point, the call works because of
            //   subtyping (i.e., `&'b u32 <: &{P} u32`).
            let variance = std::mem::replace(&mut self.ambient_variance, ty::Variance::Covariant);

            self.relate(a.skip_binder(), b.skip_binder())?;

            self.ambient_variance = variance;

            self.b_scopes.pop().unwrap();
            self.a_scopes.pop().unwrap();
        }

        if self.ambient_contravariance() {
            // Contravariance, so we want `for<..> A :> for<..> B`
            // -- therefore we compare every instantiation of A (i.e.,
            // A instantiated with universals) against any
            // instantiation of B (i.e., B instantiated with
            // existentials). Opposite of above.

            let a_scope = self.create_scope(a, UniversallyQuantified(true));
            let b_scope = self.create_scope(b, UniversallyQuantified(false));

            debug!(?a_scope, "(universal)");
            debug!(?b_scope, "(existential)");

            self.a_scopes.push(a_scope);
            self.b_scopes.push(b_scope);

            // Reset ambient variance to contravariance. See the
            // covariant case above for an explanation.
            let variance =
                std::mem::replace(&mut self.ambient_variance, ty::Variance::Contravariant);

            self.relate(a.skip_binder(), b.skip_binder())?;

            self.ambient_variance = variance;

            self.b_scopes.pop().unwrap();
            self.a_scopes.pop().unwrap();
        }

        Ok(a)
    }
}

impl<'tcx, D> ConstEquateRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn const_equate_obligation(&mut self, a: &'tcx ty::Const<'tcx>, b: &'tcx ty::Const<'tcx>) {
        self.delegate.const_equate(a, b);
    }
}

/// When we encounter a binder like `for<..> fn(..)`, we actually have
/// to walk the `fn` value to find all the values bound by the `for`
/// (these are not explicitly present in the ty representation right
/// now). This visitor handles that: it descends the type, tracking
/// binder depth, and finds late-bound regions targeting the
/// `for<..`>.  For each of those, it creates an entry in
/// `bound_region_scope`.
struct ScopeInstantiator<'me, 'tcx> {
    tcx: TyCtxt<'tcx>,
    next_region: &'me mut dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
    // The debruijn index of the scope we are instantiating.
    target_index: ty::DebruijnIndex,
    bound_region_scope: &'me mut BoundRegionScope<'tcx>,
}

impl<'me, 'tcx> TypeVisitor<'tcx> for ScopeInstantiator<'me, 'tcx> {
    fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>> {
        Some(self.tcx)
    }

    fn visit_binder<T: TypeFoldable<'tcx>>(
        &mut self,
        t: &ty::Binder<'tcx, T>,
    ) -> ControlFlow<Self::BreakTy> {
        self.target_index.shift_in(1);
        t.super_visit_with(self);
        self.target_index.shift_out(1);

        ControlFlow::CONTINUE
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        let ScopeInstantiator { bound_region_scope, next_region, .. } = self;

        match r {
            ty::ReLateBound(debruijn, br) if *debruijn == self.target_index => {
                bound_region_scope.map.entry(*br).or_insert_with(|| next_region(*br));
            }

            _ => {}
        }

        ControlFlow::CONTINUE
    }
}

/// The "type generalizer" is used when handling inference variables.
///
/// The basic strategy for handling a constraint like `?A <: B` is to
/// apply a "generalization strategy" to the type `B` -- this replaces
/// all the lifetimes in the type `B` with fresh inference
/// variables. (You can read more about the strategy in this [blog
/// post].)
///
/// As an example, if we had `?A <: &'x u32`, we would generalize `&'x
/// u32` to `&'0 u32` where `'0` is a fresh variable. This becomes the
/// value of `A`. Finally, we relate `&'0 u32 <: &'x u32`, which
/// establishes `'0: 'x` as a constraint.
///
/// As a side-effect of this generalization procedure, we also replace
/// all the bound regions that we have traversed with concrete values,
/// so that the resulting generalized type is independent from the
/// scopes.
///
/// [blog post]: https://is.gd/0hKvIr
struct TypeGeneralizer<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    infcx: &'me InferCtxt<'me, 'tcx>,

    delegate: &'me mut D,

    /// After we generalize this type, we are going to relative it to
    /// some other type. What will be the variance at this point?
    ambient_variance: ty::Variance,

    first_free_index: ty::DebruijnIndex,

    /// The vid of the type variable that is in the process of being
    /// instantiated. If we find this within the value we are folding,
    /// that means we would have created a cyclic value.
    for_vid_sub_root: ty::TyVid,

    /// The universe of the type variable that is in the process of being
    /// instantiated. If we find anything that this universe cannot name,
    /// we reject the relation.
    universe: ty::UniverseIndex,
}

impl<D> TypeRelation<'tcx> for TypeGeneralizer<'me, 'tcx, D>
where
    D: TypeRelatingDelegate<'tcx>,
{
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.delegate.param_env()
    }

    fn tag(&self) -> &'static str {
        "nll::generalizer"
    }

    fn a_is_expected(&self) -> bool {
        true
    }

    fn relate_with_variance<T: Relate<'tcx>>(
        &mut self,
        variance: ty::Variance,
        _info: ty::VarianceDiagInfo<'tcx>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        debug!(
            "TypeGeneralizer::relate_with_variance(variance={:?}, a={:?}, b={:?})",
            variance, a, b
        );

        let old_ambient_variance = self.ambient_variance;
        self.ambient_variance = self.ambient_variance.xform(variance);

        debug!(
            "TypeGeneralizer::relate_with_variance: ambient_variance = {:?}",
            self.ambient_variance
        );

        let r = self.relate(a, b)?;

        self.ambient_variance = old_ambient_variance;

        debug!("TypeGeneralizer::relate_with_variance: r={:?}", r);

