1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
use crate::{LateContext, LateLintPass, LintContext};
use rustc_ast as ast;
use rustc_attr as attr;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeFoldable};
use rustc_span::source_map;
use rustc_span::symbol::sym;
use rustc_span::{Span, Symbol, DUMMY_SP};
use rustc_target::abi::Abi;
use rustc_target::abi::{Integer, TagEncoding, Variants};
use rustc_target::spec::abi::Abi as SpecAbi;

use if_chain::if_chain;
use std::cmp;
use std::iter;
use std::ops::ControlFlow;
use tracing::debug;

declare_lint! {
    /// The `unused_comparisons` lint detects comparisons made useless by
    /// limits of the types involved.
    ///
    /// ### Example
    ///
    /// ```rust
    /// fn foo(x: u8) {
    ///     x >= 0;
    /// }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// A useless comparison may indicate a mistake, and should be fixed or
    /// removed.
    UNUSED_COMPARISONS,
    Warn,
    "comparisons made useless by limits of the types involved"
}

declare_lint! {
    /// The `overflowing_literals` lint detects literal out of range for its
    /// type.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// let x: u8 = 1000;
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// It is usually a mistake to use a literal that overflows the type where
    /// it is used. Either use a literal that is within range, or change the
    /// type to be within the range of the literal.
    OVERFLOWING_LITERALS,
    Deny,
    "literal out of range for its type"
}

declare_lint! {
    /// The `variant_size_differences` lint detects enums with widely varying
    /// variant sizes.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// #![deny(variant_size_differences)]
    /// enum En {
    ///     V0(u8),
    ///     VBig([u8; 1024]),
    /// }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// It can be a mistake to add a variant to an enum that is much larger
    /// than the other variants, bloating the overall size required for all
    /// variants. This can impact performance and memory usage. This is
    /// triggered if one variant is more than 3 times larger than the
    /// second-largest variant.
    ///
    /// Consider placing the large variant's contents on the heap (for example
    /// via [`Box`]) to keep the overall size of the enum itself down.
    ///
    /// This lint is "allow" by default because it can be noisy, and may not be
    /// an actual problem. Decisions about this should be guided with
    /// profiling and benchmarking.
    ///
    /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
    VARIANT_SIZE_DIFFERENCES,
    Allow,
    "detects enums with widely varying variant sizes"
}

#[derive(Copy, Clone)]
pub struct TypeLimits {
    /// Id of the last visited negated expression
    negated_expr_id: Option<hir::HirId>,
}

impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);

impl TypeLimits {
    pub fn new() -> TypeLimits {
        TypeLimits { negated_expr_id: None }
    }
}

/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
/// Returns `true` iff the lint was overridden.
fn lint_overflowing_range_endpoint<'tcx>(
    cx: &LateContext<'tcx>,
    lit: &hir::Lit,
    lit_val: u128,
    max: u128,
    expr: &'tcx hir::Expr<'tcx>,
    parent_expr: &'tcx hir::Expr<'tcx>,
    ty: &str,
) -> bool {
    // We only want to handle exclusive (`..`) ranges,
    // which are represented as `ExprKind::Struct`.
    let mut overwritten = false;
    if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
        if eps.len() != 2 {
            return false;
        }
        // We can suggest using an inclusive range
        // (`..=`) instead only if it is the `end` that is
        // overflowing and only by 1.
        if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
            cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
                let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
                if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
                    use ast::{LitIntType, LitKind};
                    // We need to preserve the literal's suffix,
                    // as it may determine typing information.
                    let suffix = match lit.node {
                        LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
                        LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
                        LitKind::Int(_, LitIntType::Unsuffixed) => "",
                        _ => bug!(),
                    };
                    let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
                    err.span_suggestion(
                        parent_expr.span,
                        &"use an inclusive range instead",
                        suggestion,
                        Applicability::MachineApplicable,
                    );
                    err.emit();
                    overwritten = true;
                }
            });
        }
    }
    overwritten
}

// For `isize` & `usize`, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms.
fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
    match int_ty {
        ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
        ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
        ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
        ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
        ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
        ty::IntTy::I128 => (i128::MIN, i128::MAX),
    }
}

fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
    let max = match uint_ty {
        ty::UintTy::Usize => u64::MAX.into(),
        ty::UintTy::U8 => u8::MAX.into(),
        ty::UintTy::U16 => u16::MAX.into(),
        ty::UintTy::U32 => u32::MAX.into(),
        ty::UintTy::U64 => u64::MAX.into(),
        ty::UintTy::U128 => u128::MAX,
    };
    (0, max)
}

fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
    let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
    let firstch = src.chars().next()?;

    if firstch == '0' {
        match src.chars().nth(1) {
            Some('x' | 'b') => return Some(src),
            _ => return None,
        }
    }

