1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
/*!
Managing the scope stack. The scopes are tied to lexical scopes, so as
we descend the THIR, we push a scope on the stack, build its
contents, and then pop it off. Every scope is named by a
`region::Scope`.

### SEME Regions

When pushing a new [Scope], we record the current point in the graph (a
basic block); this marks the entry to the scope. We then generate more
stuff in the control-flow graph. Whenever the scope is exited, either
via a `break` or `return` or just by fallthrough, that marks an exit
from the scope. Each lexical scope thus corresponds to a single-entry,
multiple-exit (SEME) region in the control-flow graph.

For now, we record the `region::Scope` to each SEME region for later reference
(see caveat in next paragraph). This is because destruction scopes are tied to
them. This may change in the future so that MIR lowering determines its own
destruction scopes.

### Not so SEME Regions

In the course of building matches, it sometimes happens that certain code
(namely guards) gets executed multiple times. This means that the scope lexical
scope may in fact correspond to multiple, disjoint SEME regions. So in fact our
mapping is from one scope to a vector of SEME regions. Since the SEME regions
are disjoint, the mapping is still one-to-one for the set of SEME regions that
we're currently in.

Also in matches, the scopes assigned to arms are not always even SEME regions!
Each arm has a single region with one entry for each pattern. We manually
manipulate the scheduled drops in this scope to avoid dropping things multiple
times.

### Drops

The primary purpose for scopes is to insert drops: while building
the contents, we also accumulate places that need to be dropped upon
exit from each scope. This is done by calling `schedule_drop`. Once a
drop is scheduled, whenever we branch out we will insert drops of all
those places onto the outgoing edge. Note that we don't know the full
set of scheduled drops up front, and so whenever we exit from the
scope we only drop the values scheduled thus far. For example, consider
the scope S corresponding to this loop:

```
# let cond = true;
loop {
    let x = ..;
    if cond { break; }
    let y = ..;
}
```

When processing the `let x`, we will add one drop to the scope for
`x`.  The break will then insert a drop for `x`. When we process `let
y`, we will add another drop (in fact, to a subscope, but let's ignore
that for now); any later drops would also drop `y`.

### Early exit

There are numerous "normal" ways to early exit a scope: `break`,
`continue`, `return` (panics are handled separately). Whenever an
early exit occurs, the method `break_scope` is called. It is given the
current point in execution where the early exit occurs, as well as the
scope you want to branch to (note that all early exits from to some
other enclosing scope). `break_scope` will record the set of drops currently
scheduled in a [DropTree]. Later, before `in_breakable_scope` exits, the drops
will be added to the CFG.

Panics are handled in a similar fashion, except that the drops are added to the
MIR once the rest of the function has finished being lowered. If a terminator
can panic, call `diverge_from(block)` with the block containing the terminator
`block`.

### Breakable scopes

In addition to the normal scope stack, we track a loop scope stack
that contains only loops and breakable blocks. It tracks where a `break`,
`continue` or `return` should go to.

*/

use std::mem;

use crate::build::{BlockAnd, BlockAndExtension, BlockFrame, Builder, CFG};
use rustc_data_structures::fx::FxHashMap;
use rustc_index::vec::IndexVec;
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::thir::{Expr, LintLevel};

use rustc_span::{Span, DUMMY_SP};

#[derive(Debug)]
pub struct Scopes<'tcx> {
    scopes: Vec<Scope>,

    /// The current set of breakable scopes. See module comment for more details.
    breakable_scopes: Vec<BreakableScope<'tcx>>,

    /// The scope of the innermost if-then currently being lowered.
    if_then_scope: Option<IfThenScope>,

    /// Drops that need to be done on unwind paths. See the comment on
    /// [DropTree] for more details.
    unwind_drops: DropTree,

    /// Drops that need to be done on paths to the `GeneratorDrop` terminator.
    generator_drops: DropTree,
}

#[derive(Debug)]
struct Scope {
    /// The source scope this scope was created in.
    source_scope: SourceScope,

    /// the region span of this scope within source code.
    region_scope: region::Scope,

    /// set of places to drop when exiting this scope. This starts
    /// out empty but grows as variables are declared during the
    /// building process. This is a stack, so we always drop from the
    /// end of the vector (top of the stack) first.
    drops: Vec<DropData>,

    moved_locals: Vec<Local>,

    /// The drop index that will drop everything in and below this scope on an
    /// unwind path.
    cached_unwind_block: Option<DropIdx>,

    /// The drop index that will drop everything in and below this scope on a
    /// generator drop path.
    cached_generator_drop_block: Option<DropIdx>,
}

#[derive(Clone, Copy, Debug)]
struct DropData {
    /// The `Span` where drop obligation was incurred (typically where place was
    /// declared)
    source_info: SourceInfo,

    /// local to drop
    local: Local,

    /// Whether this is a value Drop or a StorageDead.
    kind: DropKind,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) enum DropKind {
    Value,
    Storage,
}

#[derive(Debug)]
struct BreakableScope<'tcx> {
    /// Region scope of the loop
    region_scope: region::Scope,
    /// The destination of the loop/block expression itself (i.e., where to put
    /// the result of a `break` or `return` expression)
    break_destination: Place<'tcx>,
    /// Drops that happen on the `break`/`return` path.
    break_drops: DropTree,
    /// Drops that happen on the `continue` path.
    continue_drops: Option<DropTree>,
}

#[derive(Debug)]
struct IfThenScope {
    /// The if-then scope or arm scope
    region_scope: region::Scope,
    /// Drops that happen on the `else` path.
    else_drops: DropTree,
}

/// The target of an expression that breaks out of a scope
#[derive(Clone, Copy, Debug)]
crate enum BreakableTarget {
    Continue(region::Scope),
    Break(region::Scope),
    Return,
}

rustc_index::newtype_index! {
    struct DropIdx { .. }
}

const ROOT_NODE: DropIdx = DropIdx::from_u32(0);