        Ok(r)
    }

    fn tys(&mut self, a: Ty<'tcx>, _: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        use crate::infer::type_variable::TypeVariableValue;

        debug!("TypeGeneralizer::tys(a={:?})", a);

        match *a.kind() {
            ty::Infer(ty::TyVar(_)) | ty::Infer(ty::IntVar(_)) | ty::Infer(ty::FloatVar(_))
                if D::forbid_inference_vars() =>
            {
                bug!("unexpected inference variable encountered in NLL generalization: {:?}", a);
            }

            ty::Infer(ty::TyVar(vid)) => {
                let mut inner = self.infcx.inner.borrow_mut();
                let variables = &mut inner.type_variables();
                let vid = variables.root_var(vid);
                let sub_vid = variables.sub_root_var(vid);
                if sub_vid == self.for_vid_sub_root {
                    // If sub-roots are equal, then `for_vid` and
                    // `vid` are related via subtyping.
                    debug!("TypeGeneralizer::tys: occurs check failed");
                    Err(TypeError::Mismatch)
                } else {
                    match variables.probe(vid) {
                        TypeVariableValue::Known { value: u } => {
                            drop(variables);
                            self.relate(u, u)
                        }
                        TypeVariableValue::Unknown { universe: _universe } => {
                            if self.ambient_variance == ty::Bivariant {
                                // FIXME: we may need a WF predicate (related to #54105).
                            }

                            let origin = *variables.var_origin(vid);

                            // Replacing with a new variable in the universe `self.universe`,
                            // it will be unified later with the original type variable in
                            // the universe `_universe`.
                            let new_var_id = variables.new_var(self.universe, origin);

                            let u = self.tcx().mk_ty_var(new_var_id);
                            debug!("generalize: replacing original vid={:?} with new={:?}", vid, u);
                            Ok(u)
                        }
                    }
                }
            }

            ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
                // No matter what mode we are in,
                // integer/floating-point types must be equal to be
                // relatable.
                Ok(a)
            }

            ty::Placeholder(placeholder) => {
                if self.universe.cannot_name(placeholder.universe) {
                    debug!(
                        "TypeGeneralizer::tys: root universe {:?} cannot name\
                         placeholder in universe {:?}",
                        self.universe, placeholder.universe
                    );
                    Err(TypeError::Mismatch)
                } else {
                    Ok(a)
                }
            }

            _ => relate::super_relate_tys(self, a, a),
        }
    }

    fn regions(
        &mut self,
        a: ty::Region<'tcx>,
        _: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        debug!("TypeGeneralizer::regions(a={:?})", a);

        if let ty::ReLateBound(debruijn, _) = a {
            if *debruijn < self.first_free_index {
                return Ok(a);
            }
        }

        // For now, we just always create a fresh region variable to
        // replace all the regions in the source type. In the main
        // type checker, we special case the case where the ambient
        // variance is `Invariant` and try to avoid creating a fresh
        // region variable, but since this comes up so much less in
        // NLL (only when users use `_` etc) it is much less
        // important.
        //
        // As an aside, since these new variables are created in
        // `self.universe` universe, this also serves to enforce the
        // universe scoping rules.
        //
        // FIXME(#54105) -- if the ambient variance is bivariant,
        // though, we may however need to check well-formedness or
        // risk a problem like #41677 again.

        let replacement_region_vid = self.delegate.generalize_existential(self.universe);

        Ok(replacement_region_vid)
    }

    fn consts(
        &mut self,
        a: &'tcx ty::Const<'tcx>,
        _: &'tcx ty::Const<'tcx>,
    ) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
        match a.val {
            ty::ConstKind::Infer(InferConst::Var(_)) if D::forbid_inference_vars() => {
                bug!("unexpected inference variable encountered in NLL generalization: {:?}", a);
            }
            ty::ConstKind::Infer(InferConst::Var(vid)) => {
                let mut inner = self.infcx.inner.borrow_mut();
                let variable_table = &mut inner.const_unification_table();
                let var_value = variable_table.probe_value(vid);
                match var_value.val.known() {
                    Some(u) => self.relate(u, u),
                    None => {
                        let new_var_id = variable_table.new_key(ConstVarValue {
                            origin: var_value.origin,
                            val: ConstVariableValue::Unknown { universe: self.universe },
                        });
                        Ok(self.tcx().mk_const_var(new_var_id, a.ty))
                    }
                }
            }
            ty::ConstKind::Unevaluated(..) if self.tcx().lazy_normalization() => Ok(a),
            _ => relate::super_relate_consts(self, a, a),
        }
    }

    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        _: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<'tcx>,
    {
        debug!("TypeGeneralizer::binders(a={:?})", a);

        self.first_free_index.shift_in(1);
        let result = self.relate(a.skip_binder(), a.skip_binder())?;
        self.first_free_index.shift_out(1);
        Ok(a.rebind(result))
    }
}