    None
}

fn report_bin_hex_error(
    cx: &LateContext<'_>,
    expr: &hir::Expr<'_>,
    ty: attr::IntType,
    repr_str: String,
    val: u128,
    negative: bool,
) {
    let size = Integer::from_attr(&cx.tcx, ty).size();
    cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
        let (t, actually) = match ty {
            attr::IntType::SignedInt(t) => {
                let actually = if negative {
                    -(size.sign_extend(val) as i128)
                } else {
                    size.sign_extend(val) as i128
                };
                (t.name_str(), actually.to_string())
            }
            attr::IntType::UnsignedInt(t) => {
                let actually = size.truncate(val);
                (t.name_str(), actually.to_string())
            }
        };
        let mut err = lint.build(&format!("literal out of range for `{}`", t));
        if negative {
            // If the value is negative,
            // emits a note about the value itself, apart from the literal.
            err.note(&format!(
                "the literal `{}` (decimal `{}`) does not fit into \
                 the type `{}`",
                repr_str, val, t
            ));
            err.note(&format!("and the value `-{}` will become `{}{}`", repr_str, actually, t));
        } else {
            err.note(&format!(
                "the literal `{}` (decimal `{}`) does not fit into \
                 the type `{}` and will become `{}{}`",
                repr_str, val, t, actually, t
            ));
        }
        if let Some(sugg_ty) =
            get_type_suggestion(&cx.typeck_results().node_type(expr.hir_id), val, negative)
        {
            if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
                let (sans_suffix, _) = repr_str.split_at(pos);
                err.span_suggestion(
                    expr.span,
                    &format!("consider using the type `{}` instead", sugg_ty),
                    format!("{}{}", sans_suffix, sugg_ty),
                    Applicability::MachineApplicable,
                );
            } else {
                err.help(&format!("consider using the type `{}` instead", sugg_ty));
            }
        }
        err.emit();
    });
}

// This function finds the next fitting type and generates a suggestion string.
// It searches for fitting types in the following way (`X < Y`):
//  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
//  - `-iX` => `iY`
//  - `uX` => `uY`
//
// No suggestion for: `isize`, `usize`.
fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
    use ty::IntTy::*;
    use ty::UintTy::*;
    macro_rules! find_fit {
        ($ty:expr, $val:expr, $negative:expr,
         $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
            {
                let _neg = if negative { 1 } else { 0 };
                match $ty {
                    $($type => {
                        $(if !negative && val <= uint_ty_range($utypes).1 {
                            return Some($utypes.name_str())
                        })*
                        $(if val <= int_ty_range($itypes).1 as u128 + _neg {
                            return Some($itypes.name_str())
                        })*
                        None
                    },)+
                    _ => None
                }
            }
        }
    }
    match t.kind() {
        ty::Int(i) => find_fit!(i, val, negative,
                      I8 => [U8] => [I16, I32, I64, I128],
                      I16 => [U16] => [I32, I64, I128],
                      I32 => [U32] => [I64, I128],
                      I64 => [U64] => [I128],
                      I128 => [U128] => []),
        ty::Uint(u) => find_fit!(u, val, negative,
                      U8 => [U8, U16, U32, U64, U128] => [],
                      U16 => [U16, U32, U64, U128] => [],
                      U32 => [U32, U64, U128] => [],
                      U64 => [U64, U128] => [],
                      U128 => [U128] => []),
        _ => None,
    }
}

fn lint_int_literal<'tcx>(
    cx: &LateContext<'tcx>,
    type_limits: &TypeLimits,
    e: &'tcx hir::Expr<'tcx>,
    lit: &hir::Lit,
    t: ty::IntTy,
    v: u128,
) {
    let int_type = t.normalize(cx.sess().target.pointer_width);
    let (min, max) = int_ty_range(int_type);
    let max = max as u128;
    let negative = type_limits.negated_expr_id == Some(e.hir_id);

    // Detect literal value out of range [min, max] inclusive
    // avoiding use of -min to prevent overflow/panic
    if (negative && v > max + 1) || (!negative && v > max) {
        if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
            report_bin_hex_error(
                cx,
                e,
                attr::IntType::SignedInt(ty::ast_int_ty(t)),
                repr_str,
                v,
                negative,
            );
            return;
        }

        let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
        if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
            if let hir::ExprKind::Struct(..) = par_e.kind {
                if is_range_literal(par_e)
                    && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
                {
                    // The overflowing literal lint was overridden.
                    return;
                }
            }
        }

        cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
            let mut err = lint.build(&format!("literal out of range for `{}`", t.name_str()));
            err.note(&format!(
                "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
                cx.sess()
                    .source_map()
                    .span_to_snippet(lit.span)
                    .expect("must get snippet from literal"),
                t.name_str(),
                min,
                max,
            ));
            if let Some(sugg_ty) =
                get_type_suggestion(&cx.typeck_results().node_type(e.hir_id), v, negative)
            {
                err.help(&format!("consider using the type `{}` instead", sugg_ty));
            }
            err.emit();
        });
    }
}

fn lint_uint_literal<'tcx>(
    cx: &LateContext<'tcx>,
    e: &'tcx hir::Expr<'tcx>,
    lit: &hir::Lit,
    t: ty::UintTy,
) {
    let uint_type = t.normalize(cx.sess().target.pointer_width);
    let (min, max) = uint_ty_range(uint_type);
    let lit_val: u128 = match lit.node {
        // _v is u8, within range by definition
        ast::LitKind::Byte(_v) => return,
        ast::LitKind::Int(v, _) => v,
        _ => bug!(),
    };
    if lit_val < min || lit_val > max {
        let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
        if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
            match par_e.kind {
                hir::ExprKind::Cast(..) => {
                    if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
                        cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
                            lint.build("only `u8` can be cast into `char`")
                                .span_suggestion(
                                    par_e.span,
                                    &"use a `char` literal instead",
                                    format!("'\\u{{{:X}}}'", lit_val),
                                    Applicability::MachineApplicable,
                                )
                                .emit();
                        });
                        return;
                    }
                }
                hir::ExprKind::Struct(..) if is_range_literal(par_e) => {
                    let t = t.name_str();
                    if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
                        // The overflowing literal lint was overridden.
                        return;
                    }
                }
                _ => {}
            }
        }
        if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
            report_bin_hex_error(
                cx,
                e,
                attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
                repr_str,
                lit_val,
                false,
            );
            return;
        }
        cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
            lint.build(&format!("literal out of range for `{}`", t.name_str()))
                .note(&format!(
                    "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
                    cx.sess()
                        .source_map()
                        .span_to_snippet(lit.span)
                        .expect("must get snippet from literal"),
                    t.name_str(),
                    min,
                    max,
                ))
                .emit()
        });
    }
}