/// A tree of drops that we have deferred lowering. It's used for:
///
/// * Drops on unwind paths
/// * Drops on generator drop paths (when a suspended generator is dropped)
/// * Drops on return and loop exit paths
/// * Drops on the else path in an `if let` chain
///
/// Once no more nodes could be added to the tree, we lower it to MIR in one go
/// in `build_mir`.
#[derive(Debug)]
struct DropTree {
    /// Drops in the tree.
    drops: IndexVec<DropIdx, (DropData, DropIdx)>,
    /// Map for finding the inverse of the `next_drop` relation:
    ///
    /// `previous_drops[(drops[i].1, drops[i].0.local, drops[i].0.kind)] == i`
    previous_drops: FxHashMap<(DropIdx, Local, DropKind), DropIdx>,
    /// Edges into the `DropTree` that need to be added once it's lowered.
    entry_points: Vec<(DropIdx, BasicBlock)>,
}

impl Scope {
    /// Whether there's anything to do for the cleanup path, that is,
    /// when unwinding through this scope. This includes destructors,
    /// but not StorageDead statements, which don't get emitted at all
    /// for unwinding, for several reasons:
    ///  * clang doesn't emit llvm.lifetime.end for C++ unwinding
    ///  * LLVM's memory dependency analysis can't handle it atm
    ///  * polluting the cleanup MIR with StorageDead creates
    ///    landing pads even though there's no actual destructors
    ///  * freeing up stack space has no effect during unwinding
    /// Note that for generators we do emit StorageDeads, for the
    /// use of optimizations in the MIR generator transform.
    fn needs_cleanup(&self) -> bool {
        self.drops.iter().any(|drop| match drop.kind {
            DropKind::Value => true,
            DropKind::Storage => false,
        })
    }

    fn invalidate_cache(&mut self) {
        self.cached_unwind_block = None;
        self.cached_generator_drop_block = None;
    }
}

/// A trait that determined how [DropTree] creates its blocks and
/// links to any entry nodes.
trait DropTreeBuilder<'tcx> {
    /// Create a new block for the tree. This should call either
    /// `cfg.start_new_block()` or `cfg.start_new_cleanup_block()`.
    fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock;

    /// Links a block outside the drop tree, `from`, to the block `to` inside
    /// the drop tree.
    fn add_entry(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock);
}

impl DropTree {
    fn new() -> Self {
        // The root node of the tree doesn't represent a drop, but instead
        // represents the block in the tree that should be jumped to once all
        // of the required drops have been performed.
        let fake_source_info = SourceInfo::outermost(DUMMY_SP);
        let fake_data =
            DropData { source_info: fake_source_info, local: Local::MAX, kind: DropKind::Storage };
        let drop_idx = DropIdx::MAX;
        let drops = IndexVec::from_elem_n((fake_data, drop_idx), 1);
        Self { drops, entry_points: Vec::new(), previous_drops: FxHashMap::default() }
    }

    fn add_drop(&mut self, drop: DropData, next: DropIdx) -> DropIdx {
        let drops = &mut self.drops;
        *self
            .previous_drops
            .entry((next, drop.local, drop.kind))
            .or_insert_with(|| drops.push((drop, next)))
    }

    fn add_entry(&mut self, from: BasicBlock, to: DropIdx) {
        debug_assert!(to < self.drops.next_index());
        self.entry_points.push((to, from));
    }

    /// Builds the MIR for a given drop tree.
    ///
    /// `blocks` should have the same length as `self.drops`, and may have its
    /// first value set to some already existing block.
    fn build_mir<'tcx, T: DropTreeBuilder<'tcx>>(
        &mut self,
        cfg: &mut CFG<'tcx>,
        blocks: &mut IndexVec<DropIdx, Option<BasicBlock>>,
    ) {
        debug!("DropTree::build_mir(drops = {:#?})", self);
        assert_eq!(blocks.len(), self.drops.len());

        self.assign_blocks::<T>(cfg, blocks);
        self.link_blocks(cfg, blocks)
    }

    /// Assign blocks for all of the drops in the drop tree that need them.
    fn assign_blocks<'tcx, T: DropTreeBuilder<'tcx>>(
        &mut self,
        cfg: &mut CFG<'tcx>,
        blocks: &mut IndexVec<DropIdx, Option<BasicBlock>>,
    ) {
        // StorageDead statements can share blocks with each other and also with
        // a Drop terminator. We iterate through the drops to find which drops
        // need their own block.
        #[derive(Clone, Copy)]
        enum Block {
            // This drop is unreachable
            None,
            // This drop is only reachable through the `StorageDead` with the
            // specified index.
            Shares(DropIdx),
            // This drop has more than one way of being reached, or it is
            // branched to from outside the tree, or its predecessor is a
            // `Value` drop.
            Own,
        }

        let mut needs_block = IndexVec::from_elem(Block::None, &self.drops);
        if blocks[ROOT_NODE].is_some() {
            // In some cases (such as drops for `continue`) the root node
            // already has a block. In this case, make sure that we don't
            // override it.
            needs_block[ROOT_NODE] = Block::Own;
        }

        // Sort so that we only need to check the last value.
        let entry_points = &mut self.entry_points;
        entry_points.sort();

        for (drop_idx, drop_data) in self.drops.iter_enumerated().rev() {
            if entry_points.last().map_or(false, |entry_point| entry_point.0 == drop_idx) {
                let block = *blocks[drop_idx].get_or_insert_with(|| T::make_block(cfg));
                needs_block[drop_idx] = Block::Own;
                while entry_points.last().map_or(false, |entry_point| entry_point.0 == drop_idx) {
                    let entry_block = entry_points.pop().unwrap().1;
                    T::add_entry(cfg, entry_block, block);
                }
            }
            match needs_block[drop_idx] {
                Block::None => continue,
                Block::Own => {
                    blocks[drop_idx].get_or_insert_with(|| T::make_block(cfg));
                }
                Block::Shares(pred) => {
                    blocks[drop_idx] = blocks[pred];
                }
            }
            if let DropKind::Value = drop_data.0.kind {
                needs_block[drop_data.1] = Block::Own;
            } else if drop_idx != ROOT_NODE {
                match &mut needs_block[drop_data.1] {
                    pred @ Block::None => *pred = Block::Shares(drop_idx),
                    pred @ Block::Shares(_) => *pred = Block::Own,
                    Block::Own => (),
                }
            }
        }

        debug!("assign_blocks: blocks = {:#?}", blocks);
        assert!(entry_points.is_empty());
    }

