1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
//! Propagates assignment destinations backwards in the CFG to eliminate redundant assignments.
//!
//! # Motivation
//!
//! MIR building can insert a lot of redundant copies, and Rust code in general often tends to move
//! values around a lot. The result is a lot of assignments of the form `dest = {move} src;` in MIR.
//! MIR building for constants in particular tends to create additional locals that are only used
//! inside a single block to shuffle a value around unnecessarily.
//!
//! LLVM by itself is not good enough at eliminating these redundant copies (eg. see
//! <https://github.com/rust-lang/rust/issues/32966>), so this leaves some performance on the table
//! that we can regain by implementing an optimization for removing these assign statements in rustc
//! itself. When this optimization runs fast enough, it can also speed up the constant evaluation
//! and code generation phases of rustc due to the reduced number of statements and locals.
//!
//! # The Optimization
//!
//! Conceptually, this optimization is "destination propagation". It is similar to the Named Return
//! Value Optimization, or NRVO, known from the C++ world, except that it isn't limited to return
//! values or the return place `_0`. On a very high level, independent of the actual implementation
//! details, it does the following:
//!
//! 1) Identify `dest = src;` statements that can be soundly eliminated.
//! 2) Replace all mentions of `src` with `dest` ("unifying" them and propagating the destination
//!    backwards).
//! 3) Delete the `dest = src;` statement (by making it a `nop`).
//!
//! Step 1) is by far the hardest, so it is explained in more detail below.
//!
//! ## Soundness
//!
//! Given an `Assign` statement `dest = src;`, where `dest` is a `Place` and `src` is an `Rvalue`,
//! there are a few requirements that must hold for the optimization to be sound:
//!
//! * `dest` must not contain any *indirection* through a pointer. It must access part of the base
//!   local. Otherwise it might point to arbitrary memory that is hard to track.
//!
//!   It must also not contain any indexing projections, since those take an arbitrary `Local` as
//!   the index, and that local might only be initialized shortly before `dest` is used.
//!
//!   Subtle case: If `dest` is a, or projects through a union, then we have to make sure that there
//!   remains an assignment to it, since that sets the "active field" of the union. But if `src` is
//!   a ZST, it might not be initialized, so there might not be any use of it before the assignment,
//!   and performing the optimization would simply delete the assignment, leaving `dest`
//!   uninitialized.
//!
//! * `src` must be a bare `Local` without any indirections or field projections (FIXME: Is this a
//!   fundamental restriction or just current impl state?). It can be copied or moved by the
//!   assignment.
//!
//! * The `dest` and `src` locals must never be [*live*][liveness] at the same time. If they are, it
//!   means that they both hold a (potentially different) value that is needed by a future use of
//!   the locals. Unifying them would overwrite one of the values.
//!
//!   Note that computing liveness of locals that have had their address taken is more difficult:
//!   Short of doing full escape analysis on the address/pointer/reference, the pass would need to
//!   assume that any operation that can potentially involve opaque user code (such as function
//!   calls, destructors, and inline assembly) may access any local that had its address taken
//!   before that point.
//!
//! Here, the first two conditions are simple structural requirements on the `Assign` statements
//! that can be trivially checked. The liveness requirement however is more difficult and costly to
//! check.
//!
//! ## Previous Work
//!
//! A [previous attempt] at implementing an optimization like this turned out to be a significant
//! regression in compiler performance. Fixing the regressions introduced a lot of undesirable
//! complexity to the implementation.
//!
//! A [subsequent approach] tried to avoid the costly computation by limiting itself to acyclic
//! CFGs, but still turned out to be far too costly to run due to suboptimal performance within
//! individual basic blocks, requiring a walk across the entire block for every assignment found
//! within the block. For the `tuple-stress` benchmark, which has 458745 statements in a single
//! block, this proved to be far too costly.
//!
//! Since the first attempt at this, the compiler has improved dramatically, and new analysis
//! frameworks have been added that should make this approach viable without requiring a limited
//! approach that only works for some classes of CFGs:
//! - rustc now has a powerful dataflow analysis framework that can handle forwards and backwards
//!   analyses efficiently.
//! - Layout optimizations for generators have been added to improve code generation for
//!   async/await, which are very similar in spirit to what this optimization does. Both walk the
//!   MIR and record conflicting uses of locals in a `BitMatrix`.
//!
//! Also, rustc now has a simple NRVO pass (see `nrvo.rs`), which handles a subset of the cases that
//! this destination propagation pass handles, proving that similar optimizations can be performed
//! on MIR.
//!
//! ## Pre/Post Optimization
//!
//! It is recommended to run `SimplifyCfg` and then `SimplifyLocals` some time after this pass, as
//! it replaces the eliminated assign statements with `nop`s and leaves unused locals behind.
//!
//! [liveness]: https://en.wikipedia.org/wiki/Live_variable_analysis
//! [previous attempt]: https://github.com/rust-lang/rust/pull/47954
//! [subsequent approach]: https://github.com/rust-lang/rust/pull/71003

