1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
//! [`super::usefulness`] explains most of what is happening in this file. As explained there,
//! values and patterns are made from constructors applied to fields. This file defines a
//! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
//! them from/to patterns.
//!
//! There's one idea that is not detailed in [`super::usefulness`] because the details are not
//! needed there: _constructor splitting_.
//!
//! # Constructor splitting
//!
//! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
//! with all the value constructors that are covered by `c`, and compute usefulness for each.
//! Instead of listing all those constructors (which is intractable), we group those value
//! constructors together as much as possible. Example:
//!
//! ```
//! match (0, false) {
//!     (0 ..=100, true) => {} // `p_1`
//!     (50..=150, false) => {} // `p_2`
//!     (0 ..=200, _) => {} // `q`
//! }
//! ```
//!
//! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
//! clever: `0` and `1` for example will match the exact same rows, and return equivalent
//! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
//! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
//! more tractable.
//!
//! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
//! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
//! return an equivalent set of witnesses after specializing and computing usefulness.
//! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
//! in their first element.
//!
//! We usually also ask that the `c'` together cover all of the original `c`. However we allow
//! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
//! is empty of not. We use this in the wildcard `_` case.
//!
//! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
//! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
//! [`SplitVarLenSlice`].

use self::Constructor::*;
use self::SliceKind::*;

use super::compare_const_vals;
use super::usefulness::{MatchCheckCtxt, PatCtxt};

use rustc_data_structures::captures::Captures;
use rustc_index::vec::Idx;

use rustc_hir::{HirId, RangeEnd};
use rustc_middle::mir::Field;
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, Const, Ty, TyCtxt, VariantDef};
use rustc_middle::{middle::stability::EvalResult, mir::interpret::ConstValue};
use rustc_session::lint;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{Integer, Size, VariantIdx};

use smallvec::{smallvec, SmallVec};
use std::cell::Cell;
use std::cmp::{self, max, min, Ordering};
use std::fmt;
use std::iter::{once, IntoIterator};
use std::ops::RangeInclusive;

/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
    fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
        if let PatKind::Or { pats } = pat.kind.as_ref() {
            for pat in pats {
                expand(pat, vec);
            }
        } else {
            vec.push(pat)
        }
    }

    let mut pats = Vec::new();
    expand(pat, &mut pats);
    pats
}

/// An inclusive interval, used for precise integer exhaustiveness checking.
/// `IntRange`s always store a contiguous range. This means that values are
/// encoded such that `0` encodes the minimum value for the integer,
/// regardless of the signedness.
/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
/// This makes comparisons and arithmetic on interval endpoints much more
/// straightforward. See `signed_bias` for details.
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps
/// around the (offset) space: i.e., `range.lo <= range.hi`.
#[derive(Clone, PartialEq, Eq)]
pub(super) struct IntRange {
    range: RangeInclusive<u128>,
    /// Keeps the bias used for encoding the range. It depends on the type of the range and
    /// possibly the pointer size of the current architecture. The algorithm ensures we never
    /// compare `IntRange`s with different types/architectures.
    bias: u128,
}

impl IntRange {
    #[inline]
    fn is_integral(ty: Ty<'_>) -> bool {
        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
    }

    fn is_singleton(&self) -> bool {
        self.range.start() == self.range.end()
    }

    fn boundaries(&self) -> (u128, u128) {
        (*self.range.start(), *self.range.end())
    }

    #[inline]
    fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> {
        match *ty.kind() {
            ty::Bool => Some((Size::from_bytes(1), 0)),
            ty::Char => Some((Size::from_bytes(4), 0)),
            ty::Int(ity) => {
                let size = Integer::from_int_ty(&tcx, ity).size();
                Some((size, 1u128 << (size.bits() as u128 - 1)))
            }
            ty::Uint(uty) => Some((Integer::from_uint_ty(&tcx, uty).size(), 0)),
            _ => None,
        }
    }

    #[inline]
    fn from_const<'tcx>(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        value: &Const<'tcx>,
    ) -> Option<IntRange> {
        if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, value.ty) {
            let ty = value.ty;
            let val = (|| {
                if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val {
                    // For this specific pattern we can skip a lot of effort and go
                    // straight to the result, after doing a bit of checking. (We
                    // could remove this branch and just fall through, which
                    // is more general but much slower.)
                    if let Ok(bits) = scalar.to_bits_or_ptr_internal(target_size) {
                        return Some(bits);
                    }
                }
                // This is a more general form of the previous case.
                value.try_eval_bits(tcx, param_env, ty)
            })()?;
            let val = val ^ bias;
            Some(IntRange { range: val..=val, bias })
        } else {
            None
        }
    }

    #[inline]
    fn from_range<'tcx>(
        tcx: TyCtxt<'tcx>,
        lo: u128,
        hi: u128,
        ty: Ty<'tcx>,
        end: &RangeEnd,
    ) -> Option<IntRange> {
        if Self::is_integral(ty) {
            // Perform a shift if the underlying types are signed,
            // which makes the interval arithmetic simpler.
            let bias = IntRange::signed_bias(tcx, ty);
            let (lo, hi) = (lo ^ bias, hi ^ bias);
            let offset = (*end == RangeEnd::Excluded) as u128;
            if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
                // This should have been caught earlier by E0030.
                bug!("malformed range pattern: {}..={}", lo, (hi - offset));
            }
            Some(IntRange { range: lo..=(hi - offset), bias })
        } else {
            None
        }
    }

    // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
    fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
        match *ty.kind() {
            ty::Int(ity) => {
                let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
                1u128 << (bits - 1)
            }
            _ => 0,
        }
    }

    fn is_subrange(&self, other: &Self) -> bool {
        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
    }

    fn intersection(&self, other: &Self) -> Option<Self> {
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
        if lo <= other_hi && other_lo <= hi {
            Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), bias: self.bias })
        } else {
            None
        }
    }

    fn suspicious_intersection(&self, other: &Self) -> bool {
        // `false` in the following cases:
        // 1     ----      // 1  ----------   // 1 ----        // 1       ----
        // 2  ----------   // 2     ----      // 2       ----  // 2 ----
        //
        // The following are currently `false`, but could be `true` in the future (#64007):
        // 1 ---------       // 1     ---------
        // 2     ----------  // 2 ----------
        //
        // `true` in the following cases:
        // 1 -------          // 1       -------
        // 2       --------   // 2 -------
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
        (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
    }