fn lint_literal<'tcx>(
    cx: &LateContext<'tcx>,
    type_limits: &TypeLimits,
    e: &'tcx hir::Expr<'tcx>,
    lit: &hir::Lit,
) {
    match *cx.typeck_results().node_type(e.hir_id).kind() {
        ty::Int(t) => {
            match lit.node {
                ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
                    lint_int_literal(cx, type_limits, e, lit, t, v)
                }
                _ => bug!(),
            };
        }
        ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
        ty::Float(t) => {
            let is_infinite = match lit.node {
                ast::LitKind::Float(v, _) => match t {
                    ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
                    ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
                },
                _ => bug!(),
            };
            if is_infinite == Ok(true) {
                cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
                    lint.build(&format!("literal out of range for `{}`", t.name_str()))
                        .note(&format!(
                            "the literal `{}` does not fit into the type `{}` and will be converted to `{}::INFINITY`",
                            cx.sess()
                                .source_map()
                                .span_to_snippet(lit.span)
                                .expect("must get snippet from literal"),
                            t.name_str(),
                            t.name_str(),
                        ))
                        .emit();
                });
            }
        }
        _ => {}
    }
}

impl<'tcx> LateLintPass<'tcx> for TypeLimits {
    fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
        match e.kind {
            hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
                // propagate negation, if the negation itself isn't negated
                if self.negated_expr_id != Some(e.hir_id) {
                    self.negated_expr_id = Some(expr.hir_id);
                }
            }
            hir::ExprKind::Binary(binop, ref l, ref r) => {
                if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
                    cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
                        lint.build("comparison is useless due to type limits").emit()
                    });
                }
            }
            hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
            _ => {}
        };

        fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
            match binop.node {
                hir::BinOpKind::Lt => v > min && v <= max,
                hir::BinOpKind::Le => v >= min && v < max,
                hir::BinOpKind::Gt => v >= min && v < max,
                hir::BinOpKind::Ge => v > min && v <= max,
                hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
                _ => bug!(),
            }
        }

        fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
            source_map::respan(
                binop.span,
                match binop.node {
                    hir::BinOpKind::Lt => hir::BinOpKind::Gt,
                    hir::BinOpKind::Le => hir::BinOpKind::Ge,
                    hir::BinOpKind::Gt => hir::BinOpKind::Lt,
                    hir::BinOpKind::Ge => hir::BinOpKind::Le,
                    _ => return binop,
                },
            )
        }

        fn check_limits(
            cx: &LateContext<'_>,
            binop: hir::BinOp,
            l: &hir::Expr<'_>,
            r: &hir::Expr<'_>,
        ) -> bool {
            let (lit, expr, swap) = match (&l.kind, &r.kind) {
                (&hir::ExprKind::Lit(_), _) => (l, r, true),
                (_, &hir::ExprKind::Lit(_)) => (r, l, false),
                _ => return true,
            };
            // Normalize the binop so that the literal is always on the RHS in
            // the comparison
            let norm_binop = if swap { rev_binop(binop) } else { binop };
            match *cx.typeck_results().node_type(expr.hir_id).kind() {
                ty::Int(int_ty) => {
                    let (min, max) = int_ty_range(int_ty);
                    let lit_val: i128 = match lit.kind {
                        hir::ExprKind::Lit(ref li) => match li.node {
                            ast::LitKind::Int(
                                v,
                                ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
                            ) => v as i128,
                            _ => return true,
                        },
                        _ => bug!(),
                    };
                    is_valid(norm_binop, lit_val, min, max)
                }
                ty::Uint(uint_ty) => {
                    let (min, max): (u128, u128) = uint_ty_range(uint_ty);
                    let lit_val: u128 = match lit.kind {
                        hir::ExprKind::Lit(ref li) => match li.node {
                            ast::LitKind::Int(v, _) => v,
                            _ => return true,
                        },
                        _ => bug!(),
                    };
                    is_valid(norm_binop, lit_val, min, max)
                }
                _ => true,
            }
        }

        fn is_comparison(binop: hir::BinOp) -> bool {
            matches!(
                binop.node,
                hir::BinOpKind::Eq
                    | hir::BinOpKind::Lt
                    | hir::BinOpKind::Le
                    | hir::BinOpKind::Ne
                    | hir::BinOpKind::Ge
                    | hir::BinOpKind::Gt
            )
        }
    }
}

declare_lint! {
    /// The `improper_ctypes` lint detects incorrect use of types in foreign
    /// modules.
    ///
    /// ### Example
    ///
    /// ```rust
    /// extern "C" {
    ///     static STATIC: String;
    /// }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// The compiler has several checks to verify that types used in `extern`
    /// blocks are safe and follow certain rules to ensure proper
    /// compatibility with the foreign interfaces. This lint is issued when it
    /// detects a probable mistake in a definition. The lint usually should
    /// provide a description of the issue, along with possibly a hint on how
    /// to resolve it.
    IMPROPER_CTYPES,
    Warn,
    "proper use of libc types in foreign modules"
}

declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);

declare_lint! {
    /// The `improper_ctypes_definitions` lint detects incorrect use of
    /// [`extern` function] definitions.
    ///
    /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
    ///
    /// ### Example
    ///
    /// ```rust
    /// # #![allow(unused)]
    /// pub extern "C" fn str_type(p: &str) { }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// There are many parameter and return types that may be specified in an
    /// `extern` function that are not compatible with the given ABI. This
    /// lint is an alert that these types should not be used. The lint usually
    /// should provide a description of the issue, along with possibly a hint
    /// on how to resolve it.
    IMPROPER_CTYPES_DEFINITIONS,
    Warn,
    "proper use of libc types in foreign item definitions"
}

declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);