use crate::MirPass;
use itertools::Itertools;
use rustc_data_structures::unify::{InPlaceUnificationTable, UnifyKey};
use rustc_index::{
    bit_set::{BitMatrix, BitSet},
    vec::IndexVec,
};
use rustc_middle::mir::tcx::PlaceTy;
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::{dump_mir, PassWhere};
use rustc_middle::mir::{
    traversal, Body, InlineAsmOperand, Local, LocalKind, Location, Operand, Place, PlaceElem,
    Rvalue, Statement, StatementKind, Terminator, TerminatorKind,
};
use rustc_middle::ty::TyCtxt;
use rustc_mir_dataflow::impls::{MaybeInitializedLocals, MaybeLiveLocals};
use rustc_mir_dataflow::Analysis;

// Empirical measurements have resulted in some observations:
// - Running on a body with a single block and 500 locals takes barely any time
// - Running on a body with ~400 blocks and ~300 relevant locals takes "too long"
// ...so we just limit both to somewhat reasonable-ish looking values.
const MAX_LOCALS: usize = 500;
const MAX_BLOCKS: usize = 250;

pub struct DestinationPropagation;

impl<'tcx> MirPass<'tcx> for DestinationPropagation {
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        //  FIXME(#79191, #82678)
        if !tcx.sess.opts.debugging_opts.unsound_mir_opts {
            return;
        }

        // Only run at mir-opt-level=3 or higher for now (we don't fix up debuginfo and remove
        // storage statements at the moment).
        if tcx.sess.mir_opt_level() < 3 {
            return;
        }

        let def_id = body.source.def_id();

        let candidates = find_candidates(tcx, body);
        if candidates.is_empty() {
            debug!("{:?}: no dest prop candidates, done", def_id);
            return;
        }

        // Collect all locals we care about. We only compute conflicts for these to save time.
        let mut relevant_locals = BitSet::new_empty(body.local_decls.len());
        for CandidateAssignment { dest, src, loc: _ } in &candidates {
            relevant_locals.insert(dest.local);
            relevant_locals.insert(*src);
        }

        // This pass unfortunately has `O(l² * s)` performance, where `l` is the number of locals
        // and `s` is the number of statements and terminators in the function.
        // To prevent blowing up compile times too much, we bail out when there are too many locals.
        let relevant = relevant_locals.count();
        debug!(
            "{:?}: {} locals ({} relevant), {} blocks",
            def_id,
            body.local_decls.len(),
            relevant,
            body.basic_blocks().len()
        );
        if relevant > MAX_LOCALS {
            warn!(
                "too many candidate locals in {:?} ({}, max is {}), not optimizing",
                def_id, relevant, MAX_LOCALS
            );
            return;
        }
        if body.basic_blocks().len() > MAX_BLOCKS {
            warn!(
                "too many blocks in {:?} ({}, max is {}), not optimizing",
                def_id,
                body.basic_blocks().len(),
                MAX_BLOCKS
            );
            return;
        }

        let mut conflicts = Conflicts::build(tcx, body, &relevant_locals);

        let mut replacements = Replacements::new(body.local_decls.len());
        for candidate @ CandidateAssignment { dest, src, loc } in candidates {
            // Merge locals that don't conflict.
            if !conflicts.can_unify(dest.local, src) {
                debug!("at assignment {:?}, conflict {:?} vs. {:?}", loc, dest.local, src);
                continue;
            }

            if replacements.for_src(candidate.src).is_some() {
                debug!("src {:?} already has replacement", candidate.src);
                continue;
            }

            if !tcx.consider_optimizing(|| {
                format!("DestinationPropagation {:?} {:?}", def_id, candidate)
            }) {
                break;
            }

            replacements.push(candidate);
            conflicts.unify(candidate.src, candidate.dest.local);
        }

        replacements.flatten(tcx);

        debug!("replacements {:?}", replacements.map);