    /// Only used for displaying the range properly.
    fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
        let (lo, hi) = self.boundaries();

        let bias = self.bias;
        let (lo, hi) = (lo ^ bias, hi ^ bias);

        let env = ty::ParamEnv::empty().and(ty);
        let lo_const = ty::Const::from_bits(tcx, lo, env);
        let hi_const = ty::Const::from_bits(tcx, hi, env);

        let kind = if lo == hi {
            PatKind::Constant { value: lo_const }
        } else {
            PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
        };

        Pat { ty, span: DUMMY_SP, kind: Box::new(kind) }
    }

    /// Lint on likely incorrect range patterns (#63987)
    pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>(
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
        pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
        column_count: usize,
        hir_id: HirId,
    ) {
        if self.is_singleton() {
            return;
        }

        if column_count != 1 {
            // FIXME: for now, only check for overlapping ranges on simple range
            // patterns. Otherwise with the current logic the following is detected
            // as overlapping:
            // ```
            // match (0u8, true) {
            //   (0 ..= 125, false) => {}
            //   (125 ..= 255, true) => {}
            //   _ => {}
            // }
            // ```
            return;
        }

        let overlaps: Vec<_> = pats
            .filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span())))
            .filter(|(range, _)| self.suspicious_intersection(range))
            .map(|(range, span)| (self.intersection(&range).unwrap(), span))
            .collect();

        if !overlaps.is_empty() {
            pcx.cx.tcx.struct_span_lint_hir(
                lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
                hir_id,
                pcx.span,
                |lint| {
                    let mut err = lint.build("multiple patterns overlap on their endpoints");
                    for (int_range, span) in overlaps {
                        err.span_label(
                            span,
                            &format!(
                                "this range overlaps on `{}`...",
                                int_range.to_pat(pcx.cx.tcx, pcx.ty)
                            ),
                        );
                    }
                    err.span_label(pcx.span, "... with this range");
                    err.note("you likely meant to write mutually exclusive ranges");
                    err.emit();
                },
            );
        }
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(&self, other: &Self) -> bool {
        if self.intersection(other).is_some() {
            // Constructor splitting should ensure that all intersections we encounter are actually
            // inclusions.
            assert!(self.is_subrange(other));
            true
        } else {
            false
        }
    }
}

/// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and
/// would be displayed as such. To render properly, convert to a pattern first.
impl fmt::Debug for IntRange {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let (lo, hi) = self.boundaries();
        let bias = self.bias;
        let (lo, hi) = (lo ^ bias, hi ^ bias);
        write!(f, "{}", lo)?;
        write!(f, "{}", RangeEnd::Included)?;
        write!(f, "{}", hi)
    }
}

/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum IntBorder {
    JustBefore(u128),
    AfterMax,
}

/// A range of integers that is partitioned into disjoint subranges. This does constructor
/// splitting for integer ranges as explained at the top of the file.
///
/// This is fed multiple ranges, and returns an output that covers the input, but is split so that
/// the only intersections between an output range and a seen range are inclusions. No output range
/// straddles the boundary of one of the inputs.
///
/// The following input:
/// ```
///   |-------------------------| // `self`
/// |------|  |----------|   |----|
///    |-------| |-------|
/// ```
/// would be iterated over as follows:
/// ```
///   ||---|--||-|---|---|---|--|
/// ```
#[derive(Debug, Clone)]
struct SplitIntRange {
    /// The range we are splitting
    range: IntRange,
    /// The borders of ranges we have seen. They are all contained within `range`. This is kept
    /// sorted.
    borders: Vec<IntBorder>,
}

impl SplitIntRange {
    fn new(range: IntRange) -> Self {
        SplitIntRange { range, borders: Vec::new() }
    }

    /// Internal use
    fn to_borders(r: IntRange) -> [IntBorder; 2] {
        use IntBorder::*;
        let (lo, hi) = r.boundaries();
        let lo = JustBefore(lo);
        let hi = match hi.checked_add(1) {
            Some(m) => JustBefore(m),
            None => AfterMax,
        };
        [lo, hi]
    }

    /// Add ranges relative to which we split.
    fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
        let this_range = &self.range;
        let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
        let included_borders = included_ranges.flat_map(|r| {
            let borders = Self::to_borders(r);
            once(borders[0]).chain(once(borders[1]))
        });
        self.borders.extend(included_borders);
        self.borders.sort_unstable();
    }

    /// Iterate over the contained ranges.
    fn iter<'a>(&'a self) -> impl Iterator<Item = IntRange> + Captures<'a> {
        use IntBorder::*;

        let self_range = Self::to_borders(self.range.clone());
        // Start with the start of the range.
        let mut prev_border = self_range[0];
        self.borders
            .iter()
            .copied()
            // End with the end of the range.
            .chain(once(self_range[1]))
            // List pairs of adjacent borders.
            .map(move |border| {
                let ret = (prev_border, border);
                prev_border = border;
                ret
            })
            // Skip duplicates.
            .filter(|(prev_border, border)| prev_border != border)
            // Finally, convert to ranges.
            .map(move |(prev_border, border)| {
                let range = match (prev_border, border) {
                    (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
                    (JustBefore(n), AfterMax) => n..=u128::MAX,
                    _ => unreachable!(), // Ruled out by the sorting and filtering we did
                };
                IntRange { range, bias: self.range.bias }
            })
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum SliceKind {
    /// Patterns of length `n` (`[x, y]`).
    FixedLen(usize),
    /// Patterns using the `..` notation (`[x, .., y]`).
    /// Captures any array constructor of `length >= i + j`.
    /// In the case where `array_len` is `Some(_)`,
    /// this indicates that we only care about the first `i` and the last `j` values of the array,
    /// and everything in between is a wildcard `_`.
    VarLen(usize, usize),
}

impl SliceKind {
    fn arity(self) -> usize {
        match self {
            FixedLen(length) => length,
            VarLen(prefix, suffix) => prefix + suffix,
        }
    }

    /// Whether this pattern includes patterns of length `other_len`.
    fn covers_length(self, other_len: usize) -> bool {
        match self {
            FixedLen(len) => len == other_len,
            VarLen(prefix, suffix) => prefix + suffix <= other_len,
        }
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct Slice {
    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
    array_len: Option<usize>,
    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
    kind: SliceKind,
}

impl Slice {
    fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
        let kind = match (array_len, kind) {
            // If the middle `..` is empty, we effectively have a fixed-length pattern.
            (Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
            _ => kind,
        };
        Slice { array_len, kind }
    }

    fn arity(self) -> usize {
        self.kind.arity()
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, other: Self) -> bool {
        other.kind.covers_length(self.arity())
    }
}