#[derive(Clone, Copy)]
crate enum CItemKind {
    Declaration,
    Definition,
}

struct ImproperCTypesVisitor<'a, 'tcx> {
    cx: &'a LateContext<'tcx>,
    mode: CItemKind,
}

enum FfiResult<'tcx> {
    FfiSafe,
    FfiPhantom(Ty<'tcx>),
    FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
}

crate fn nonnull_optimization_guaranteed<'tcx>(tcx: TyCtxt<'tcx>, def: &ty::AdtDef) -> bool {
    tcx.get_attrs(def.did).iter().any(|a| a.has_name(sym::rustc_nonnull_optimization_guaranteed))
}

/// `repr(transparent)` structs can have a single non-ZST field, this function returns that
/// field.
pub fn transparent_newtype_field<'a, 'tcx>(
    tcx: TyCtxt<'tcx>,
    variant: &'a ty::VariantDef,
) -> Option<&'a ty::FieldDef> {
    let param_env = tcx.param_env(variant.def_id);
    variant.fields.iter().find(|field| {
        let field_ty = tcx.type_of(field.did);
        let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
        !is_zst
    })
}

/// Is type known to be non-null?
fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
    let tcx = cx.tcx;
    match ty.kind() {
        ty::FnPtr(_) => true,
        ty::Ref(..) => true,
        ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
        ty::Adt(def, substs) if def.repr.transparent() && !def.is_union() => {
            let marked_non_null = nonnull_optimization_guaranteed(tcx, &def);

            if marked_non_null {
                return true;
            }

            // Types with a `#[repr(no_niche)]` attribute have their niche hidden.
            // The attribute is used by the UnsafeCell for example (the only use so far).
            if def.repr.hide_niche() {
                return false;
            }

            def.variants
                .iter()
                .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
                .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
        }
        _ => false,
    }
}

/// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
/// If the type passed in was not scalar, returns None.
fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
    let tcx = cx.tcx;
    Some(match *ty.kind() {
        ty::Adt(field_def, field_substs) => {
            let inner_field_ty = {
                let first_non_zst_ty =
                    field_def.variants.iter().filter_map(|v| transparent_newtype_field(cx.tcx, v));
                debug_assert_eq!(
                    first_non_zst_ty.clone().count(),
                    1,
                    "Wrong number of fields for transparent type"
                );
                first_non_zst_ty
                    .last()
                    .expect("No non-zst fields in transparent type.")
                    .ty(tcx, field_substs)
            };
            return get_nullable_type(cx, inner_field_ty);
        }
        ty::Int(ty) => tcx.mk_mach_int(ty),
        ty::Uint(ty) => tcx.mk_mach_uint(ty),
        ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
        // As these types are always non-null, the nullable equivalent of
        // Option<T> of these types are their raw pointer counterparts.
        ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
        ty::FnPtr(..) => {
            // There is no nullable equivalent for Rust's function pointers -- you
            // must use an Option<fn(..) -> _> to represent it.
            ty
        }

        // We should only ever reach this case if ty_is_known_nonnull is extended
        // to other types.
        ref unhandled => {
            debug!(
                "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
                unhandled, ty
            );
            return None;
        }
    })
}

/// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
/// can, return the type that `ty` can be safely converted to, otherwise return `None`.
/// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
/// FIXME: This duplicates code in codegen.
crate fn repr_nullable_ptr<'tcx>(
    cx: &LateContext<'tcx>,
    ty: Ty<'tcx>,
    ckind: CItemKind,
) -> Option<Ty<'tcx>> {
    debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
    if let ty::Adt(ty_def, substs) = ty.kind() {
        let field_ty = match &ty_def.variants.raw[..] {
            [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
                ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
                _ => return None,
            },
            _ => return None,
        };

        if !ty_is_known_nonnull(cx, field_ty, ckind) {
            return None;
        }

        // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
        // If the computed size for the field and the enum are different, the nonnull optimization isn't
        // being applied (and we've got a problem somewhere).
        let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
        if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
            bug!("improper_ctypes: Option nonnull optimization not applied?");
        }

        // Return the nullable type this Option-like enum can be safely represented with.
        let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
        if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
            match (field_ty_scalar.valid_range.start, field_ty_scalar.valid_range.end) {
                (0, _) => unreachable!("Non-null optimisation extended to a non-zero value."),
                (1, _) => {
                    return Some(get_nullable_type(cx, field_ty).unwrap());
                }
                (start, end) => unreachable!("Unhandled start and end range: ({}, {})", start, end),
            };
        }
    }
    None
}

impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
    /// Check if the type is array and emit an unsafe type lint.
    fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
        if let ty::Array(..) = ty.kind() {
            self.emit_ffi_unsafe_type_lint(
                ty,
                sp,
                "passing raw arrays by value is not FFI-safe",
                Some("consider passing a pointer to the array"),
            );
            true
        } else {
            false
        }
    }

    /// Checks if the given field's type is "ffi-safe".
    fn check_field_type_for_ffi(
        &self,
        cache: &mut FxHashSet<Ty<'tcx>>,
        field: &ty::FieldDef,
        substs: SubstsRef<'tcx>,
    ) -> FfiResult<'tcx> {
        let field_ty = field.ty(self.cx.tcx, substs);
        if field_ty.has_opaque_types() {
            self.check_type_for_ffi(cache, field_ty)
        } else {
            let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
            self.check_type_for_ffi(cache, field_ty)
        }
    }