        Replacer { tcx, replacements, place_elem_cache: Vec::new() }.visit_body(body);

        // FIXME fix debug info
    }
}

#[derive(Debug, Eq, PartialEq, Copy, Clone)]
struct UnifyLocal(Local);

impl From<Local> for UnifyLocal {
    fn from(l: Local) -> Self {
        Self(l)
    }
}

impl UnifyKey for UnifyLocal {
    type Value = ();
    fn index(&self) -> u32 {
        self.0.as_u32()
    }
    fn from_index(u: u32) -> Self {
        Self(Local::from_u32(u))
    }
    fn tag() -> &'static str {
        "UnifyLocal"
    }
}

struct Replacements<'tcx> {
    /// Maps locals to their replacement.
    map: IndexVec<Local, Option<Place<'tcx>>>,

    /// Whose locals' live ranges to kill.
    kill: BitSet<Local>,
}

impl Replacements<'tcx> {
    fn new(locals: usize) -> Self {
        Self { map: IndexVec::from_elem_n(None, locals), kill: BitSet::new_empty(locals) }
    }

    fn push(&mut self, candidate: CandidateAssignment<'tcx>) {
        trace!("Replacements::push({:?})", candidate);
        let entry = &mut self.map[candidate.src];
        assert!(entry.is_none());

        *entry = Some(candidate.dest);
        self.kill.insert(candidate.src);
        self.kill.insert(candidate.dest.local);
    }

    /// Applies the stored replacements to all replacements, until no replacements would result in
    /// locals that need further replacements when applied.
    fn flatten(&mut self, tcx: TyCtxt<'tcx>) {
        // Note: This assumes that there are no cycles in the replacements, which is enforced via
        // `self.unified_locals`. Otherwise this can cause an infinite loop.

        for local in self.map.indices() {
            if let Some(replacement) = self.map[local] {
                // Substitute the base local of `replacement` until fixpoint.
                let mut base = replacement.local;
                let mut reversed_projection_slices = Vec::with_capacity(1);
                while let Some(replacement_for_replacement) = self.map[base] {
                    base = replacement_for_replacement.local;
                    reversed_projection_slices.push(replacement_for_replacement.projection);
                }

                let projection: Vec<_> = reversed_projection_slices
                    .iter()
                    .rev()
                    .flat_map(|projs| projs.iter())
                    .chain(replacement.projection.iter())
                    .collect();
                let projection = tcx.intern_place_elems(&projection);

                // Replace with the final `Place`.
                self.map[local] = Some(Place { local: base, projection });
            }
        }
    }

    fn for_src(&self, src: Local) -> Option<Place<'tcx>> {
        self.map[src]
    }
}

struct Replacer<'tcx> {
    tcx: TyCtxt<'tcx>,
    replacements: Replacements<'tcx>,
    place_elem_cache: Vec<PlaceElem<'tcx>>,
}

impl<'tcx> MutVisitor<'tcx> for Replacer<'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_local(&mut self, local: &mut Local, context: PlaceContext, location: Location) {
        if context.is_use() && self.replacements.for_src(*local).is_some() {
            bug!(
                "use of local {:?} should have been replaced by visit_place; context={:?}, loc={:?}",
                local,
                context,
                location,
            );
        }
    }

    fn process_projection_elem(
        &mut self,
        elem: PlaceElem<'tcx>,
        _: Location,
    ) -> Option<PlaceElem<'tcx>> {
        match elem {
            PlaceElem::Index(local) => {
                if let Some(replacement) = self.replacements.for_src(local) {
                    bug!(
                        "cannot replace {:?} with {:?} in index projection {:?}",
                        local,
                        replacement,
                        elem,
                    );
                } else {
                    None
                }
            }
            _ => None,
        }
    }

    fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
        if let Some(replacement) = self.replacements.for_src(place.local) {
            // Rebase `place`s projections onto `replacement`'s.
            self.place_elem_cache.clear();
            self.place_elem_cache.extend(replacement.projection.iter().chain(place.projection));
            let projection = self.tcx.intern_place_elems(&self.place_elem_cache);
            let new_place = Place { local: replacement.local, projection };

            debug!("Replacer: {:?} -> {:?}", place, new_place);
            *place = new_place;
        }

        self.super_place(place, context, location);
    }

    fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
        self.super_statement(statement, location);

        match &statement.kind {
            // FIXME: Don't delete storage statements, merge the live ranges instead
            StatementKind::StorageDead(local) | StatementKind::StorageLive(local)
                if self.replacements.kill.contains(*local) =>
            {
                statement.make_nop()
            }