/// This computes constructor splitting for variable-length slices, as explained at the top of the
/// file.
///
/// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, _,
/// _, y] | ...`. The corresponding value constructors are fixed-length array constructors above a
/// given minimum length. We obviously can't list this infinitude of constructors. Thankfully,
/// it turns out that for each finite set of slice patterns, all sufficiently large array lengths
/// are equivalent.
///
/// Let's look at an example, where we are trying to split the last pattern:
/// ```
/// match x {
///     [true, true, ..] => {}
///     [.., false, false] => {}
///     [..] => {}
/// }
/// ```
/// Here are the results of specialization for the first few lengths:
/// ```
/// // length 0
/// [] => {}
/// // length 1
/// [_] => {}
/// // length 2
/// [true, true] => {}
/// [false, false] => {}
/// [_, _] => {}
/// // length 3
/// [true, true,  _    ] => {}
/// [_,    false, false] => {}
/// [_,    _,     _    ] => {}
/// // length 4
/// [true, true, _,     _    ] => {}
/// [_,    _,    false, false] => {}
/// [_,    _,    _,     _    ] => {}
/// // length 5
/// [true, true, _, _,     _    ] => {}
/// [_,    _,    _, false, false] => {}
/// [_,    _,    _, _,     _    ] => {}
/// ```
///
/// If we went above length 5, we would simply be inserting more columns full of wildcards in the
/// middle. This means that the set of witnesses for length `l >= 5` if equivalent to the set for
/// any other `l' >= 5`: simply add or remove wildcards in the middle to convert between them.
///
/// This applies to any set of slice patterns: there will be a length `L` above which all lengths
/// behave the same. This is exactly what we need for constructor splitting. Therefore a
/// variable-length slice can be split into a variable-length slice of minimal length `L`, and many
/// fixed-length slices of lengths `< L`.
///
/// For each variable-length pattern `p` with a prefix of length `plₚ` and suffix of length `slₚ`,
/// only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as long as `L` is
/// positive (to avoid concerns about empty types), all elements after the maximum prefix length
/// and before the maximum suffix length are not examined by any variable-length pattern, and
/// therefore can be added/removed without affecting them - creating equivalent patterns from any
/// sufficiently-large length.
///
/// Of course, if fixed-length patterns exist, we must be sure that our length is large enough to
/// miss them all, so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
///
/// `max_slice` below will be made to have arity `L`.
#[derive(Debug)]
struct SplitVarLenSlice {
    /// If the type is an array, this is its size.
    array_len: Option<usize>,
    /// The arity of the input slice.
    arity: usize,
    /// The smallest slice bigger than any slice seen. `max_slice.arity()` is the length `L`
    /// described above.
    max_slice: SliceKind,
}

impl SplitVarLenSlice {
    fn new(prefix: usize, suffix: usize, array_len: Option<usize>) -> Self {
        SplitVarLenSlice { array_len, arity: prefix + suffix, max_slice: VarLen(prefix, suffix) }
    }

    /// Pass a set of slices relative to which to split this one.
    fn split(&mut self, slices: impl Iterator<Item = SliceKind>) {
        let (max_prefix_len, max_suffix_len) = match &mut self.max_slice {
            VarLen(prefix, suffix) => (prefix, suffix),
            FixedLen(_) => return, // No need to split
        };
        // We grow `self.max_slice` to be larger than all slices encountered, as described above.
        // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that
        // `L = max_prefix_len + max_suffix_len`.
        let mut max_fixed_len = 0;
        for slice in slices {
            match slice {
                FixedLen(len) => {
                    max_fixed_len = cmp::max(max_fixed_len, len);
                }
                VarLen(prefix, suffix) => {
                    *max_prefix_len = cmp::max(*max_prefix_len, prefix);
                    *max_suffix_len = cmp::max(*max_suffix_len, suffix);
                }
            }
        }
        // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and
        // suffix separate.
        if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len {
            // The subtraction can't overflow thanks to the above check.
            // The new `max_prefix_len` is larger than its previous value.
            *max_prefix_len = max_fixed_len + 1 - *max_suffix_len;
        }

        // We cap the arity of `max_slice` at the array size.
        match self.array_len {
            Some(len) if self.max_slice.arity() >= len => self.max_slice = FixedLen(len),
            _ => {}
        }
    }

    /// Iterate over the partition of this slice.
    fn iter<'a>(&'a self) -> impl Iterator<Item = Slice> + Captures<'a> {
        let smaller_lengths = match self.array_len {
            // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
            // is fixed-length or variable-length, it will be the only relevant slice to output
            // here.
            Some(_) => (0..0), // empty range
            // We cover all arities in the range `(self.arity..infinity)`. We split that range into
            // two: lengths smaller than `max_slice.arity()` are treated independently as
            // fixed-lengths slices, and lengths above are captured by `max_slice`.
            None => self.arity..self.max_slice.arity(),
        };
        smaller_lengths
            .map(FixedLen)
            .chain(once(self.max_slice))
            .map(move |kind| Slice::new(self.array_len, kind))
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub(super) enum Constructor<'tcx> {
    /// The constructor for patterns that have a single constructor, like tuples, struct patterns
    /// and fixed-length arrays.
    Single,
    /// Enum variants.
    Variant(VariantIdx),
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
    IntRange(IntRange),
    /// Ranges of floating-point literal values (`2.0..=5.2`).
    FloatRange(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>, RangeEnd),
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
    Str(&'tcx ty::Const<'tcx>),
    /// Array and slice patterns.
    Slice(Slice),
    /// Constants that must not be matched structurally. They are treated as black
    /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
    /// don't count towards making a match exhaustive.
    Opaque,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
    NonExhaustive,
    /// Stands for constructors that are not seen in the matrix, as explained in the documentation
    /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns`
    /// lint.
    Missing { nonexhaustive_enum_missing_real_variants: bool },
    /// Wildcard pattern.
    Wildcard,
    /// Or-pattern.
    Or,
}

impl<'tcx> Constructor<'tcx> {
    pub(super) fn is_wildcard(&self) -> bool {
        matches!(self, Wildcard)
    }

    pub(super) fn is_non_exhaustive(&self) -> bool {
        matches!(self, NonExhaustive)
    }

    fn as_int_range(&self) -> Option<&IntRange> {
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }

    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

    /// Checks if the `Constructor` is a variant and `TyCtxt::eval_stability` returns
    /// `EvalResult::Deny { .. }`.
    ///
    /// This means that the variant has a stdlib unstable feature marking it.
    pub(super) fn is_unstable_variant(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
        if let Constructor::Variant(idx) = self {
            if let ty::Adt(adt, _) = pcx.ty.kind() {
                let variant_def_id = adt.variants[*idx].def_id;
                // Filter variants that depend on a disabled unstable feature.
                return matches!(
                    pcx.cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
                    EvalResult::Deny { .. }
                );
            }
        }
        false
    }

    /// Checks if the `Constructor` is a `Constructor::Variant` with a `#[doc(hidden)]`
    /// attribute.
    pub(super) fn is_doc_hidden_variant(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
        if let Constructor::Variant(idx) = self {
            if let ty::Adt(adt, _) = pcx.ty.kind() {
                let variant_def_id = adt.variants[*idx].def_id;
                return pcx.cx.tcx.is_doc_hidden(variant_def_id);
            }
        }
        false
    }

    fn variant_index_for_adt(&self, adt: &'tcx ty::AdtDef) -> VariantIdx {
        match *self {
            Variant(idx) => idx,
            Single => {
                assert!(!adt.is_enum());
                VariantIdx::new(0)
            }
            _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
        }
    }

    /// The number of fields for this constructor. This must be kept in sync with
    /// `Fields::wildcards`.
    pub(super) fn arity(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> usize {
        match self {
            Single | Variant(_) => match pcx.ty.kind() {
                ty::Tuple(fs) => fs.len(),
                ty::Ref(..) => 1,
                ty::Adt(adt, ..) => {
                    if adt.is_box() {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        1
                    } else {
                        let variant = &adt.variants[self.variant_index_for_adt(adt)];
                        Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
                    }
                }
                _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
            },
            Slice(slice) => slice.arity(),
            Str(..)
            | FloatRange(..)
            | IntRange(..)
            | NonExhaustive
            | Opaque
            | Missing { .. }
            | Wildcard => 0,
            Or => bug!("The `Or` constructor doesn't have a fixed arity"),
        }
    }

    /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
    /// constructors (like variants, integers or fixed-sized slices). When specializing for these
    /// constructors, we want to be specialising for the actual underlying constructors.
    /// Naively, we would simply return the list of constructors they correspond to. We instead are
    /// more clever: if there are constructors that we know will behave the same wrt the current
    /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
    /// will either be all useful or all non-useful with a given matrix.
    ///
    /// See the branches for details on how the splitting is done.
    ///
    /// This function may discard some irrelevant constructors if this preserves behavior and
    /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
    /// matrix, unless all of them are.
    pub(super) fn split<'a>(
        &self,
        pcx: PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) -> SmallVec<[Self; 1]>
    where
        'tcx: 'a,
    {
        match self {
            Wildcard => {
                let mut split_wildcard = SplitWildcard::new(pcx);
                split_wildcard.split(pcx, ctors);
                split_wildcard.into_ctors(pcx)
            }
            // Fast-track if the range is trivial. In particular, we don't do the overlapping
            // ranges check.
            IntRange(ctor_range) if !ctor_range.is_singleton() => {
                let mut split_range = SplitIntRange::new(ctor_range.clone());
                let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
                split_range.split(int_ranges.cloned());
                split_range.iter().map(IntRange).collect()
            }
            &Slice(Slice { kind: VarLen(self_prefix, self_suffix), array_len }) => {
                let mut split_self = SplitVarLenSlice::new(self_prefix, self_suffix, array_len);
                let slices = ctors.filter_map(|c| c.as_slice()).map(|s| s.kind);
                split_self.split(slices);
                split_self.iter().map(Slice).collect()
            }
            // Any other constructor can be used unchanged.
            _ => smallvec![self.clone()],
        }
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
    pub(super) fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
        // This must be kept in sync with `is_covered_by_any`.
        match (self, other) {
            // Wildcards cover anything
            (_, Wildcard) => true,
            // The missing ctors are not covered by anything in the matrix except wildcards.
            (Missing { .. } | Wildcard, _) => false,

            (Single, Single) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,

            (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
            (
                FloatRange(self_from, self_to, self_end),
                FloatRange(other_from, other_to, other_end),
            ) => {
                match (
                    compare_const_vals(pcx.cx.tcx, self_to, other_to, pcx.cx.param_env, pcx.ty),
                    compare_const_vals(pcx.cx.tcx, self_from, other_from, pcx.cx.param_env, pcx.ty),
                ) {
                    (Some(to), Some(from)) => {
                        (from == Ordering::Greater || from == Ordering::Equal)
                            && (to == Ordering::Less
                                || (other_end == self_end && to == Ordering::Equal))
                    }
                    _ => false,
                }
            }
            (Str(self_val), Str(other_val)) => {
                // FIXME: there's probably a more direct way of comparing for equality
                match compare_const_vals(pcx.cx.tcx, self_val, other_val, pcx.cx.param_env, pcx.ty)
                {
                    Some(comparison) => comparison == Ordering::Equal,
                    None => false,
                }
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // We are trying to inspect an opaque constant. Thus we skip the row.
            (Opaque, _) | (_, Opaque) => false,
            // Only a wildcard pattern can match the special extra constructor.
            (NonExhaustive, _) => false,

            _ => span_bug!(
                pcx.span,
                "trying to compare incompatible constructors {:?} and {:?}",
                self,
                other
            ),
        }
    }

    /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
    /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
    /// assumed to have been split from a wildcard.
    fn is_covered_by_any<'p>(
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
        used_ctors: &[Constructor<'tcx>],
    ) -> bool {
        if used_ctors.is_empty() {
            return false;
        }

        // This must be kept in sync with `is_covered_by`.
        match self {
            // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
            Single => !used_ctors.is_empty(),
            Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)),
            IntRange(range) => used_ctors
                .iter()
                .filter_map(|c| c.as_int_range())
                .any(|other| range.is_covered_by(other)),
            Slice(slice) => used_ctors
                .iter()
                .filter_map(|c| c.as_slice())
                .any(|other| slice.is_covered_by(other)),
            // This constructor is never covered by anything else
            NonExhaustive => false,
            Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => {
                span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
            }
        }
    }
}