    fn link_blocks<'tcx>(
        &self,
        cfg: &mut CFG<'tcx>,
        blocks: &IndexVec<DropIdx, Option<BasicBlock>>,
    ) {
        for (drop_idx, drop_data) in self.drops.iter_enumerated().rev() {
            let Some(block) = blocks[drop_idx] else { continue };
            match drop_data.0.kind {
                DropKind::Value => {
                    let terminator = TerminatorKind::Drop {
                        target: blocks[drop_data.1].unwrap(),
                        // The caller will handle this if needed.
                        unwind: None,
                        place: drop_data.0.local.into(),
                    };
                    cfg.terminate(block, drop_data.0.source_info, terminator);
                }
                // Root nodes don't correspond to a drop.
                DropKind::Storage if drop_idx == ROOT_NODE => {}
                DropKind::Storage => {
                    let stmt = Statement {
                        source_info: drop_data.0.source_info,
                        kind: StatementKind::StorageDead(drop_data.0.local),
                    };
                    cfg.push(block, stmt);
                    let target = blocks[drop_data.1].unwrap();
                    if target != block {
                        // Diagnostics don't use this `Span` but debuginfo
                        // might. Since we don't want breakpoints to be placed
                        // here, especially when this is on an unwind path, we
                        // use `DUMMY_SP`.
                        let source_info = SourceInfo { span: DUMMY_SP, ..drop_data.0.source_info };
                        let terminator = TerminatorKind::Goto { target };
                        cfg.terminate(block, source_info, terminator);
                    }
                }
            }
        }
    }
}

impl<'tcx> Scopes<'tcx> {
    pub(crate) fn new() -> Self {
        Self {
            scopes: Vec::new(),
            breakable_scopes: Vec::new(),
            if_then_scope: None,
            unwind_drops: DropTree::new(),
            generator_drops: DropTree::new(),
        }
    }

    fn push_scope(&mut self, region_scope: (region::Scope, SourceInfo), vis_scope: SourceScope) {
        debug!("push_scope({:?})", region_scope);
        self.scopes.push(Scope {
            source_scope: vis_scope,
            region_scope: region_scope.0,
            drops: vec![],
            moved_locals: vec![],
            cached_unwind_block: None,
            cached_generator_drop_block: None,
        });
    }

    fn pop_scope(&mut self, region_scope: (region::Scope, SourceInfo)) -> Scope {
        let scope = self.scopes.pop().unwrap();
        assert_eq!(scope.region_scope, region_scope.0);
        scope
    }

    fn scope_index(&self, region_scope: region::Scope, span: Span) -> usize {
        self.scopes
            .iter()
            .rposition(|scope| scope.region_scope == region_scope)
            .unwrap_or_else(|| span_bug!(span, "region_scope {:?} does not enclose", region_scope))
    }

    /// Returns the topmost active scope, which is known to be alive until
    /// the next scope expression.
    fn topmost(&self) -> region::Scope {
        self.scopes.last().expect("topmost_scope: no scopes present").region_scope
    }
}

impl<'a, 'tcx> Builder<'a, 'tcx> {
    // Adding and removing scopes
    // ==========================
    //  Start a breakable scope, which tracks where `continue`, `break` and
    //  `return` should branch to.
    crate fn in_breakable_scope<F>(
        &mut self,
        loop_block: Option<BasicBlock>,
        break_destination: Place<'tcx>,
        span: Span,
        f: F,
    ) -> BlockAnd<()>
    where
        F: FnOnce(&mut Builder<'a, 'tcx>) -> Option<BlockAnd<()>>,
    {
        let region_scope = self.scopes.topmost();
        let scope = BreakableScope {
            region_scope,
            break_destination,
            break_drops: DropTree::new(),
            continue_drops: loop_block.map(|_| DropTree::new()),
        };
        self.scopes.breakable_scopes.push(scope);
        let normal_exit_block = f(self);
        let breakable_scope = self.scopes.breakable_scopes.pop().unwrap();
        assert!(breakable_scope.region_scope == region_scope);
        let break_block = self.build_exit_tree(breakable_scope.break_drops, None);
        if let Some(drops) = breakable_scope.continue_drops {
            self.build_exit_tree(drops, loop_block);
        }
        match (normal_exit_block, break_block) {
            (Some(block), None) | (None, Some(block)) => block,
            (None, None) => self.cfg.start_new_block().unit(),
            (Some(normal_block), Some(exit_block)) => {
                let target = self.cfg.start_new_block();
                let source_info = self.source_info(span);
                self.cfg.terminate(
                    unpack!(normal_block),
                    source_info,
                    TerminatorKind::Goto { target },
                );
                self.cfg.terminate(
                    unpack!(exit_block),
                    source_info,
                    TerminatorKind::Goto { target },
                );
                target.unit()
            }
        }
    }

    /// Start an if-then scope which tracks drop for `if` expressions and `if`
    /// guards.
    ///
    /// For an if-let chain:
    ///
    /// if let Some(x) = a && let Some(y) = b && let Some(z) = c { ... }
    ///
    /// there are three possible ways the condition can be false and we may have
    /// to drop `x`, `x` and `y`, or neither depending on which binding fails.
    /// To handle this correctly we use a `DropTree` in a similar way to a
    /// `loop` expression and 'break' out on all of the 'else' paths.
    ///
    /// Notes:
    /// - We don't need to keep a stack of scopes in the `Builder` because the
    ///   'else' paths will only leave the innermost scope.
    /// - This is also used for match guards.
    crate fn in_if_then_scope<F>(
        &mut self,
        region_scope: region::Scope,
        f: F,
    ) -> (BasicBlock, BasicBlock)
    where
        F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<()>,
    {
        let scope = IfThenScope { region_scope, else_drops: DropTree::new() };
        let previous_scope = mem::replace(&mut self.scopes.if_then_scope, Some(scope));

        let then_block = unpack!(f(self));

        let if_then_scope = mem::replace(&mut self.scopes.if_then_scope, previous_scope).unwrap();
        assert!(if_then_scope.region_scope == region_scope);

        let else_block = self
            .build_exit_tree(if_then_scope.else_drops, None)
            .map_or_else(|| self.cfg.start_new_block(), |else_block_and| unpack!(else_block_and));