            StatementKind::Assign(box (dest, rvalue)) => {
                match rvalue {
                    Rvalue::Use(Operand::Copy(place) | Operand::Move(place)) => {
                        // These might've been turned into self-assignments by the replacement
                        // (this includes the original statement we wanted to eliminate).
                        if dest == place {
                            debug!("{:?} turned into self-assignment, deleting", location);
                            statement.make_nop();
                        }
                    }
                    _ => {}
                }
            }

            _ => {}
        }
    }
}

struct Conflicts<'a> {
    relevant_locals: &'a BitSet<Local>,

    /// The conflict matrix. It is always symmetric and the adjacency matrix of the corresponding
    /// conflict graph.
    matrix: BitMatrix<Local, Local>,

    /// Preallocated `BitSet` used by `unify`.
    unify_cache: BitSet<Local>,

    /// Tracks locals that have been merged together to prevent cycles and propagate conflicts.
    unified_locals: InPlaceUnificationTable<UnifyLocal>,
}

impl Conflicts<'a> {
    fn build<'tcx>(
        tcx: TyCtxt<'tcx>,
        body: &'_ Body<'tcx>,
        relevant_locals: &'a BitSet<Local>,
    ) -> Self {
        // We don't have to look out for locals that have their address taken, since
        // `find_candidates` already takes care of that.

        let conflicts = BitMatrix::from_row_n(
            &BitSet::new_empty(body.local_decls.len()),
            body.local_decls.len(),
        );

        let mut init = MaybeInitializedLocals
            .into_engine(tcx, body)
            .iterate_to_fixpoint()
            .into_results_cursor(body);
        let mut live =
            MaybeLiveLocals.into_engine(tcx, body).iterate_to_fixpoint().into_results_cursor(body);

        let mut reachable = None;
        dump_mir(tcx, None, "DestinationPropagation-dataflow", &"", body, |pass_where, w| {
            let reachable = reachable.get_or_insert_with(|| traversal::reachable_as_bitset(body));

            match pass_where {
                PassWhere::BeforeLocation(loc) if reachable.contains(loc.block) => {
                    init.seek_before_primary_effect(loc);
                    live.seek_after_primary_effect(loc);

                    writeln!(w, "        // init: {:?}", init.get())?;
                    writeln!(w, "        // live: {:?}", live.get())?;
                }
                PassWhere::AfterTerminator(bb) if reachable.contains(bb) => {
                    let loc = body.terminator_loc(bb);
                    init.seek_after_primary_effect(loc);
                    live.seek_before_primary_effect(loc);

                    writeln!(w, "        // init: {:?}", init.get())?;
                    writeln!(w, "        // live: {:?}", live.get())?;
                }

                PassWhere::BeforeBlock(bb) if reachable.contains(bb) => {
                    init.seek_to_block_start(bb);
                    live.seek_to_block_start(bb);

                    writeln!(w, "    // init: {:?}", init.get())?;
                    writeln!(w, "    // live: {:?}", live.get())?;
                }

                PassWhere::BeforeCFG | PassWhere::AfterCFG | PassWhere::AfterLocation(_) => {}

                PassWhere::BeforeLocation(_) | PassWhere::AfterTerminator(_) => {
                    writeln!(w, "        // init: <unreachable>")?;
                    writeln!(w, "        // live: <unreachable>")?;
                }

                PassWhere::BeforeBlock(_) => {
                    writeln!(w, "    // init: <unreachable>")?;
                    writeln!(w, "    // live: <unreachable>")?;
                }
            }

            Ok(())
        });

        let mut this = Self {
            relevant_locals,
            matrix: conflicts,
            unify_cache: BitSet::new_empty(body.local_decls.len()),
            unified_locals: {
                let mut table = InPlaceUnificationTable::new();
                // Pre-fill table with all locals (this creates N nodes / "connected" components,
                // "graph"-ically speaking).
                for local in 0..body.local_decls.len() {
                    assert_eq!(table.new_key(()), UnifyLocal(Local::from_usize(local)));
                }
                table
            },
        };

        let mut live_and_init_locals = Vec::new();

        // Visit only reachable basic blocks. The exact order is not important.
        for (block, data) in traversal::preorder(body) {
            // We need to observe the dataflow state *before* all possible locations (statement or
            // terminator) in each basic block, and then observe the state *after* the terminator
            // effect is applied. As long as neither `init` nor `borrowed` has a "before" effect,
            // we will observe all possible dataflow states.