    /// Checks if the given `VariantDef`'s field types are "ffi-safe".
    fn check_variant_for_ffi(
        &self,
        cache: &mut FxHashSet<Ty<'tcx>>,
        ty: Ty<'tcx>,
        def: &ty::AdtDef,
        variant: &ty::VariantDef,
        substs: SubstsRef<'tcx>,
    ) -> FfiResult<'tcx> {
        use FfiResult::*;

        if def.repr.transparent() {
            // Can assume that at most one field is not a ZST, so only check
            // that field's type for FFI-safety.
            if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
                self.check_field_type_for_ffi(cache, field, substs)
            } else {
                // All fields are ZSTs; this means that the type should behave
                // like (), which is FFI-unsafe
                FfiUnsafe {
                    ty,
                    reason: "this struct contains only zero-sized fields".into(),
                    help: None,
                }
            }
        } else {
            // We can't completely trust repr(C) markings; make sure the fields are
            // actually safe.
            let mut all_phantom = !variant.fields.is_empty();
            for field in &variant.fields {
                match self.check_field_type_for_ffi(cache, &field, substs) {
                    FfiSafe => {
                        all_phantom = false;
                    }
                    FfiPhantom(..) if def.is_enum() => {
                        return FfiUnsafe {
                            ty,
                            reason: "this enum contains a PhantomData field".into(),
                            help: None,
                        };
                    }
                    FfiPhantom(..) => {}
                    r => return r,
                }
            }

            if all_phantom { FfiPhantom(ty) } else { FfiSafe }
        }
    }

    /// Checks if the given type is "ffi-safe" (has a stable, well-defined
    /// representation which can be exported to C code).
    fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
        use FfiResult::*;

        let tcx = self.cx.tcx;

        // Protect against infinite recursion, for example
        // `struct S(*mut S);`.
        // FIXME: A recursion limit is necessary as well, for irregular
        // recursive types.
        if !cache.insert(ty) {
            return FfiSafe;
        }

        match *ty.kind() {
            ty::Adt(def, substs) => {
                if def.is_box() && matches!(self.mode, CItemKind::Definition) {
                    if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
                        return FfiSafe;
                    } else {
                        return FfiUnsafe {
                            ty,
                            reason: "box cannot be represented as a single pointer".to_string(),
                            help: None,
                        };
                    }
                }
                if def.is_phantom_data() {
                    return FfiPhantom(ty);
                }
                match def.adt_kind() {
                    AdtKind::Struct | AdtKind::Union => {
                        let kind = if def.is_struct() { "struct" } else { "union" };

                        if !def.repr.c() && !def.repr.transparent() {
                            return FfiUnsafe {
                                ty,
                                reason: format!("this {} has unspecified layout", kind),
                                help: Some(format!(
                                    "consider adding a `#[repr(C)]` or \
                                             `#[repr(transparent)]` attribute to this {}",
                                    kind
                                )),
                            };
                        }

                        let is_non_exhaustive =
                            def.non_enum_variant().is_field_list_non_exhaustive();
                        if is_non_exhaustive && !def.did.is_local() {
                            return FfiUnsafe {
                                ty,
                                reason: format!("this {} is non-exhaustive", kind),
                                help: None,
                            };
                        }

                        if def.non_enum_variant().fields.is_empty() {
                            return FfiUnsafe {
                                ty,
                                reason: format!("this {} has no fields", kind),
                                help: Some(format!("consider adding a member to this {}", kind)),
                            };
                        }

                        self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
                    }
                    AdtKind::Enum => {
                        if def.variants.is_empty() {
                            // Empty enums are okay... although sort of useless.
                            return FfiSafe;
                        }

                        // Check for a repr() attribute to specify the size of the
                        // discriminant.
                        if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
                            // Special-case types like `Option<extern fn()>`.
                            if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
                                return FfiUnsafe {
                                    ty,
                                    reason: "enum has no representation hint".into(),
                                    help: Some(
                                        "consider adding a `#[repr(C)]`, \
                                                `#[repr(transparent)]`, or integer `#[repr(...)]` \
                                                attribute to this enum"
                                            .into(),
                                    ),
                                };
                            }
                        }

                        if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
                            return FfiUnsafe {
                                ty,
                                reason: "this enum is non-exhaustive".into(),
                                help: None,
                            };
                        }

                        // Check the contained variants.
                        for variant in &def.variants {
                            let is_non_exhaustive = variant.is_field_list_non_exhaustive();
                            if is_non_exhaustive && !variant.def_id.is_local() {
                                return FfiUnsafe {
                                    ty,
                                    reason: "this enum has non-exhaustive variants".into(),
                                    help: None,
                                };
                            }

                            match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
                                FfiSafe => (),
                                r => return r,
                            }
                        }

                        FfiSafe
                    }
                }
            }

            ty::Char => FfiUnsafe {
                ty,
                reason: "the `char` type has no C equivalent".into(),
                help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
            },

            ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => FfiUnsafe {
                ty,
                reason: "128-bit integers don't currently have a known stable ABI".into(),
                help: None,
            },

            // Primitive types with a stable representation.
            ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,

            ty::Slice(_) => FfiUnsafe {
                ty,
                reason: "slices have no C equivalent".into(),
                help: Some("consider using a raw pointer instead".into()),
            },

            ty::Dynamic(..) => {
                FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
            }

            ty::Str => FfiUnsafe {
                ty,
                reason: "string slices have no C equivalent".into(),
                help: Some("consider using `*const u8` and a length instead".into()),
            },

            ty::Tuple(..) => FfiUnsafe {
                ty,
                reason: "tuples have unspecified layout".into(),
                help: Some("consider using a struct instead".into()),
            },

            ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
                if {
                    matches!(self.mode, CItemKind::Definition)
                        && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
                } =>
            {
                FfiSafe
            }

            ty::RawPtr(ty::TypeAndMut { ty, .. })
                if match ty.kind() {
                    ty::Tuple(tuple) => tuple.is_empty(),
                    _ => false,
                } =>
            {
                FfiSafe
            }

            ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
                self.check_type_for_ffi(cache, ty)
            }

            ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),

            ty::FnPtr(sig) => {
                if self.is_internal_abi(sig.abi()) {
                    return FfiUnsafe {
                        ty,
                        reason: "this function pointer has Rust-specific calling convention".into(),
                        help: Some(
                            "consider using an `extern fn(...) -> ...` \
                                    function pointer instead"
                                .into(),
                        ),
                    };
                }

                let sig = tcx.erase_late_bound_regions(sig);
                if !sig.output().is_unit() {
                    let r = self.check_type_for_ffi(cache, sig.output());
                    match r {
                        FfiSafe => {}
                        _ => {
                            return r;
                        }
                    }
                }
                for arg in sig.inputs() {
                    let r = self.check_type_for_ffi(cache, arg);
                    match r {
                        FfiSafe => {}
                        _ => {
                            return r;
                        }
                    }
                }
                FfiSafe
            }

            ty::Foreign(..) => FfiSafe,

            // While opaque types are checked for earlier, if a projection in a struct field
            // normalizes to an opaque type, then it will reach this branch.
            ty::Opaque(..) => {
                FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
            }

            // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
            //  so they are currently ignored for the purposes of this lint.
            ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
                FfiSafe
            }

            ty::Param(..)
            | ty::Projection(..)
            | ty::Infer(..)
            | ty::Bound(..)
            | ty::Error(_)
            | ty::Closure(..)
            | ty::Generator(..)
            | ty::GeneratorWitness(..)
            | ty::Placeholder(..)
            | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
        }
    }

    fn emit_ffi_unsafe_type_lint(
        &mut self,
        ty: Ty<'tcx>,
        sp: Span,
        note: &str,
        help: Option<&str>,
    ) {
        let lint = match self.mode {
            CItemKind::Declaration => IMPROPER_CTYPES,
            CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
        };

        self.cx.struct_span_lint(lint, sp, |lint| {
            let item_description = match self.mode {
                CItemKind::Declaration => "block",
                CItemKind::Definition => "fn",
            };
            let mut diag = lint.build(&format!(
                "`extern` {} uses type `{}`, which is not FFI-safe",
                item_description, ty
            ));
            diag.span_label(sp, "not FFI-safe");
            if let Some(help) = help {
                diag.help(help);
            }
            diag.note(note);
            if let ty::Adt(def, _) = ty.kind() {
                if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
                    diag.span_note(sp, "the type is defined here");
                }
            }
            diag.emit();
        });
    }

    fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
        struct ProhibitOpaqueTypes<'a, 'tcx> {
            cx: &'a LateContext<'tcx>,
        }

        impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
            type BreakTy = Ty<'tcx>;
            fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>> {
                Some(self.cx.tcx)
            }

            fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
                match ty.kind() {
                    ty::Opaque(..) => ControlFlow::Break(ty),
                    // Consider opaque types within projections FFI-safe if they do not normalize
                    // to more opaque types.
                    ty::Projection(..) => {
                        let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);

                        // If `ty` is an opaque type directly then `super_visit_with` won't invoke
                        // this function again.
                        if ty.has_opaque_types() {
                            self.visit_ty(ty)
                        } else {
                            ControlFlow::CONTINUE
                        }
                    }
                    _ => ty.super_visit_with(self),
                }
            }
        }

        if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
            self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
            true
        } else {
            false
        }
    }

    fn check_type_for_ffi_and_report_errors(
        &mut self,
        sp: Span,
        ty: Ty<'tcx>,
        is_static: bool,
        is_return_type: bool,
    ) {
        // We have to check for opaque types before `normalize_erasing_regions`,
        // which will replace opaque types with their underlying concrete type.
        if self.check_for_opaque_ty(sp, ty) {
            // We've already emitted an error due to an opaque type.
            return;
        }

        // it is only OK to use this function because extern fns cannot have
        // any generic types right now:
        let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);

        // C doesn't really support passing arrays by value - the only way to pass an array by value
        // is through a struct. So, first test that the top level isn't an array, and then
        // recursively check the types inside.
        if !is_static && self.check_for_array_ty(sp, ty) {
            return;
        }

        // Don't report FFI errors for unit return types. This check exists here, and not in
        // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
        // happened.
        if is_return_type && ty.is_unit() {
            return;
        }

        match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
            FfiResult::FfiSafe => {}
            FfiResult::FfiPhantom(ty) => {
                self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
            }
            // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
            // argument, which after substitution, is `()`, then this branch can be hit.
            FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
            FfiResult::FfiUnsafe { ty, reason, help } => {
                self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
            }
        }
    }

    fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
        let def_id = self.cx.tcx.hir().local_def_id(id);
        let sig = self.cx.tcx.fn_sig(def_id);
        let sig = self.cx.tcx.erase_late_bound_regions(sig);

        for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
            self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false, false);
        }

        if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
            let ret_ty = sig.output();
            self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
        }
    }

    fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
        let def_id = self.cx.tcx.hir().local_def_id(id);
        let ty = self.cx.tcx.type_of(def_id);
        self.check_type_for_ffi_and_report_errors(span, ty, true, false);
    }