        (then_block, else_block)
    }

    crate fn in_opt_scope<F, R>(
        &mut self,
        opt_scope: Option<(region::Scope, SourceInfo)>,
        f: F,
    ) -> BlockAnd<R>
    where
        F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<R>,
    {
        debug!("in_opt_scope(opt_scope={:?})", opt_scope);
        if let Some(region_scope) = opt_scope {
            self.push_scope(region_scope);
        }
        let mut block;
        let rv = unpack!(block = f(self));
        if let Some(region_scope) = opt_scope {
            unpack!(block = self.pop_scope(region_scope, block));
        }
        debug!("in_scope: exiting opt_scope={:?} block={:?}", opt_scope, block);
        block.and(rv)
    }

    /// Convenience wrapper that pushes a scope and then executes `f`
    /// to build its contents, popping the scope afterwards.
    crate fn in_scope<F, R>(
        &mut self,
        region_scope: (region::Scope, SourceInfo),
        lint_level: LintLevel,
        f: F,
    ) -> BlockAnd<R>
    where
        F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<R>,
    {
        debug!("in_scope(region_scope={:?})", region_scope);
        let source_scope = self.source_scope;
        let tcx = self.tcx;
        if let LintLevel::Explicit(current_hir_id) = lint_level {
            // Use `maybe_lint_level_root_bounded` with `root_lint_level` as a bound
            // to avoid adding Hir dependences on our parents.
            // We estimate the true lint roots here to avoid creating a lot of source scopes.

            let parent_root = tcx.maybe_lint_level_root_bounded(
                self.source_scopes[source_scope].local_data.as_ref().assert_crate_local().lint_root,
                self.hir_id,
            );
            let current_root = tcx.maybe_lint_level_root_bounded(current_hir_id, self.hir_id);

            if parent_root != current_root {
                self.source_scope = self.new_source_scope(
                    region_scope.1.span,
                    LintLevel::Explicit(current_root),
                    None,
                );
            }
        }
        self.push_scope(region_scope);
        let mut block;
        let rv = unpack!(block = f(self));
        unpack!(block = self.pop_scope(region_scope, block));
        self.source_scope = source_scope;
        debug!("in_scope: exiting region_scope={:?} block={:?}", region_scope, block);
        block.and(rv)
    }

    /// Push a scope onto the stack. You can then build code in this
    /// scope and call `pop_scope` afterwards. Note that these two
    /// calls must be paired; using `in_scope` as a convenience
    /// wrapper maybe preferable.
    crate fn push_scope(&mut self, region_scope: (region::Scope, SourceInfo)) {
        self.scopes.push_scope(region_scope, self.source_scope);
    }

    /// Pops a scope, which should have region scope `region_scope`,
    /// adding any drops onto the end of `block` that are needed.
    /// This must match 1-to-1 with `push_scope`.
    crate fn pop_scope(
        &mut self,
        region_scope: (region::Scope, SourceInfo),
        mut block: BasicBlock,
    ) -> BlockAnd<()> {
        debug!("pop_scope({:?}, {:?})", region_scope, block);

        block = self.leave_top_scope(block);

        self.scopes.pop_scope(region_scope);

        block.unit()
    }

    /// Sets up the drops for breaking from `block` to `target`.
    crate fn break_scope(
        &mut self,
        mut block: BasicBlock,
        value: Option<&Expr<'tcx>>,
        target: BreakableTarget,
        source_info: SourceInfo,
    ) -> BlockAnd<()> {
        let span = source_info.span;

        let get_scope_index = |scope: region::Scope| {
            // find the loop-scope by its `region::Scope`.
            self.scopes
                .breakable_scopes
                .iter()
                .rposition(|breakable_scope| breakable_scope.region_scope == scope)
                .unwrap_or_else(|| span_bug!(span, "no enclosing breakable scope found"))
        };
        let (break_index, destination) = match target {
            BreakableTarget::Return => {
                let scope = &self.scopes.breakable_scopes[0];
                if scope.break_destination != Place::return_place() {
                    span_bug!(span, "`return` in item with no return scope");
                }
                (0, Some(scope.break_destination))
            }
            BreakableTarget::Break(scope) => {
                let break_index = get_scope_index(scope);
                let scope = &self.scopes.breakable_scopes[break_index];
                (break_index, Some(scope.break_destination))
            }
            BreakableTarget::Continue(scope) => {
                let break_index = get_scope_index(scope);
                (break_index, None)
            }
        };

        if let Some(destination) = destination {
            if let Some(value) = value {
                debug!("stmt_expr Break val block_context.push(SubExpr)");
                self.block_context.push(BlockFrame::SubExpr);
                unpack!(block = self.expr_into_dest(destination, block, value));
                self.block_context.pop();
            } else {
                self.cfg.push_assign_unit(block, source_info, destination, self.tcx)
            }
        } else {
            assert!(value.is_none(), "`return` and `break` should have a destination");
            if self.tcx.sess.instrument_coverage() {
                // Unlike `break` and `return`, which push an `Assign` statement to MIR, from which
                // a Coverage code region can be generated, `continue` needs no `Assign`; but
                // without one, the `InstrumentCoverage` MIR pass cannot generate a code region for
                // `continue`. Coverage will be missing unless we add a dummy `Assign` to MIR.
                self.add_dummy_assignment(&span, block, source_info);
            }
        }

        let region_scope = self.scopes.breakable_scopes[break_index].region_scope;
        let scope_index = self.scopes.scope_index(region_scope, span);
        let drops = if destination.is_some() {
            &mut self.scopes.breakable_scopes[break_index].break_drops
        } else {
            self.scopes.breakable_scopes[break_index].continue_drops.as_mut().unwrap()
        };
        let mut drop_idx = ROOT_NODE;
        for scope in &self.scopes.scopes[scope_index + 1..] {
            for drop in &scope.drops {
                drop_idx = drops.add_drop(*drop, drop_idx);
            }
        }
        drops.add_entry(block, drop_idx);