            // Since liveness is a backwards analysis, we need to walk the results backwards. To do
            // that, we first collect in the `MaybeInitializedLocals` results in a forwards
            // traversal.

            live_and_init_locals.resize_with(data.statements.len() + 1, || {
                BitSet::new_empty(body.local_decls.len())
            });

            // First, go forwards for `MaybeInitializedLocals` and apply intra-statement/terminator
            // conflicts.
            for (i, statement) in data.statements.iter().enumerate() {
                this.record_statement_conflicts(statement);

                let loc = Location { block, statement_index: i };
                init.seek_before_primary_effect(loc);

                live_and_init_locals[i].clone_from(init.get());
            }

            this.record_terminator_conflicts(data.terminator());
            let term_loc = Location { block, statement_index: data.statements.len() };
            init.seek_before_primary_effect(term_loc);
            live_and_init_locals[term_loc.statement_index].clone_from(init.get());

            // Now, go backwards and union with the liveness results.
            for statement_index in (0..=data.statements.len()).rev() {
                let loc = Location { block, statement_index };
                live.seek_after_primary_effect(loc);

                live_and_init_locals[statement_index].intersect(live.get());

                trace!("record conflicts at {:?}", loc);

                this.record_dataflow_conflicts(&mut live_and_init_locals[statement_index]);
            }

            init.seek_to_block_end(block);
            live.seek_to_block_end(block);
            let mut conflicts = init.get().clone();
            conflicts.intersect(live.get());
            trace!("record conflicts at end of {:?}", block);

            this.record_dataflow_conflicts(&mut conflicts);
        }

        this
    }

    fn record_dataflow_conflicts(&mut self, new_conflicts: &mut BitSet<Local>) {
        // Remove all locals that are not candidates.
        new_conflicts.intersect(self.relevant_locals);

        for local in new_conflicts.iter() {
            self.matrix.union_row_with(&new_conflicts, local);
        }
    }

    fn record_local_conflict(&mut self, a: Local, b: Local, why: &str) {
        trace!("conflict {:?} <-> {:?} due to {}", a, b, why);
        self.matrix.insert(a, b);
        self.matrix.insert(b, a);
    }

    /// Records locals that must not overlap during the evaluation of `stmt`. These locals conflict
    /// and must not be merged.
    fn record_statement_conflicts(&mut self, stmt: &Statement<'_>) {
        match &stmt.kind {
            // While the left and right sides of an assignment must not overlap, we do not mark
            // conflicts here as that would make this optimization useless. When we optimize, we
            // eliminate the resulting self-assignments automatically.
            StatementKind::Assign(_) => {}

            StatementKind::LlvmInlineAsm(asm) => {
                // Inputs and outputs must not overlap.
                for (_, input) in &*asm.inputs {
                    if let Some(in_place) = input.place() {
                        if !in_place.is_indirect() {
                            for out_place in &*asm.outputs {
                                if !out_place.is_indirect() && !in_place.is_indirect() {
                                    self.record_local_conflict(
                                        in_place.local,
                                        out_place.local,
                                        "aliasing llvm_asm! operands",
                                    );
                                }
                            }
                        }
                    }
                }
            }

            StatementKind::SetDiscriminant { .. }
            | StatementKind::StorageLive(..)
            | StatementKind::StorageDead(..)
            | StatementKind::Retag(..)
            | StatementKind::FakeRead(..)
            | StatementKind::AscribeUserType(..)
            | StatementKind::Coverage(..)
            | StatementKind::CopyNonOverlapping(..)
            | StatementKind::Nop => {}
        }
    }