/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
/// at the top of the file.
///
/// A constructor that is not present in the matrix rows will only be covered by the rows that have
/// wildcards. Thus we can group all of those constructors together; we call them "missing
/// constructors". Splitting a wildcard would therefore list all present constructors individually
/// (or grouped if they are integers or slices), and then all missing constructors together as a
/// group.
///
/// However we can go further: since any constructor will match the wildcard rows, and having more
/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
/// and only try the missing ones.
/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
/// in `to_ctors`: in some cases we only return `Missing`.
#[derive(Debug)]
pub(super) struct SplitWildcard<'tcx> {
    /// Constructors seen in the matrix.
    matrix_ctors: Vec<Constructor<'tcx>>,
    /// All the constructors for this type
    all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
}

impl<'tcx> SplitWildcard<'tcx> {
    pub(super) fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
        debug!("SplitWildcard::new({:?})", pcx.ty);
        let cx = pcx.cx;
        let make_range = |start, end| {
            IntRange(
                // `unwrap()` is ok because we know the type is an integer.
                IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(),
            )
        };
        // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
        // arrays and slices we use ranges and variable-length slices when appropriate.
        //
        // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
        // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
        // returned list of constructors.
        // Invariant: this is empty if and only if the type is uninhabited (as determined by
        // `cx.is_uninhabited()`).
        let all_ctors = match pcx.ty.kind() {
            ty::Bool => smallvec![make_range(0, 1)],
            ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
                let len = len.eval_usize(cx.tcx, cx.param_env) as usize;
                if len != 0 && cx.is_uninhabited(sub_ty) {
                    smallvec![]
                } else {
                    smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
                }
            }
            // Treat arrays of a constant but unknown length like slices.
            ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
                let kind = if cx.is_uninhabited(sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
                smallvec![Slice(Slice::new(None, kind))]
            }
            ty::Adt(def, substs) if def.is_enum() => {
                // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
                // additional "unknown" constructor.
                // There is no point in enumerating all possible variants, because the user can't
                // actually match against them all themselves. So we always return only the fictitious
                // constructor.
                // E.g., in an example like:
                //
                // ```
                //     let err: io::ErrorKind = ...;
                //     match err {
                //         io::ErrorKind::NotFound => {},
                //     }
                // ```
                //
                // we don't want to show every possible IO error, but instead have only `_` as the
                // witness.
                let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);

                let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns;

                // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
                // as though it had an "unknown" constructor to avoid exposing its emptiness. The
                // exception is if the pattern is at the top level, because we want empty matches to be
                // considered exhaustive.
                let is_secretly_empty =
                    def.variants.is_empty() && !is_exhaustive_pat_feature && !pcx.is_top_level;

                let mut ctors: SmallVec<[_; 1]> = def
                    .variants
                    .iter_enumerated()
                    .filter(|(_, v)| {
                        // If `exhaustive_patterns` is enabled, we exclude variants known to be
                        // uninhabited.
                        let is_uninhabited = is_exhaustive_pat_feature
                            && v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
                                .contains(cx.tcx, cx.module);
                        !is_uninhabited
                    })
                    .map(|(idx, _)| Variant(idx))
                    .collect();

                if is_secretly_empty || is_declared_nonexhaustive {
                    ctors.push(NonExhaustive);
                }
                ctors
            }
            ty::Char => {
                smallvec![
                    // The valid Unicode Scalar Value ranges.
                    make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
                    make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
                ]
            }
            ty::Int(_) | ty::Uint(_)
                if pcx.ty.is_ptr_sized_integral()
                    && !cx.tcx.features().precise_pointer_size_matching =>
            {
                // `usize`/`isize` are not allowed to be matched exhaustively unless the
                // `precise_pointer_size_matching` feature is enabled. So we treat those types like
                // `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
                smallvec![NonExhaustive]
            }
            &ty::Int(ity) => {
                let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
                let min = 1u128 << (bits - 1);
                let max = min - 1;
                smallvec![make_range(min, max)]
            }
            &ty::Uint(uty) => {
                let size = Integer::from_uint_ty(&cx.tcx, uty).size();
                let max = size.truncate(u128::MAX);
                smallvec![make_range(0, max)]
            }
            // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
            // expose its emptiness. The exception is if the pattern is at the top level, because we
            // want empty matches to be considered exhaustive.
            ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
                smallvec![NonExhaustive]
            }
            ty::Never => smallvec![],
            _ if cx.is_uninhabited(pcx.ty) => smallvec![],
            ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single],
            // This type is one for which we cannot list constructors, like `str` or `f64`.
            _ => smallvec![NonExhaustive],
        };

        SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
    }

    /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
    /// do what you want.
    pub(super) fn split<'a>(
        &mut self,
        pcx: PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) where
        'tcx: 'a,
    {
        // Since `all_ctors` never contains wildcards, this won't recurse further.
        self.all_ctors =
            self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
        self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
    }

    /// Whether there are any value constructors for this type that are not present in the matrix.
    fn any_missing(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
        self.iter_missing(pcx).next().is_some()
    }

    /// Iterate over the constructors for this type that are not present in the matrix.
    pub(super) fn iter_missing<'a, 'p>(
        &'a self,
        pcx: PatCtxt<'a, 'p, 'tcx>,
    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
    }

    /// Return the set of constructors resulting from splitting the wildcard. As explained at the
    /// top of the file, if any constructors are missing we can ignore the present ones.
    fn into_ctors(self, pcx: PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> {
        if self.any_missing(pcx) {
            // Some constructors are missing, thus we can specialize with the special `Missing`
            // constructor, which stands for those constructors that are not seen in the matrix,
            // and matches the same rows as any of them (namely the wildcard rows). See the top of
            // the file for details.
            // However, when all constructors are missing we can also specialize with the full
            // `Wildcard` constructor. The difference will depend on what we want in diagnostics.

            // If some constructors are missing, we typically want to report those constructors,
            // e.g.:
            // ```
            //     enum Direction { N, S, E, W }
            //     let Direction::N = ...;
            // ```
            // we can report 3 witnesses: `S`, `E`, and `W`.
            //
            // However, if the user didn't actually specify a constructor
            // in this arm, e.g., in
            // ```
            //     let x: (Direction, Direction, bool) = ...;
            //     let (_, _, false) = x;
            // ```
            // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
            // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
            // prefer to report just a wildcard `_`.
            //
            // The exception is: if we are at the top-level, for example in an empty match, we
            // sometimes prefer reporting the list of constructors instead of just `_`.
            let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
            let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
                if pcx.is_non_exhaustive {
                    Missing {
                        nonexhaustive_enum_missing_real_variants: self
                            .iter_missing(pcx)
                            .any(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))),
                    }
                } else {
                    Missing { nonexhaustive_enum_missing_real_variants: false }
                }
            } else {
                Wildcard
            };
            return smallvec![ctor];
        }

