1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
use rustc_middle::mir::patch::MirPatch;
use rustc_middle::mir::*;
use rustc_middle::ty::{Ty, TyCtxt};
use std::fmt::Debug;

use super::simplify::simplify_cfg;

/// This pass optimizes something like
/// ```text
/// let x: Option<()>;
/// let y: Option<()>;
/// match (x,y) {
///     (Some(_), Some(_)) => {0},
///     _ => {1}
/// }
/// ```
/// into something like
/// ```text
/// let x: Option<()>;
/// let y: Option<()>;
/// let discriminant_x = // get discriminant of x
/// let discriminant_y = // get discriminant of y
/// if discriminant_x != discriminant_y || discriminant_x == None {1} else {0}
/// ```
pub struct EarlyOtherwiseBranch;

impl<'tcx> MirPass<'tcx> for EarlyOtherwiseBranch {
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        //  FIXME(#78496)
        if !tcx.sess.opts.debugging_opts.unsound_mir_opts {
            return;
        }

        if tcx.sess.mir_opt_level() < 3 {
            return;
        }
        trace!("running EarlyOtherwiseBranch on {:?}", body.source);
        // we are only interested in this bb if the terminator is a switchInt
        let bbs_with_switch =
            body.basic_blocks().iter_enumerated().filter(|(_, bb)| is_switch(bb.terminator()));

        let opts_to_apply: Vec<OptimizationToApply<'tcx>> = bbs_with_switch
            .flat_map(|(bb_idx, bb)| {
                let switch = bb.terminator();
                let helper = Helper { body, tcx };
                let infos = helper.go(bb, switch)?;
                Some(OptimizationToApply { infos, basic_block_first_switch: bb_idx })
            })
            .collect();

        let should_cleanup = !opts_to_apply.is_empty();

        for opt_to_apply in opts_to_apply {
            if !tcx.consider_optimizing(|| format!("EarlyOtherwiseBranch {:?}", &opt_to_apply)) {
                break;
            }

            trace!("SUCCESS: found optimization possibility to apply: {:?}", &opt_to_apply);

            let statements_before =
                body.basic_blocks()[opt_to_apply.basic_block_first_switch].statements.len();
            let end_of_block_location = Location {
                block: opt_to_apply.basic_block_first_switch,
                statement_index: statements_before,
            };

            let mut patch = MirPatch::new(body);

            // create temp to store second discriminant in
            let discr_type = opt_to_apply.infos[0].second_switch_info.discr_ty;
            let discr_span = opt_to_apply.infos[0].second_switch_info.discr_source_info.span;
            let second_discriminant_temp = patch.new_temp(discr_type, discr_span);

            patch.add_statement(
                end_of_block_location,
                StatementKind::StorageLive(second_discriminant_temp),
            );

            // create assignment of discriminant
            let place_of_adt_to_get_discriminant_of =
                opt_to_apply.infos[0].second_switch_info.place_of_adt_discr_read;
            patch.add_assign(
                end_of_block_location,
                Place::from(second_discriminant_temp),
                Rvalue::Discriminant(place_of_adt_to_get_discriminant_of),
            );

            // create temp to store NotEqual comparison between the two discriminants
            let not_equal = BinOp::Ne;
            let not_equal_res_type = not_equal.ty(tcx, discr_type, discr_type);
            let not_equal_temp = patch.new_temp(not_equal_res_type, discr_span);
            patch.add_statement(end_of_block_location, StatementKind::StorageLive(not_equal_temp));

            // create NotEqual comparison between the two discriminants
            let first_descriminant_place =
                opt_to_apply.infos[0].first_switch_info.discr_used_in_switch;
            let not_equal_rvalue = Rvalue::BinaryOp(
                not_equal,
                Box::new((
                    Operand::Copy(Place::from(second_discriminant_temp)),
                    Operand::Copy(first_descriminant_place),
                )),
            );
            patch.add_statement(
                end_of_block_location,
                StatementKind::Assign(Box::new((Place::from(not_equal_temp), not_equal_rvalue))),
            );

            let new_targets = opt_to_apply
                .infos
                .iter()
                .flat_map(|x| x.second_switch_info.targets_with_values.iter())
                .cloned();

            let targets = SwitchTargets::new(
                new_targets,
                opt_to_apply.infos[0].first_switch_info.otherwise_bb,
            );

            // new block that jumps to the correct discriminant case. This block is switched to if the discriminants are equal
            let new_switch_data = BasicBlockData::new(Some(Terminator {
                source_info: opt_to_apply.infos[0].second_switch_info.discr_source_info,
                kind: TerminatorKind::SwitchInt {
                    // the first and second discriminants are equal, so just pick one
                    discr: Operand::Copy(first_descriminant_place),
                    switch_ty: discr_type,
                    targets,
                },
            }));

            let new_switch_bb = patch.new_block(new_switch_data);

            // switch on the NotEqual. If true, then jump to the `otherwise` case.
            // If false, then jump to a basic block that then jumps to the correct disciminant case
            let true_case = opt_to_apply.infos[0].first_switch_info.otherwise_bb;
            let false_case = new_switch_bb;
            patch.patch_terminator(
                opt_to_apply.basic_block_first_switch,
                TerminatorKind::if_(
                    tcx,
                    Operand::Move(Place::from(not_equal_temp)),
                    true_case,
                    false_case,
                ),
            );