    fn record_terminator_conflicts(&mut self, term: &Terminator<'_>) {
        match &term.kind {
            TerminatorKind::DropAndReplace {
                place: dropped_place,
                value,
                target: _,
                unwind: _,
            } => {
                if let Some(place) = value.place() {
                    if !place.is_indirect() && !dropped_place.is_indirect() {
                        self.record_local_conflict(
                            place.local,
                            dropped_place.local,
                            "DropAndReplace operand overlap",
                        );
                    }
                }
            }
            TerminatorKind::Yield { value, resume: _, resume_arg, drop: _ } => {
                if let Some(place) = value.place() {
                    if !place.is_indirect() && !resume_arg.is_indirect() {
                        self.record_local_conflict(
                            place.local,
                            resume_arg.local,
                            "Yield operand overlap",
                        );
                    }
                }
            }
            TerminatorKind::Call {
                func,
                args,
                destination: Some((dest_place, _)),
                cleanup: _,
                from_hir_call: _,
                fn_span: _,
            } => {
                // No arguments may overlap with the destination.
                for arg in args.iter().chain(Some(func)) {
                    if let Some(place) = arg.place() {
                        if !place.is_indirect() && !dest_place.is_indirect() {
                            self.record_local_conflict(
                                dest_place.local,
                                place.local,
                                "call dest/arg overlap",
                            );
                        }
                    }
                }
            }
            TerminatorKind::InlineAsm {
                template: _,
                operands,
                options: _,
                line_spans: _,
                destination: _,
            } => {
                // The intended semantics here aren't documented, we just assume that nothing that
                // could be written to by the assembly may overlap with any other operands.
                for op in operands {
                    match op {
                        InlineAsmOperand::Out { reg: _, late: _, place: Some(dest_place) }
                        | InlineAsmOperand::InOut {
                            reg: _,
                            late: _,
                            in_value: _,
                            out_place: Some(dest_place),
                        } => {
                            // For output place `place`, add all places accessed by the inline asm.
                            for op in operands {
                                match op {
                                    InlineAsmOperand::In { reg: _, value } => {
                                        if let Some(p) = value.place() {
                                            if !p.is_indirect() && !dest_place.is_indirect() {
                                                self.record_local_conflict(
                                                    p.local,
                                                    dest_place.local,
                                                    "asm! operand overlap",
                                                );
                                            }
                                        }
                                    }
                                    InlineAsmOperand::Out {
                                        reg: _,
                                        late: _,
                                        place: Some(place),
                                    } => {
                                        if !place.is_indirect() && !dest_place.is_indirect() {
                                            self.record_local_conflict(
                                                place.local,
                                                dest_place.local,
                                                "asm! operand overlap",
                                            );
                                        }
                                    }
                                    InlineAsmOperand::InOut {
                                        reg: _,
                                        late: _,
                                        in_value,
                                        out_place,
                                    } => {
                                        if let Some(place) = in_value.place() {
                                            if !place.is_indirect() && !dest_place.is_indirect() {
                                                self.record_local_conflict(
                                                    place.local,
                                                    dest_place.local,
                                                    "asm! operand overlap",
                                                );
                                            }
                                        }

                                        if let Some(place) = out_place {
                                            if !place.is_indirect() && !dest_place.is_indirect() {
                                                self.record_local_conflict(
                                                    place.local,
                                                    dest_place.local,
                                                    "asm! operand overlap",
                                                );
                                            }
                                        }
                                    }
                                    InlineAsmOperand::Out { reg: _, late: _, place: None }
                                    | InlineAsmOperand::Const { value: _ }
                                    | InlineAsmOperand::SymFn { value: _ }
                                    | InlineAsmOperand::SymStatic { def_id: _ } => {}
                                }
                            }
                        }
                        InlineAsmOperand::InOut {
                            reg: _,
                            late: _,
                            in_value: _,
                            out_place: None,
                        }
                        | InlineAsmOperand::In { reg: _, value: _ }
                        | InlineAsmOperand::Out { reg: _, late: _, place: None }
                        | InlineAsmOperand::Const { value: _ }
                        | InlineAsmOperand::SymFn { value: _ }
                        | InlineAsmOperand::SymStatic { def_id: _ } => {}
                    }
                }
            }

            TerminatorKind::Goto { .. }
            | TerminatorKind::Call { destination: None, .. }
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::Resume
            | TerminatorKind::Abort
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Drop { .. }
            | TerminatorKind::Assert { .. }
            | TerminatorKind::GeneratorDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. } => {}
        }
    }

    /// Checks whether `a` and `b` may be merged. Returns `false` if there's a conflict.
    fn can_unify(&mut self, a: Local, b: Local) -> bool {
        // After some locals have been unified, their conflicts are only tracked in the root key,
        // so look that up.
        let a = self.unified_locals.find(a).0;
        let b = self.unified_locals.find(b).0;

        if a == b {
            // Already merged (part of the same connected component).
            return false;
        }

        if self.matrix.contains(a, b) {
            // Conflict (derived via dataflow, intra-statement conflicts, or inherited from another
            // local during unification).
            return false;
        }