    fn is_internal_abi(&self, abi: SpecAbi) -> bool {
        matches!(
            abi,
            SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
        )
    }
}

impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
    fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
        let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
        let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());

        if !vis.is_internal_abi(abi) {
            match it.kind {
                hir::ForeignItemKind::Fn(ref decl, _, _) => {
                    vis.check_foreign_fn(it.hir_id(), decl);
                }
                hir::ForeignItemKind::Static(ref ty, _) => {
                    vis.check_foreign_static(it.hir_id(), ty.span);
                }
                hir::ForeignItemKind::Type => (),
            }
        }
    }
}

impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
    fn check_fn(
        &mut self,
        cx: &LateContext<'tcx>,
        kind: hir::intravisit::FnKind<'tcx>,
        decl: &'tcx hir::FnDecl<'_>,
        _: &'tcx hir::Body<'_>,
        _: Span,
        hir_id: hir::HirId,
    ) {
        use hir::intravisit::FnKind;

        let abi = match kind {
            FnKind::ItemFn(_, _, header, ..) => header.abi,
            FnKind::Method(_, sig, ..) => sig.header.abi,
            _ => return,
        };

        let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
        if !vis.is_internal_abi(abi) {
            vis.check_foreign_fn(hir_id, decl);
        }
    }
}

declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);

impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
    fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
        if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
            let t = cx.tcx.type_of(it.def_id);
            let ty = cx.tcx.erase_regions(t);
            let layout = match cx.layout_of(ty) {
                Ok(layout) => layout,
                Err(
                    ty::layout::LayoutError::Unknown(_) | ty::layout::LayoutError::SizeOverflow(_),
                ) => return,
            };
            let (variants, tag) = match layout.variants {
                Variants::Multiple {
                    tag_encoding: TagEncoding::Direct, tag, ref variants, ..
                } => (variants, tag),
                _ => return,
            };

            let tag_size = tag.value.size(&cx.tcx).bytes();

            debug!(
                "enum `{}` is {} bytes large with layout:\n{:#?}",
                t,
                layout.size.bytes(),
                layout
            );

            let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
                .map(|(variant, variant_layout)| {
                    // Subtract the size of the enum tag.
                    let bytes = variant_layout.size.bytes().saturating_sub(tag_size);

                    debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
                    bytes
                })
                .enumerate()
                .fold((0, 0, 0), |(l, s, li), (idx, size)| {
                    if size > l {
                        (size, l, idx)
                    } else if size > s {
                        (l, size, li)
                    } else {
                        (l, s, li)
                    }
                });

            // We only warn if the largest variant is at least thrice as large as
            // the second-largest.
            if largest > slargest * 3 && slargest > 0 {
                cx.struct_span_lint(
                    VARIANT_SIZE_DIFFERENCES,
                    enum_definition.variants[largest_index].span,
                    |lint| {
                        lint.build(&format!(
                            "enum variant is more than three times \
                                          larger ({} bytes) than the next largest",
                            largest
                        ))
                        .emit()
                    },
                );
            }
        }
    }
}

declare_lint! {
    /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
    /// to an atomic operation that does not support that ordering.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// # use core::sync::atomic::{AtomicU8, Ordering};
    /// let atom = AtomicU8::new(0);
    /// let value = atom.load(Ordering::Release);
    /// # let _ = value;
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// Some atomic operations are only supported for a subset of the
    /// `atomic::Ordering` variants. Passing an unsupported variant will cause
    /// an unconditional panic at runtime, which is detected by this lint.
    ///
    /// This lint will trigger in the following cases: (where `AtomicType` is an
    /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
    /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
    ///
    /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
    ///   `AtomicType::store`.
    ///
    /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
    ///   `AtomicType::load`.
    ///
    /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
    ///   `core::sync::atomic::compiler_fence`.
    ///
    /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
    ///   ordering for any of `AtomicType::compare_exchange`,
    ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
    ///
    /// - Passing in a pair of orderings to `AtomicType::compare_exchange`,
    ///   `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`
    ///   where the failure ordering is stronger than the success ordering.
    INVALID_ATOMIC_ORDERING,
    Deny,
    "usage of invalid atomic ordering in atomic operations and memory fences"
}

declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);

impl InvalidAtomicOrdering {
    fn inherent_atomic_method_call<'hir>(
        cx: &LateContext<'_>,
        expr: &Expr<'hir>,
        recognized_names: &[Symbol], // used for fast path calculation
    ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
        const ATOMIC_TYPES: &[Symbol] = &[
            sym::AtomicBool,
            sym::AtomicPtr,
            sym::AtomicUsize,
            sym::AtomicU8,
            sym::AtomicU16,
            sym::AtomicU32,
            sym::AtomicU64,
            sym::AtomicU128,
            sym::AtomicIsize,
            sym::AtomicI8,
            sym::AtomicI16,
            sym::AtomicI32,
            sym::AtomicI64,
            sym::AtomicI128,
        ];
        if_chain! {
            if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind;
            if recognized_names.contains(&method_path.ident.name);
            if let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id);
            if let Some(impl_did) = cx.tcx.impl_of_method(m_def_id);
            if let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def();
            // skip extension traits, only lint functions from the standard library
            if cx.tcx.trait_id_of_impl(impl_did).is_none();

            if let Some(parent) = cx.tcx.parent(adt.did);
            if cx.tcx.is_diagnostic_item(sym::atomic_mod, parent);
            if ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did));
            then {
                return Some((method_path.ident.name, args));
            }
        }
        None
    }