        // `build_drop_tree` doesn't have access to our source_info, so we
        // create a dummy terminator now. `TerminatorKind::Resume` is used
        // because MIR type checking will panic if it hasn't been overwritten.
        self.cfg.terminate(block, source_info, TerminatorKind::Resume);

        self.cfg.start_new_block().unit()
    }

    crate fn break_for_else(
        &mut self,
        block: BasicBlock,
        target: region::Scope,
        source_info: SourceInfo,
    ) {
        let scope_index = self.scopes.scope_index(target, source_info.span);
        let if_then_scope = self
            .scopes
            .if_then_scope
            .as_mut()
            .unwrap_or_else(|| span_bug!(source_info.span, "no if-then scope found"));

        assert_eq!(if_then_scope.region_scope, target, "breaking to incorrect scope");

        let mut drop_idx = ROOT_NODE;
        let drops = &mut if_then_scope.else_drops;
        for scope in &self.scopes.scopes[scope_index + 1..] {
            for drop in &scope.drops {
                drop_idx = drops.add_drop(*drop, drop_idx);
            }
        }
        drops.add_entry(block, drop_idx);

        // `build_drop_tree` doesn't have access to our source_info, so we
        // create a dummy terminator now. `TerminatorKind::Resume` is used
        // because MIR type checking will panic if it hasn't been overwritten.
        self.cfg.terminate(block, source_info, TerminatorKind::Resume);
    }

    // Add a dummy `Assign` statement to the CFG, with the span for the source code's `continue`
    // statement.
    fn add_dummy_assignment(&mut self, span: &Span, block: BasicBlock, source_info: SourceInfo) {
        let local_decl = LocalDecl::new(self.tcx.mk_unit(), *span).internal();
        let temp_place = Place::from(self.local_decls.push(local_decl));
        self.cfg.push_assign_unit(block, source_info, temp_place, self.tcx);
    }

    fn leave_top_scope(&mut self, block: BasicBlock) -> BasicBlock {
        // If we are emitting a `drop` statement, we need to have the cached
        // diverge cleanup pads ready in case that drop panics.
        let needs_cleanup = self.scopes.scopes.last().map_or(false, |scope| scope.needs_cleanup());
        let is_generator = self.generator_kind.is_some();
        let unwind_to = if needs_cleanup { self.diverge_cleanup() } else { DropIdx::MAX };

        let scope = self.scopes.scopes.last().expect("leave_top_scope called with no scopes");
        unpack!(build_scope_drops(
            &mut self.cfg,
            &mut self.scopes.unwind_drops,
            scope,
            block,
            unwind_to,
            is_generator && needs_cleanup,
            self.arg_count,
        ))
    }

    /// Creates a new source scope, nested in the current one.
    crate fn new_source_scope(
        &mut self,
        span: Span,
        lint_level: LintLevel,
        safety: Option<Safety>,
    ) -> SourceScope {
        let parent = self.source_scope;
        debug!(
            "new_source_scope({:?}, {:?}, {:?}) - parent({:?})={:?}",
            span,
            lint_level,
            safety,
            parent,
            self.source_scopes.get(parent)
        );
        let scope_local_data = SourceScopeLocalData {
            lint_root: if let LintLevel::Explicit(lint_root) = lint_level {
                lint_root
            } else {
                self.source_scopes[parent].local_data.as_ref().assert_crate_local().lint_root
            },
            safety: safety.unwrap_or_else(|| {
                self.source_scopes[parent].local_data.as_ref().assert_crate_local().safety
            }),
        };
        self.source_scopes.push(SourceScopeData {
            span,
            parent_scope: Some(parent),
            inlined: None,
            inlined_parent_scope: None,
            local_data: ClearCrossCrate::Set(scope_local_data),
        })
    }

    /// Given a span and the current source scope, make a SourceInfo.
    crate fn source_info(&self, span: Span) -> SourceInfo {
        SourceInfo { span, scope: self.source_scope }
    }

    // Finding scopes
    // ==============
    /// Returns the scope that we should use as the lifetime of an
    /// operand. Basically, an operand must live until it is consumed.
    /// This is similar to, but not quite the same as, the temporary
    /// scope (which can be larger or smaller).
    ///
    /// Consider:
    ///
    ///     let x = foo(bar(X, Y));
    ///
    /// We wish to pop the storage for X and Y after `bar()` is
    /// called, not after the whole `let` is completed.
    ///
    /// As another example, if the second argument diverges:
    ///
    ///     foo(Box::new(2), panic!())
    ///
    /// We would allocate the box but then free it on the unwinding
    /// path; we would also emit a free on the 'success' path from
    /// panic, but that will turn out to be removed as dead-code.
    crate fn local_scope(&self) -> region::Scope {
        self.scopes.topmost()
    }

    // Scheduling drops
    // ================
    crate fn schedule_drop_storage_and_value(
        &mut self,
        span: Span,
        region_scope: region::Scope,
        local: Local,
    ) {
        self.schedule_drop(span, region_scope, local, DropKind::Storage);
        self.schedule_drop(span, region_scope, local, DropKind::Value);
    }

    /// Indicates that `place` should be dropped on exit from `region_scope`.
    ///
    /// When called with `DropKind::Storage`, `place` shouldn't be the return
    /// place, or a function parameter.
    crate fn schedule_drop(
        &mut self,
        span: Span,
        region_scope: region::Scope,
        local: Local,
        drop_kind: DropKind,
    ) {
        let needs_drop = match drop_kind {
            DropKind::Value => {
                if !self.local_decls[local].ty.needs_drop(self.tcx, self.param_env) {
                    return;
                }
                true
            }
            DropKind::Storage => {
                if local.index() <= self.arg_count {
                    span_bug!(
                        span,
                        "`schedule_drop` called with local {:?} and arg_count {}",
                        local,
                        self.arg_count,
                    )
                }
                false
            }
        };