        true
    }

    /// Merges the conflicts of `a` and `b`, so that each one inherits all conflicts of the other.
    ///
    /// `can_unify` must have returned `true` for the same locals, or this may panic or lead to
    /// miscompiles.
    ///
    /// This is called when the pass makes the decision to unify `a` and `b` (or parts of `a` and
    /// `b`) and is needed to ensure that future unification decisions take potentially newly
    /// introduced conflicts into account.
    ///
    /// For an example, assume we have locals `_0`, `_1`, `_2`, and `_3`. There are these conflicts:
    ///
    /// * `_0` <-> `_1`
    /// * `_1` <-> `_2`
    /// * `_3` <-> `_0`
    ///
    /// We then decide to merge `_2` with `_3` since they don't conflict. Then we decide to merge
    /// `_2` with `_0`, which also doesn't have a conflict in the above list. However `_2` is now
    /// `_3`, which does conflict with `_0`.
    fn unify(&mut self, a: Local, b: Local) {
        trace!("unify({:?}, {:?})", a, b);

        // Get the root local of the connected components. The root local stores the conflicts of
        // all locals in the connected component (and *is stored* as the conflicting local of other
        // locals).
        let a = self.unified_locals.find(a).0;
        let b = self.unified_locals.find(b).0;
        assert_ne!(a, b);

        trace!("roots: a={:?}, b={:?}", a, b);
        trace!("{:?} conflicts: {:?}", a, self.matrix.iter(a).format(", "));
        trace!("{:?} conflicts: {:?}", b, self.matrix.iter(b).format(", "));

        self.unified_locals.union(a, b);

        let root = self.unified_locals.find(a).0;
        assert!(root == a || root == b);

        // Make all locals that conflict with `a` also conflict with `b`, and vice versa.
        self.unify_cache.clear();
        for conflicts_with_a in self.matrix.iter(a) {
            self.unify_cache.insert(conflicts_with_a);
        }
        for conflicts_with_b in self.matrix.iter(b) {
            self.unify_cache.insert(conflicts_with_b);
        }
        for conflicts_with_a_or_b in self.unify_cache.iter() {
            // Set both `a` and `b` for this local's row.
            self.matrix.insert(conflicts_with_a_or_b, a);
            self.matrix.insert(conflicts_with_a_or_b, b);
        }

        // Write the locals `a` conflicts with to `b`'s row.
        self.matrix.union_rows(a, b);
        // Write the locals `b` conflicts with to `a`'s row.
        self.matrix.union_rows(b, a);
    }
}

/// A `dest = {move} src;` statement at `loc`.
///
/// We want to consider merging `dest` and `src` due to this assignment.
#[derive(Debug, Copy, Clone)]
struct CandidateAssignment<'tcx> {
    /// Does not contain indirection or indexing (so the only local it contains is the place base).
    dest: Place<'tcx>,
    src: Local,
    loc: Location,
}

/// Scans the MIR for assignments between locals that we might want to consider merging.
///
/// This will filter out assignments that do not match the right form (as described in the top-level
/// comment) and also throw out assignments that involve a local that has its address taken or is
/// otherwise ineligible (eg. locals used as array indices are ignored because we cannot propagate
/// arbitrary places into array indices).
fn find_candidates<'a, 'tcx>(
    tcx: TyCtxt<'tcx>,
    body: &'a Body<'tcx>,
) -> Vec<CandidateAssignment<'tcx>> {
    let mut visitor = FindAssignments {
        tcx,
        body,
        candidates: Vec::new(),
        ever_borrowed_locals: ever_borrowed_locals(body),
        locals_used_as_array_index: locals_used_as_array_index(body),
    };
    visitor.visit_body(body);
    visitor.candidates
}

struct FindAssignments<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    body: &'a Body<'tcx>,
    candidates: Vec<CandidateAssignment<'tcx>>,
    ever_borrowed_locals: BitSet<Local>,
    locals_used_as_array_index: BitSet<Local>,
}

impl<'a, 'tcx> Visitor<'tcx> for FindAssignments<'a, 'tcx> {
    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        if let StatementKind::Assign(box (
            dest,
            Rvalue::Use(Operand::Copy(src) | Operand::Move(src)),
        )) = &statement.kind
        {
            // `dest` must not have pointer indirection.
            if dest.is_indirect() {
                return;
            }

            // `src` must be a plain local.
            if !src.projection.is_empty() {
                return;
            }

            // Since we want to replace `src` with `dest`, `src` must not be required.
            if is_local_required(src.local, self.body) {
                return;
            }