        // All the constructors are present in the matrix, so we just go through them all.
        self.all_ctors
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
///
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
/// given a pattern we fill some of the fields with its subpatterns.
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
/// `extract_pattern_arguments` we fill some of the entries, and the result is
/// `[Some(0), _, _, _]`.
/// ```rust
/// let x: [Option<u8>; 4] = foo();
/// match x {
///     [Some(0), ..] => {}
/// }
/// ```
///
/// Note that the number of fields of a constructor may not match the fields declared in the
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
/// because the code mustn't observe that it is uninhabited. In that case that field is not
/// included in `fields`. For that reason, when you have a `mir::Field` you must use
/// `index_with_declared_idx`.
#[derive(Debug, Clone, Copy)]
pub(super) struct Fields<'p, 'tcx> {
    fields: &'p [DeconstructedPat<'p, 'tcx>],
}

impl<'p, 'tcx> Fields<'p, 'tcx> {
    fn empty() -> Self {
        Fields { fields: &[] }
    }

    fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
        let field: &_ = cx.pattern_arena.alloc(field);
        Fields { fields: std::slice::from_ref(field) }
    }

    pub(super) fn from_iter(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
    ) -> Self {
        let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
        Fields { fields }
    }

    fn wildcards_from_tys(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        tys: impl IntoIterator<Item = Ty<'tcx>>,
    ) -> Self {
        Fields::from_iter(cx, tys.into_iter().map(DeconstructedPat::wildcard))
    }

    // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
    // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
    // This lists the fields we keep along with their types.
    fn list_variant_nonhidden_fields<'a>(
        cx: &'a MatchCheckCtxt<'p, 'tcx>,
        ty: Ty<'tcx>,
        variant: &'a VariantDef,
    ) -> impl Iterator<Item = (Field, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
        let (adt, substs) = match ty.kind() {
            ty::Adt(adt, substs) => (adt, substs),
            _ => bug!(),
        };
        // Whether we must not match the fields of this variant exhaustively.
        let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did.is_local();

        variant.fields.iter().enumerate().filter_map(move |(i, field)| {
            let ty = field.ty(cx.tcx, substs);
            // `field.ty()` doesn't normalize after substituting.
            let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
            let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
            let is_uninhabited = cx.is_uninhabited(ty);

            if is_uninhabited && (!is_visible || is_non_exhaustive) {
                None
            } else {
                Some((Field::new(i), ty))
            }
        })
    }

    /// Creates a new list of wildcard fields for a given constructor. The result must have a
    /// length of `constructor.arity()`.
    pub(super) fn wildcards(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        ty: Ty<'tcx>,
        constructor: &Constructor<'tcx>,
    ) -> Self {
        let ret = match constructor {
            Single | Variant(_) => match ty.kind() {
                ty::Tuple(fs) => Fields::wildcards_from_tys(cx, fs.iter().map(|ty| ty.expect_ty())),
                ty::Ref(_, rty, _) => Fields::wildcards_from_tys(cx, once(*rty)),
                ty::Adt(adt, substs) => {
                    if adt.is_box() {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        Fields::wildcards_from_tys(cx, once(substs.type_at(0)))
                    } else {
                        let variant = &adt.variants[constructor.variant_index_for_adt(adt)];
                        let tys = Fields::list_variant_nonhidden_fields(cx, ty, variant)
                            .map(|(_, ty)| ty);
                        Fields::wildcards_from_tys(cx, tys)
                    }
                }
                _ => bug!("Unexpected type for `Single` constructor: {:?}", ty),
            },
            Slice(slice) => match *ty.kind() {
                ty::Slice(ty) | ty::Array(ty, _) => {
                    let arity = slice.arity();
                    Fields::wildcards_from_tys(cx, (0..arity).map(|_| ty))
                }
                _ => bug!("bad slice pattern {:?} {:?}", constructor, ty),
            },
            Str(..)
            | FloatRange(..)
            | IntRange(..)
            | NonExhaustive
            | Opaque
            | Missing { .. }
            | Wildcard => Fields::empty(),
            Or => {
                bug!("called `Fields::wildcards` on an `Or` ctor")
            }
        };
        debug!("Fields::wildcards({:?}, {:?}) = {:#?}", constructor, ty, ret);
        ret
    }

    /// Returns the list of patterns.
    pub(super) fn iter_patterns<'a>(
        &'a self,
    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
        self.fields.iter()
    }
}

/// Values and patterns can be represented as a constructor applied to some fields. This represents
/// a pattern in this form.
/// This also keeps track of whether the pattern has been found reachable during analysis. For this
/// reason we should be careful not to clone patterns for which we care about that. Use
/// `clone_and_forget_reachability` if you're sure.
pub(crate) struct DeconstructedPat<'p, 'tcx> {
    ctor: Constructor<'tcx>,
    fields: Fields<'p, 'tcx>,
    ty: Ty<'tcx>,
    span: Span,
    reachable: Cell<bool>,
}

impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
    pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
        Self::new(Wildcard, Fields::empty(), ty, DUMMY_SP)
    }

    pub(super) fn new(
        ctor: Constructor<'tcx>,
        fields: Fields<'p, 'tcx>,
        ty: Ty<'tcx>,
        span: Span,
    ) -> Self {
        DeconstructedPat { ctor, fields, ty, span, reachable: Cell::new(false) }
    }

    /// Construct a pattern that matches everything that starts with this constructor.
    /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
    /// `Some(_)`.
    pub(super) fn wild_from_ctor(pcx: PatCtxt<'_, 'p, 'tcx>, ctor: Constructor<'tcx>) -> Self {
        let fields = Fields::wildcards(pcx.cx, pcx.ty, &ctor);
        DeconstructedPat::new(ctor, fields, pcx.ty, DUMMY_SP)
    }