        // When building drops, we try to cache chains of drops to reduce the
        // number of `DropTree::add_drop` calls. This, however, means that
        // whenever we add a drop into a scope which already had some entries
        // in the drop tree built (and thus, cached) for it, we must invalidate
        // all caches which might branch into the scope which had a drop just
        // added to it. This is necessary, because otherwise some other code
        // might use the cache to branch into already built chain of drops,
        // essentially ignoring the newly added drop.
        //
        // For example consider there’s two scopes with a drop in each. These
        // are built and thus the caches are filled:
        //
        // +--------------------------------------------------------+
        // | +---------------------------------+                    |
        // | | +--------+     +-------------+  |  +---------------+ |
        // | | | return | <-+ | drop(outer) | <-+ |  drop(middle) | |
        // | | +--------+     +-------------+  |  +---------------+ |
        // | +------------|outer_scope cache|--+                    |
        // +------------------------------|middle_scope cache|------+
        //
        // Now, a new, inner-most scope is added along with a new drop into
        // both inner-most and outer-most scopes:
        //
        // +------------------------------------------------------------+
        // | +----------------------------------+                       |
        // | | +--------+      +-------------+  |   +---------------+   | +-------------+
        // | | | return | <+   | drop(new)   | <-+  |  drop(middle) | <--+| drop(inner) |
        // | | +--------+  |   | drop(outer) |  |   +---------------+   | +-------------+
        // | |             +-+ +-------------+  |                       |
        // | +---|invalid outer_scope cache|----+                       |
        // +----=----------------|invalid middle_scope cache|-----------+
        //
        // If, when adding `drop(new)` we do not invalidate the cached blocks for both
        // outer_scope and middle_scope, then, when building drops for the inner (right-most)
        // scope, the old, cached blocks, without `drop(new)` will get used, producing the
        // wrong results.
        //
        // Note that this code iterates scopes from the inner-most to the outer-most,
        // invalidating caches of each scope visited. This way bare minimum of the
        // caches gets invalidated. i.e., if a new drop is added into the middle scope, the
        // cache of outer scope stays intact.
        //
        // Since we only cache drops for the unwind path and the generator drop
        // path, we only need to invalidate the cache for drops that happen on
        // the unwind or generator drop paths. This means that for
        // non-generators we don't need to invalidate caches for `DropKind::Storage`.
        let invalidate_caches = needs_drop || self.generator_kind.is_some();
        for scope in self.scopes.scopes.iter_mut().rev() {
            if invalidate_caches {
                scope.invalidate_cache();
            }

            if scope.region_scope == region_scope {
                let region_scope_span = region_scope.span(self.tcx, &self.region_scope_tree);
                // Attribute scope exit drops to scope's closing brace.
                let scope_end = self.tcx.sess.source_map().end_point(region_scope_span);

                scope.drops.push(DropData {
                    source_info: SourceInfo { span: scope_end, scope: scope.source_scope },
                    local,
                    kind: drop_kind,
                });

                return;
            }
        }

        span_bug!(span, "region scope {:?} not in scope to drop {:?}", region_scope, local);
    }

    /// Indicates that the "local operand" stored in `local` is
    /// *moved* at some point during execution (see `local_scope` for
    /// more information about what a "local operand" is -- in short,
    /// it's an intermediate operand created as part of preparing some
    /// MIR instruction). We use this information to suppress
    /// redundant drops on the non-unwind paths. This results in less
    /// MIR, but also avoids spurious borrow check errors
    /// (c.f. #64391).
    ///
    /// Example: when compiling the call to `foo` here:
    ///
    /// ```rust
    /// foo(bar(), ...)
    /// ```
    ///
    /// we would evaluate `bar()` to an operand `_X`. We would also
    /// schedule `_X` to be dropped when the expression scope for
    /// `foo(bar())` is exited. This is relevant, for example, if the
    /// later arguments should unwind (it would ensure that `_X` gets
    /// dropped). However, if no unwind occurs, then `_X` will be
    /// unconditionally consumed by the `call`:
    ///
    /// ```
    /// bb {
    ///   ...
    ///   _R = CALL(foo, _X, ...)
    /// }
    /// ```
    ///
    /// However, `_X` is still registered to be dropped, and so if we
    /// do nothing else, we would generate a `DROP(_X)` that occurs
    /// after the call. This will later be optimized out by the
    /// drop-elaboation code, but in the meantime it can lead to
    /// spurious borrow-check errors -- the problem, ironically, is
    /// not the `DROP(_X)` itself, but the (spurious) unwind pathways
    /// that it creates. See #64391 for an example.
    crate fn record_operands_moved(&mut self, operands: &[Operand<'tcx>]) {
        let local_scope = self.local_scope();
        let scope = self.scopes.scopes.last_mut().unwrap();

        assert_eq!(scope.region_scope, local_scope, "local scope is not the topmost scope!",);

        // look for moves of a local variable, like `MOVE(_X)`
        let locals_moved = operands.iter().flat_map(|operand| match operand {
            Operand::Copy(_) | Operand::Constant(_) => None,
            Operand::Move(place) => place.as_local(),
        });

        for local in locals_moved {
            // check if we have a Drop for this operand and -- if so
            // -- add it to the list of moved operands. Note that this
            // local might not have been an operand created for this
            // call, it could come from other places too.
            if scope.drops.iter().any(|drop| drop.local == local && drop.kind == DropKind::Value) {
                scope.moved_locals.push(local);
            }
        }
    }

    // Other
    // =====
    /// Returns the [DropIdx] for the innermost drop if the function unwound at
    /// this point. The `DropIdx` will be created if it doesn't already exist.
    fn diverge_cleanup(&mut self) -> DropIdx {
        let is_generator = self.generator_kind.is_some();
        let (uncached_scope, mut cached_drop) = self
            .scopes
            .scopes
            .iter()
            .enumerate()
            .rev()
            .find_map(|(scope_idx, scope)| {
                scope.cached_unwind_block.map(|cached_block| (scope_idx + 1, cached_block))
            })
            .unwrap_or((0, ROOT_NODE));

        for scope in &mut self.scopes.scopes[uncached_scope..] {
            for drop in &scope.drops {
                if is_generator || drop.kind == DropKind::Value {
                    cached_drop = self.scopes.unwind_drops.add_drop(*drop, cached_drop);
                }
            }
            scope.cached_unwind_block = Some(cached_drop);
        }

        cached_drop
    }

    /// Prepares to create a path that performs all required cleanup for a
    /// terminator that can unwind at the given basic block.
    ///
    /// This path terminates in Resume. The path isn't created until after all
    /// of the non-unwind paths in this item have been lowered.
    crate fn diverge_from(&mut self, start: BasicBlock) {
        debug_assert!(
            matches!(
                self.cfg.block_data(start).terminator().kind,
                TerminatorKind::Assert { .. }
                    | TerminatorKind::Call { .. }
                    | TerminatorKind::DropAndReplace { .. }
                    | TerminatorKind::FalseUnwind { .. }
            ),
            "diverge_from called on block with terminator that cannot unwind."
        );

        let next_drop = self.diverge_cleanup();
        self.scopes.unwind_drops.add_entry(start, next_drop);
    }