    fn matches_ordering(cx: &LateContext<'_>, did: DefId, orderings: &[Symbol]) -> bool {
        let tcx = cx.tcx;
        let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
        orderings.iter().any(|ordering| {
            tcx.item_name(did) == *ordering && {
                let parent = tcx.parent(did);
                parent == atomic_ordering
                    // needed in case this is a ctor, not a variant
                    || parent.map_or(false, |parent| tcx.parent(parent) == atomic_ordering)
            }
        })
    }

    fn opt_ordering_defid(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<DefId> {
        if let ExprKind::Path(ref ord_qpath) = ord_arg.kind {
            cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()
        } else {
            None
        }
    }

    fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
        use rustc_hir::def::{DefKind, Res};
        use rustc_hir::QPath;
        if_chain! {
            if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store]);
            if let Some((ordering_arg, invalid_ordering)) = match method {
                sym::load => Some((&args[1], sym::Release)),
                sym::store => Some((&args[2], sym::Acquire)),
                _ => None,
            };

            if let ExprKind::Path(QPath::Resolved(_, path)) = ordering_arg.kind;
            if let Res::Def(DefKind::Ctor(..), ctor_id) = path.res;
            if Self::matches_ordering(cx, ctor_id, &[invalid_ordering, sym::AcqRel]);
            then {
                cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
                    if method == sym::load {
                        diag.build("atomic loads cannot have `Release` or `AcqRel` ordering")
                            .help("consider using ordering modes `Acquire`, `SeqCst` or `Relaxed`")
                            .emit()
                    } else {
                        debug_assert_eq!(method, sym::store);
                        diag.build("atomic stores cannot have `Acquire` or `AcqRel` ordering")
                            .help("consider using ordering modes `Release`, `SeqCst` or `Relaxed`")
                            .emit();
                    }
                });
            }
        }
    }

    fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
        if_chain! {
            if let ExprKind::Call(ref func, ref args) = expr.kind;
            if let ExprKind::Path(ref func_qpath) = func.kind;
            if let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id();
            if matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence));
            if let ExprKind::Path(ref ordering_qpath) = &args[0].kind;
            if let Some(ordering_def_id) = cx.qpath_res(ordering_qpath, args[0].hir_id).opt_def_id();
            if Self::matches_ordering(cx, ordering_def_id, &[sym::Relaxed]);
            then {
                cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
                    diag.build("memory fences cannot have `Relaxed` ordering")
                        .help("consider using ordering modes `Acquire`, `Release`, `AcqRel` or `SeqCst`")
                        .emit();
                });
            }
        }
    }

    fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
        if_chain! {
            if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak]);
            if let Some((success_order_arg, failure_order_arg)) = match method {
                sym::fetch_update => Some((&args[1], &args[2])),
                sym::compare_exchange | sym::compare_exchange_weak => Some((&args[3], &args[4])),
                _ => None,
            };

            if let Some(fail_ordering_def_id) = Self::opt_ordering_defid(cx, failure_order_arg);
            then {
                // Helper type holding on to some checking and error reporting data. Has
                // - (success ordering,
                // - list of failure orderings forbidden by the success order,
                // - suggestion message)
                type OrdLintInfo = (Symbol, &'static [Symbol], &'static str);
                const RELAXED: OrdLintInfo = (sym::Relaxed, &[sym::SeqCst, sym::Acquire], "ordering mode `Relaxed`");
                const ACQUIRE: OrdLintInfo = (sym::Acquire, &[sym::SeqCst], "ordering modes `Acquire` or `Relaxed`");
                const SEQ_CST: OrdLintInfo = (sym::SeqCst, &[], "ordering modes `Acquire`, `SeqCst` or `Relaxed`");
                const RELEASE: OrdLintInfo = (sym::Release, RELAXED.1, RELAXED.2);
                const ACQREL: OrdLintInfo = (sym::AcqRel, ACQUIRE.1, ACQUIRE.2);
                const SEARCH: [OrdLintInfo; 5] = [RELAXED, ACQUIRE, SEQ_CST, RELEASE, ACQREL];

                let success_lint_info = Self::opt_ordering_defid(cx, success_order_arg)
                    .and_then(|success_ord_def_id| -> Option<OrdLintInfo> {
                        SEARCH
                            .iter()
                            .copied()
                            .find(|(ordering, ..)| {
                                Self::matches_ordering(cx, success_ord_def_id, &[*ordering])
                            })
                    });
                if Self::matches_ordering(cx, fail_ordering_def_id, &[sym::Release, sym::AcqRel]) {
                    // If we don't know the success order is, use what we'd suggest
                    // if it were maximally permissive.
                    let suggested = success_lint_info.unwrap_or(SEQ_CST).2;
                    cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
                        let msg = format!(
                            "{}'s failure ordering may not be `Release` or `AcqRel`",
                            method,
                        );
                        diag.build(&msg)
                            .help(&format!("consider using {} instead", suggested))
                            .emit();
                    });
                } else if let Some((success_ord, bad_ords_given_success, suggested)) = success_lint_info {
                    if Self::matches_ordering(cx, fail_ordering_def_id, bad_ords_given_success) {
                        cx.struct_span_lint(INVALID_ATOMIC_ORDERING, failure_order_arg.span, |diag| {
                            let msg = format!(
                                "{}'s failure ordering may not be stronger than the success ordering of `{}`",
                                method,
                                success_ord,
                            );
                            diag.build(&msg)
                                .help(&format!("consider using {} instead", suggested))
                                .emit();
                        });
                    }
                }
            }
        }
    }
}

impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
    fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
        Self::check_atomic_load_store(cx, expr);
        Self::check_memory_fence(cx, expr);
        Self::check_atomic_compare_exchange(cx, expr);
    }
}