    /// Clone this value. This method emphasizes that cloning loses reachability information and
    /// should be done carefully.
    pub(super) fn clone_and_forget_reachability(&self) -> Self {
        DeconstructedPat::new(self.ctor.clone(), self.fields, self.ty, self.span)
    }

    pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
        let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
        let ctor;
        let fields;
        match pat.kind.as_ref() {
            PatKind::AscribeUserType { subpattern, .. } => return mkpat(subpattern),
            PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
            PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
                ctor = Wildcard;
                fields = Fields::empty();
            }
            PatKind::Deref { subpattern } => {
                ctor = Single;
                fields = Fields::singleton(cx, mkpat(subpattern));
            }
            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
                match pat.ty.kind() {
                    ty::Tuple(fs) => {
                        ctor = Single;
                        let mut wilds: SmallVec<[_; 2]> = fs
                            .iter()
                            .map(|ty| ty.expect_ty())
                            .map(DeconstructedPat::wildcard)
                            .collect();
                        for pat in subpatterns {
                            wilds[pat.field.index()] = mkpat(&pat.pattern);
                        }
                        fields = Fields::from_iter(cx, wilds);
                    }
                    ty::Adt(adt, substs) if adt.is_box() => {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
                        // _)` or a box pattern. As a hack to avoid an ICE with the former, we
                        // ignore other fields than the first one. This will trigger an error later
                        // anyway.
                        // See https://github.com/rust-lang/rust/issues/82772 ,
                        // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
                        // The problem is that we can't know from the type whether we'll match
                        // normally or through box-patterns. We'll have to figure out a proper
                        // solution when we introduce generalized deref patterns. Also need to
                        // prevent mixing of those two options.
                        let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
                        let pat = if let Some(pat) = pat {
                            mkpat(&pat.pattern)
                        } else {
                            DeconstructedPat::wildcard(substs.type_at(0))
                        };
                        ctor = Single;
                        fields = Fields::singleton(cx, pat);
                    }
                    ty::Adt(adt, _) => {
                        ctor = match pat.kind.as_ref() {
                            PatKind::Leaf { .. } => Single,
                            PatKind::Variant { variant_index, .. } => Variant(*variant_index),
                            _ => bug!(),
                        };
                        let variant = &adt.variants[ctor.variant_index_for_adt(adt)];
                        // For each field in the variant, we store the relevant index into `self.fields` if any.
                        let mut field_id_to_id: Vec<Option<usize>> =
                            (0..variant.fields.len()).map(|_| None).collect();
                        let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
                            .enumerate()
                            .map(|(i, (field, ty))| {
                                field_id_to_id[field.index()] = Some(i);
                                ty
                            });
                        let mut wilds: SmallVec<[_; 2]> =
                            tys.map(DeconstructedPat::wildcard).collect();
                        for pat in subpatterns {
                            if let Some(i) = field_id_to_id[pat.field.index()] {
                                wilds[i] = mkpat(&pat.pattern);
                            }
                        }
                        fields = Fields::from_iter(cx, wilds);
                    }
                    _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
                }
            }
            PatKind::Constant { value } => {
                if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, value) {
                    ctor = IntRange(int_range);
                    fields = Fields::empty();
                } else {
                    match pat.ty.kind() {
                        ty::Float(_) => {
                            ctor = FloatRange(value, value, RangeEnd::Included);
                            fields = Fields::empty();
                        }
                        ty::Ref(_, t, _) if t.is_str() => {
                            // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
                            // with other `Deref` patterns. This could have been done in `const_to_pat`,
                            // but that causes issues with the rest of the matching code.
                            // So here, the constructor for a `"foo"` pattern is `&` (represented by
                            // `Single`), and has one field. That field has constructor `Str(value)` and no
                            // fields.
                            // Note: `t` is `str`, not `&str`.
                            let subpattern =
                                DeconstructedPat::new(Str(value), Fields::empty(), t, pat.span);
                            ctor = Single;
                            fields = Fields::singleton(cx, subpattern)
                        }
                        // All constants that can be structurally matched have already been expanded
                        // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
                        // opaque.
                        _ => {
                            ctor = Opaque;
                            fields = Fields::empty();
                        }
                    }
                }
            }
            &PatKind::Range(PatRange { lo, hi, end }) => {
                let ty = lo.ty;
                ctor = if let Some(int_range) = IntRange::from_range(
                    cx.tcx,
                    lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
                    hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
                    ty,
                    &end,
                ) {
                    IntRange(int_range)
                } else {
                    FloatRange(lo, hi, end)
                };
                fields = Fields::empty();
            }
            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
                let array_len = match pat.ty.kind() {
                    ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
                    ty::Slice(_) => None,
                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
                };
                let kind = if slice.is_some() {
                    VarLen(prefix.len(), suffix.len())
                } else {
                    FixedLen(prefix.len() + suffix.len())
                };
                ctor = Slice(Slice::new(array_len, kind));
                fields = Fields::from_iter(cx, prefix.iter().chain(suffix).map(mkpat));
            }
            PatKind::Or { .. } => {
                ctor = Or;
                let pats = expand_or_pat(pat);
                fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
            }
        }
        DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
    }

    pub(crate) fn to_pat(&self, cx: &MatchCheckCtxt<'p, 'tcx>) -> Pat<'tcx> {
        let is_wildcard = |pat: &Pat<'_>| {
            matches!(*pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
        };
        let mut subpatterns = self.iter_fields().map(|p| p.to_pat(cx));
        let pat = match &self.ctor {
            Single | Variant(_) => match self.ty.kind() {
                ty::Tuple(..) => PatKind::Leaf {
                    subpatterns: subpatterns
                        .enumerate()
                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
                        .collect(),
                },
                ty::Adt(adt_def, _) if adt_def.is_box() => {
                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
                    // of `std`). So this branch is only reachable when the feature is enabled and
                    // the pattern is a box pattern.
                    PatKind::Deref { subpattern: subpatterns.next().unwrap() }
                }
                ty::Adt(adt_def, substs) => {
                    let variant_index = self.ctor.variant_index_for_adt(adt_def);
                    let variant = &adt_def.variants[variant_index];
                    let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
                        .zip(subpatterns)
                        .map(|((field, _ty), pattern)| FieldPat { field, pattern })
                        .collect();

                    if adt_def.is_enum() {
                        PatKind::Variant { adt_def, substs, variant_index, subpatterns }
                    } else {
                        PatKind::Leaf { subpatterns }
                    }
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to reconstruct the correct constant pattern here. However a string
                // literal pattern will never be reported as a non-exhaustiveness witness, so we
                // ignore this issue.
                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
                _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
            },
            Slice(slice) => {
                match slice.kind {
                    FixedLen(_) => PatKind::Slice {
                        prefix: subpatterns.collect(),
                        slice: None,
                        suffix: vec![],
                    },
                    VarLen(prefix, _) => {
                        let mut subpatterns = subpatterns.peekable();
                        let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
                        if slice.array_len.is_some() {
                            // Improves diagnostics a bit: if the type is a known-size array, instead
                            // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
                            // This is incorrect if the size is not known, since `[_, ..]` captures
                            // arrays of lengths `>= 1` whereas `[..]` captures any length.
                            while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
                                prefix.pop();
                            }
                            while subpatterns.peek().is_some()
                                && is_wildcard(subpatterns.peek().unwrap())
                            {
                                subpatterns.next();
                            }
                        }
                        let suffix: Vec<_> = subpatterns.collect();
                        let wild = Pat::wildcard_from_ty(self.ty);
                        PatKind::Slice { prefix, slice: Some(wild), suffix }
                    }
                }
            }
            &Str(value) => PatKind::Constant { value },
            &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
            IntRange(range) => return range.to_pat(cx.tcx, self.ty),
            Wildcard | NonExhaustive => PatKind::Wild,
            Missing { .. } => bug!(
                "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
                `Missing` should have been processed in `apply_constructors`"
            ),
            Opaque | Or => {
                bug!("can't convert to pattern: {:?}", self)
            }
        };

        Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(pat) }
    }

    pub(super) fn is_or_pat(&self) -> bool {
        matches!(self.ctor, Or)
    }

    pub(super) fn ctor(&self) -> &Constructor<'tcx> {
        &self.ctor
    }
    pub(super) fn ty(&self) -> Ty<'tcx> {
        self.ty
    }
    pub(super) fn span(&self) -> Span {
        self.span
    }

    pub(super) fn iter_fields<'a>(
        &'a self,
    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
        self.fields.iter_patterns()
    }

    /// Specialize this pattern with a constructor.
    /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
    pub(super) fn specialize<'a>(
        &'a self,
        cx: &MatchCheckCtxt<'p, 'tcx>,
        other_ctor: &Constructor<'tcx>,
    ) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
        match (&self.ctor, other_ctor) {
            (Wildcard, _) => {
                // We return a wildcard for each field of `other_ctor`.
                Fields::wildcards(cx, self.ty, other_ctor).iter_patterns().collect()
            }
            (Slice(self_slice), Slice(other_slice))
                if self_slice.arity() != other_slice.arity() =>
            {
                // The only tricky case: two slices of different arity. Since `self_slice` covers
                // `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
                // `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
                // arity. So we fill the middle part with enough wildcards to reach the length of
                // the new, larger slice.
                match self_slice.kind {
                    FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
                    VarLen(prefix, suffix) => {
                        let inner_ty = match *self.ty.kind() {
                            ty::Slice(ty) | ty::Array(ty, _) => ty,
                            _ => bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty),
                        };
                        let prefix = &self.fields.fields[..prefix];
                        let suffix = &self.fields.fields[self_slice.arity() - suffix..];
                        let wildcard: &_ =
                            cx.pattern_arena.alloc(DeconstructedPat::wildcard(inner_ty));
                        let extra_wildcards = other_slice.arity() - self_slice.arity();
                        let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
                        prefix.iter().chain(extra_wildcards).chain(suffix).collect()
                    }
                }
            }
            _ => self.fields.iter_patterns().collect(),
        }
    }

    /// We keep track for each pattern if it was ever reachable during the analysis. This is used
    /// with `unreachable_spans` to report unreachable subpatterns arising from or patterns.
    pub(super) fn set_reachable(&self) {
        self.reachable.set(true)
    }
    pub(super) fn is_reachable(&self) -> bool {
        self.reachable.get()
    }

    /// Report the spans of subpatterns that were not reachable, if any.
    pub(super) fn unreachable_spans(&self) -> Vec<Span> {
        let mut spans = Vec::new();
        self.collect_unreachable_spans(&mut spans);
        spans
    }

    fn collect_unreachable_spans(&self, spans: &mut Vec<Span>) {
        // We don't look at subpatterns if we already reported the whole pattern as unreachable.
        if !self.is_reachable() {
            spans.push(self.span);
        } else {
            for p in self.iter_fields() {
                p.collect_unreachable_spans(spans);
            }
        }
    }
}

/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
/// `Display` impl.
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Printing lists is a chore.
        let mut first = true;
        let mut start_or_continue = |s| {
            if first {
                first = false;
                ""
            } else {
                s
            }
        };
        let mut start_or_comma = || start_or_continue(", ");

        match &self.ctor {
            Single | Variant(_) => match self.ty.kind() {
                ty::Adt(def, _) if def.is_box() => {
                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
                    // of `std`). So this branch is only reachable when the feature is enabled and
                    // the pattern is a box pattern.
                    let subpattern = self.iter_fields().next().unwrap();
                    write!(f, "box {:?}", subpattern)
                }
                ty::Adt(..) | ty::Tuple(..) => {
                    let variant = match self.ty.kind() {
                        ty::Adt(adt, _) => {
                            Some(&adt.variants[self.ctor.variant_index_for_adt(adt)])
                        }
                        ty::Tuple(_) => None,
                        _ => unreachable!(),
                    };

                    if let Some(variant) = variant {
                        write!(f, "{}", variant.ident)?;
                    }

                    // Without `cx`, we can't know which field corresponds to which, so we can't
                    // get the names of the fields. Instead we just display everything as a suple
                    // struct, which should be good enough.
                    write!(f, "(")?;
                    for p in self.iter_fields() {
                        write!(f, "{}", start_or_comma())?;
                        write!(f, "{:?}", p)?;
                    }
                    write!(f, ")")
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to detect strings here. However a string literal pattern will never
                // be reported as a non-exhaustiveness witness, so we can ignore this issue.
                ty::Ref(_, _, mutbl) => {
                    let subpattern = self.iter_fields().next().unwrap();
                    write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
                }
                _ => write!(f, "_"),
            },
            Slice(slice) => {
                let mut subpatterns = self.fields.iter_patterns();
                write!(f, "[")?;
                match slice.kind {
                    FixedLen(_) => {
                        for p in subpatterns {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                    }
                    VarLen(prefix_len, _) => {
                        for p in subpatterns.by_ref().take(prefix_len) {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                        write!(f, "{}", start_or_comma())?;
                        write!(f, "..")?;
                        for p in subpatterns {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                    }
                }
                write!(f, "]")
            }
            &FloatRange(lo, hi, end) => {
                write!(f, "{}", lo)?;
                write!(f, "{}", end)?;
                write!(f, "{}", hi)
            }
            IntRange(range) => write!(f, "{:?}", range), // Best-effort, will render e.g. `false` as `0..=0`
            Wildcard | Missing { .. } | NonExhaustive => write!(f, "_ : {:?}", self.ty),
            Or => {
                for pat in self.iter_fields() {
                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
                }
                Ok(())
            }
            Str(value) => write!(f, "{}", value),
            Opaque => write!(f, "<constant pattern>"),
        }
    }
}