    /// Sets up a path that performs all required cleanup for dropping a
    /// generator, starting from the given block that ends in
    /// [TerminatorKind::Yield].
    ///
    /// This path terminates in GeneratorDrop.
    crate fn generator_drop_cleanup(&mut self, yield_block: BasicBlock) {
        debug_assert!(
            matches!(
                self.cfg.block_data(yield_block).terminator().kind,
                TerminatorKind::Yield { .. }
            ),
            "generator_drop_cleanup called on block with non-yield terminator."
        );
        let (uncached_scope, mut cached_drop) = self
            .scopes
            .scopes
            .iter()
            .enumerate()
            .rev()
            .find_map(|(scope_idx, scope)| {
                scope.cached_generator_drop_block.map(|cached_block| (scope_idx + 1, cached_block))
            })
            .unwrap_or((0, ROOT_NODE));

        for scope in &mut self.scopes.scopes[uncached_scope..] {
            for drop in &scope.drops {
                cached_drop = self.scopes.generator_drops.add_drop(*drop, cached_drop);
            }
            scope.cached_generator_drop_block = Some(cached_drop);
        }

        self.scopes.generator_drops.add_entry(yield_block, cached_drop);
    }

    /// Utility function for *non*-scope code to build their own drops
    crate fn build_drop_and_replace(
        &mut self,
        block: BasicBlock,
        span: Span,
        place: Place<'tcx>,
        value: Operand<'tcx>,
    ) -> BlockAnd<()> {
        let source_info = self.source_info(span);
        let next_target = self.cfg.start_new_block();

        self.cfg.terminate(
            block,
            source_info,
            TerminatorKind::DropAndReplace { place, value, target: next_target, unwind: None },
        );
        self.diverge_from(block);

        next_target.unit()
    }

    /// Creates an `Assert` terminator and return the success block.
    /// If the boolean condition operand is not the expected value,
    /// a runtime panic will be caused with the given message.
    crate fn assert(
        &mut self,
        block: BasicBlock,
        cond: Operand<'tcx>,
        expected: bool,
        msg: AssertMessage<'tcx>,
        span: Span,
    ) -> BasicBlock {
        let source_info = self.source_info(span);
        let success_block = self.cfg.start_new_block();

        self.cfg.terminate(
            block,
            source_info,
            TerminatorKind::Assert { cond, expected, msg, target: success_block, cleanup: None },
        );
        self.diverge_from(block);

        success_block
    }

    /// Unschedules any drops in the top scope.
    ///
    /// This is only needed for `match` arm scopes, because they have one
    /// entrance per pattern, but only one exit.
    crate fn clear_top_scope(&mut self, region_scope: region::Scope) {
        let top_scope = self.scopes.scopes.last_mut().unwrap();

        assert_eq!(top_scope.region_scope, region_scope);

        top_scope.drops.clear();
        top_scope.invalidate_cache();
    }
}

/// Builds drops for `pop_scope` and `leave_top_scope`.
fn build_scope_drops<'tcx>(
    cfg: &mut CFG<'tcx>,
    unwind_drops: &mut DropTree,
    scope: &Scope,
    mut block: BasicBlock,
    mut unwind_to: DropIdx,
    storage_dead_on_unwind: bool,
    arg_count: usize,
) -> BlockAnd<()> {
    debug!("build_scope_drops({:?} -> {:?})", block, scope);

    // Build up the drops in evaluation order. The end result will
    // look like:
    //
    // [SDs, drops[n]] --..> [SDs, drop[1]] -> [SDs, drop[0]] -> [[SDs]]
    //               |                    |                 |
    //               :                    |                 |
    //                                    V                 V
    // [drop[n]] -...-> [drop[1]] ------> [drop[0]] ------> [last_unwind_to]
    //
    // The horizontal arrows represent the execution path when the drops return
    // successfully. The downwards arrows represent the execution path when the
    // drops panic (panicking while unwinding will abort, so there's no need for
    // another set of arrows).
    //
    // For generators, we unwind from a drop on a local to its StorageDead
    // statement. For other functions we don't worry about StorageDead. The
    // drops for the unwind path should have already been generated by
    // `diverge_cleanup_gen`.

    for drop_data in scope.drops.iter().rev() {
        let source_info = drop_data.source_info;
        let local = drop_data.local;

        match drop_data.kind {
            DropKind::Value => {
                // `unwind_to` should drop the value that we're about to
                // schedule. If dropping this value panics, then we continue
                // with the *next* value on the unwind path.
                debug_assert_eq!(unwind_drops.drops[unwind_to].0.local, drop_data.local);
                debug_assert_eq!(unwind_drops.drops[unwind_to].0.kind, drop_data.kind);
                unwind_to = unwind_drops.drops[unwind_to].1;

                // If the operand has been moved, and we are not on an unwind
                // path, then don't generate the drop. (We only take this into
                // account for non-unwind paths so as not to disturb the
                // caching mechanism.)
                if scope.moved_locals.iter().any(|&o| o == local) {
                    continue;
                }

                unwind_drops.add_entry(block, unwind_to);

                let next = cfg.start_new_block();
                cfg.terminate(
                    block,
                    source_info,
                    TerminatorKind::Drop { place: local.into(), target: next, unwind: None },
                );
                block = next;
            }
            DropKind::Storage => {
                if storage_dead_on_unwind {
                    debug_assert_eq!(unwind_drops.drops[unwind_to].0.local, drop_data.local);
                    debug_assert_eq!(unwind_drops.drops[unwind_to].0.kind, drop_data.kind);
                    unwind_to = unwind_drops.drops[unwind_to].1;
                }
                // Only temps and vars need their storage dead.
                assert!(local.index() > arg_count);
                cfg.push(block, Statement { source_info, kind: StatementKind::StorageDead(local) });
            }
        }
    }
    block.unit()
}

impl<'a, 'tcx: 'a> Builder<'a, 'tcx> {
    /// Build a drop tree for a breakable scope.
    ///
    /// If `continue_block` is `Some`, then the tree is for `continue` inside a
    /// loop. Otherwise this is for `break` or `return`.
    fn build_exit_tree(
        &mut self,
        mut drops: DropTree,
        continue_block: Option<BasicBlock>,
    ) -> Option<BlockAnd<()>> {
        let mut blocks = IndexVec::from_elem(None, &drops.drops);
        blocks[ROOT_NODE] = continue_block;

        drops.build_mir::<ExitScopes>(&mut self.cfg, &mut blocks);