            // Can't optimize if both locals ever have their address taken (can introduce
            // aliasing).
            // FIXME: This can be smarter and take `StorageDead` into account (which
            // invalidates borrows).
            if self.ever_borrowed_locals.contains(dest.local)
                || self.ever_borrowed_locals.contains(src.local)
            {
                return;
            }

            assert_ne!(dest.local, src.local, "self-assignments are UB");

            // We can't replace locals occurring in `PlaceElem::Index` for now.
            if self.locals_used_as_array_index.contains(src.local) {
                return;
            }

            // Handle the "subtle case" described above by rejecting any `dest` that is or
            // projects through a union.
            let mut place_ty = PlaceTy::from_ty(self.body.local_decls[dest.local].ty);
            if place_ty.ty.is_union() {
                return;
            }
            for elem in dest.projection {
                if let PlaceElem::Index(_) = elem {
                    // `dest` contains an indexing projection.
                    return;
                }

                place_ty = place_ty.projection_ty(self.tcx, elem);
                if place_ty.ty.is_union() {
                    return;
                }
            }

            self.candidates.push(CandidateAssignment {
                dest: *dest,
                src: src.local,
                loc: location,
            });
        }
    }
}

/// Some locals are part of the function's interface and can not be removed.
///
/// Note that these locals *can* still be merged with non-required locals by removing that other
/// local.
fn is_local_required(local: Local, body: &Body<'_>) -> bool {
    match body.local_kind(local) {
        LocalKind::Arg | LocalKind::ReturnPointer => true,
        LocalKind::Var | LocalKind::Temp => false,
    }
}

/// Walks MIR to find all locals that have their address taken anywhere.
fn ever_borrowed_locals(body: &Body<'_>) -> BitSet<Local> {
    let mut visitor = BorrowCollector { locals: BitSet::new_empty(body.local_decls.len()) };
    visitor.visit_body(body);
    visitor.locals
}

struct BorrowCollector {
    locals: BitSet<Local>,
}

impl<'tcx> Visitor<'tcx> for BorrowCollector {
    fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
        self.super_rvalue(rvalue, location);

        match rvalue {
            Rvalue::AddressOf(_, borrowed_place) | Rvalue::Ref(_, _, borrowed_place) => {
                if !borrowed_place.is_indirect() {
                    self.locals.insert(borrowed_place.local);
                }
            }

            Rvalue::Cast(..)
            | Rvalue::ShallowInitBox(..)
            | Rvalue::Use(..)
            | Rvalue::Repeat(..)
            | Rvalue::Len(..)
            | Rvalue::BinaryOp(..)
            | Rvalue::CheckedBinaryOp(..)
            | Rvalue::NullaryOp(..)
            | Rvalue::UnaryOp(..)
            | Rvalue::Discriminant(..)
            | Rvalue::Aggregate(..)
            | Rvalue::ThreadLocalRef(..) => {}
        }
    }

    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        self.super_terminator(terminator, location);

        match terminator.kind {
            TerminatorKind::Drop { place: dropped_place, .. }
            | TerminatorKind::DropAndReplace { place: dropped_place, .. } => {
                self.locals.insert(dropped_place.local);
            }

            TerminatorKind::Abort
            | TerminatorKind::Assert { .. }
            | TerminatorKind::Call { .. }
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. }
            | TerminatorKind::GeneratorDrop
            | TerminatorKind::Goto { .. }
            | TerminatorKind::Resume
            | TerminatorKind::Return
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::Unreachable
            | TerminatorKind::Yield { .. }
            | TerminatorKind::InlineAsm { .. } => {}
        }
    }
}

/// `PlaceElem::Index` only stores a `Local`, so we can't replace that with a full `Place`.
///
/// Collect locals used as indices so we don't generate candidates that are impossible to apply
/// later.
fn locals_used_as_array_index(body: &Body<'_>) -> BitSet<Local> {
    let mut visitor = IndexCollector { locals: BitSet::new_empty(body.local_decls.len()) };
    visitor.visit_body(body);
    visitor.locals
}

struct IndexCollector {
    locals: BitSet<Local>,
}

impl<'tcx> Visitor<'tcx> for IndexCollector {
    fn visit_projection_elem(
        &mut self,
        local: Local,
        proj_base: &[PlaceElem<'tcx>],
        elem: PlaceElem<'tcx>,
        context: PlaceContext,
        location: Location,
    ) {
        if let PlaceElem::Index(i) = elem {
            self.locals.insert(i);
        }
        self.super_projection_elem(local, proj_base, elem, context, location);
    }
}