        // Link the exit drop tree to unwind drop tree.
        if drops.drops.iter().any(|(drop, _)| drop.kind == DropKind::Value) {
            let unwind_target = self.diverge_cleanup();
            let mut unwind_indices = IndexVec::from_elem_n(unwind_target, 1);
            for (drop_idx, drop_data) in drops.drops.iter_enumerated().skip(1) {
                match drop_data.0.kind {
                    DropKind::Storage => {
                        if self.generator_kind.is_some() {
                            let unwind_drop = self
                                .scopes
                                .unwind_drops
                                .add_drop(drop_data.0, unwind_indices[drop_data.1]);
                            unwind_indices.push(unwind_drop);
                        } else {
                            unwind_indices.push(unwind_indices[drop_data.1]);
                        }
                    }
                    DropKind::Value => {
                        let unwind_drop = self
                            .scopes
                            .unwind_drops
                            .add_drop(drop_data.0, unwind_indices[drop_data.1]);
                        self.scopes
                            .unwind_drops
                            .add_entry(blocks[drop_idx].unwrap(), unwind_indices[drop_data.1]);
                        unwind_indices.push(unwind_drop);
                    }
                }
            }
        }
        blocks[ROOT_NODE].map(BasicBlock::unit)
    }

    /// Build the unwind and generator drop trees.
    crate fn build_drop_trees(&mut self) {
        if self.generator_kind.is_some() {
            self.build_generator_drop_trees();
        } else {
            Self::build_unwind_tree(
                &mut self.cfg,
                &mut self.scopes.unwind_drops,
                self.fn_span,
                &mut None,
            );
        }
    }

    fn build_generator_drop_trees(&mut self) {
        // Build the drop tree for dropping the generator while it's suspended.
        let drops = &mut self.scopes.generator_drops;
        let cfg = &mut self.cfg;
        let fn_span = self.fn_span;
        let mut blocks = IndexVec::from_elem(None, &drops.drops);
        drops.build_mir::<GeneratorDrop>(cfg, &mut blocks);
        if let Some(root_block) = blocks[ROOT_NODE] {
            cfg.terminate(
                root_block,
                SourceInfo::outermost(fn_span),
                TerminatorKind::GeneratorDrop,
            );
        }

        // Build the drop tree for unwinding in the normal control flow paths.
        let resume_block = &mut None;
        let unwind_drops = &mut self.scopes.unwind_drops;
        Self::build_unwind_tree(cfg, unwind_drops, fn_span, resume_block);

        // Build the drop tree for unwinding when dropping a suspended
        // generator.
        //
        // This is a different tree to the standard unwind paths here to
        // prevent drop elaboration from creating drop flags that would have
        // to be captured by the generator. I'm not sure how important this
        // optimization is, but it is here.
        for (drop_idx, drop_data) in drops.drops.iter_enumerated() {
            if let DropKind::Value = drop_data.0.kind {
                debug_assert!(drop_data.1 < drops.drops.next_index());
                drops.entry_points.push((drop_data.1, blocks[drop_idx].unwrap()));
            }
        }
        Self::build_unwind_tree(cfg, drops, fn_span, resume_block);
    }

    fn build_unwind_tree(
        cfg: &mut CFG<'tcx>,
        drops: &mut DropTree,
        fn_span: Span,
        resume_block: &mut Option<BasicBlock>,
    ) {
        let mut blocks = IndexVec::from_elem(None, &drops.drops);
        blocks[ROOT_NODE] = *resume_block;
        drops.build_mir::<Unwind>(cfg, &mut blocks);
        if let (None, Some(resume)) = (*resume_block, blocks[ROOT_NODE]) {
            cfg.terminate(resume, SourceInfo::outermost(fn_span), TerminatorKind::Resume);

            *resume_block = blocks[ROOT_NODE];
        }
    }
}

// DropTreeBuilder implementations.

struct ExitScopes;

impl<'tcx> DropTreeBuilder<'tcx> for ExitScopes {
    fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
        cfg.start_new_block()
    }
    fn add_entry(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
        cfg.block_data_mut(from).terminator_mut().kind = TerminatorKind::Goto { target: to };
    }
}

struct GeneratorDrop;

impl<'tcx> DropTreeBuilder<'tcx> for GeneratorDrop {
    fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
        cfg.start_new_block()
    }
    fn add_entry(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
        let term = cfg.block_data_mut(from).terminator_mut();
        if let TerminatorKind::Yield { ref mut drop, .. } = term.kind {
            *drop = Some(to);
        } else {
            span_bug!(
                term.source_info.span,
                "cannot enter generator drop tree from {:?}",
                term.kind
            )
        }
    }
}

struct Unwind;

impl<'tcx> DropTreeBuilder<'tcx> for Unwind {
    fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
        cfg.start_new_cleanup_block()
    }
    fn add_entry(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
        let term = &mut cfg.block_data_mut(from).terminator_mut();
        match &mut term.kind {
            TerminatorKind::Drop { unwind, .. }
            | TerminatorKind::DropAndReplace { unwind, .. }
            | TerminatorKind::FalseUnwind { unwind, .. }
            | TerminatorKind::Call { cleanup: unwind, .. }
            | TerminatorKind::Assert { cleanup: unwind, .. } => {
                *unwind = Some(to);
            }
            TerminatorKind::Goto { .. }
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::Resume
            | TerminatorKind::Abort
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Yield { .. }
            | TerminatorKind::GeneratorDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::InlineAsm { .. } => {
                span_bug!(term.source_info.span, "cannot unwind from {:?}", term.kind)
            }
        }
    }
}