            // generate StorageDead for the second_discriminant_temp not in use anymore
            patch.add_statement(
                end_of_block_location,
                StatementKind::StorageDead(second_discriminant_temp),
            );

            // Generate a StorageDead for not_equal_temp in each of the targets, since we moved it into the switch
            for bb in [false_case, true_case].iter() {
                patch.add_statement(
                    Location { block: *bb, statement_index: 0 },
                    StatementKind::StorageDead(not_equal_temp),
                );
            }

            patch.apply(body);
        }

        // Since this optimization adds new basic blocks and invalidates others,
        // clean up the cfg to make it nicer for other passes
        if should_cleanup {
            simplify_cfg(tcx, body);
        }
    }
}

fn is_switch<'tcx>(terminator: &Terminator<'tcx>) -> bool {
    matches!(terminator.kind, TerminatorKind::SwitchInt { .. })
}

struct Helper<'a, 'tcx> {
    body: &'a Body<'tcx>,
    tcx: TyCtxt<'tcx>,
}

#[derive(Debug, Clone)]
struct SwitchDiscriminantInfo<'tcx> {
    /// Type of the discriminant being switched on
    discr_ty: Ty<'tcx>,
    /// The basic block that the otherwise branch points to
    otherwise_bb: BasicBlock,
    /// Target along with the value being branched from. Otherwise is not included
    targets_with_values: Vec<(u128, BasicBlock)>,
    discr_source_info: SourceInfo,
    /// The place of the discriminant used in the switch
    discr_used_in_switch: Place<'tcx>,
    /// The place of the adt that has its discriminant read
    place_of_adt_discr_read: Place<'tcx>,
    /// The type of the adt that has its discriminant read
    type_adt_matched_on: Ty<'tcx>,
}

#[derive(Debug)]
struct OptimizationToApply<'tcx> {
    infos: Vec<OptimizationInfo<'tcx>>,
    /// Basic block of the original first switch
    basic_block_first_switch: BasicBlock,
}

#[derive(Debug)]
struct OptimizationInfo<'tcx> {
    /// Info about the first switch and discriminant
    first_switch_info: SwitchDiscriminantInfo<'tcx>,
    /// Info about the second switch and discriminant
    second_switch_info: SwitchDiscriminantInfo<'tcx>,
}

impl<'a, 'tcx> Helper<'a, 'tcx> {
    pub fn go(
        &self,
        bb: &BasicBlockData<'tcx>,
        switch: &Terminator<'tcx>,
    ) -> Option<Vec<OptimizationInfo<'tcx>>> {
        // try to find the statement that defines the discriminant that is used for the switch
        let discr = self.find_switch_discriminant_info(bb, switch)?;

        // go through each target, finding a discriminant read, and a switch
        let results = discr
            .targets_with_values
            .iter()
            .map(|(value, target)| self.find_discriminant_switch_pairing(&discr, *target, *value));

        // if the optimization did not apply for one of the targets, then abort
        if results.clone().any(|x| x.is_none()) || results.len() == 0 {
            trace!("NO: not all of the targets matched the pattern for optimization");
            return None;
        }

        Some(results.flatten().collect())
    }

    fn find_discriminant_switch_pairing(
        &self,
        discr_info: &SwitchDiscriminantInfo<'tcx>,
        target: BasicBlock,
        value: u128,
    ) -> Option<OptimizationInfo<'tcx>> {
        let bb = &self.body.basic_blocks()[target];
        // find switch
        let terminator = bb.terminator();
        if is_switch(terminator) {
            let this_bb_discr_info = self.find_switch_discriminant_info(bb, terminator)?;

            // the types of the two adts matched on have to be equalfor this optimization to apply
            if discr_info.type_adt_matched_on != this_bb_discr_info.type_adt_matched_on {
                trace!(
                    "NO: types do not match. LHS: {:?}, RHS: {:?}",
                    discr_info.type_adt_matched_on,
                    this_bb_discr_info.type_adt_matched_on
                );
                return None;
            }

            // the otherwise branch of the two switches have to point to the same bb
            if discr_info.otherwise_bb != this_bb_discr_info.otherwise_bb {
                trace!("NO: otherwise target is not the same");
                return None;
            }

            // check that the value being matched on is the same. The
            if !this_bb_discr_info.targets_with_values.iter().any(|x| x.0 == value) {
                trace!("NO: values being matched on are not the same");
                return None;
            }

            // only allow optimization if the left and right of the tuple being matched are the same variants.
            // so the following should not optimize
            //  ```rust
            // let x: Option<()>;
            // let y: Option<()>;
            // match (x,y) {
            //     (Some(_), None) => {},
            //     _ => {}
            // }
            //  ```
            // We check this by seeing that the value of the first discriminant is the only other discriminant value being used as a target in the second switch
            if !(this_bb_discr_info.targets_with_values.len() == 1
                && this_bb_discr_info.targets_with_values[0].0 == value)
            {
                trace!(
                    "NO: The second switch did not have only 1 target (besides otherwise) that had the same value as the value from the first switch that got us here"
                );
                return None;
            }

            // when the second place is a projection of the first one, it's not safe to calculate their discriminant values sequentially.
            // for example, this should not be optimized:
            //
            // ```rust
            // enum E<'a> { Empty, Some(&'a E<'a>), }
            // let Some(Some(_)) = e;
            // ```
            //
            // ```mir
            // bb0: {
            //   _2 = discriminant(*_1)
            //   switchInt(_2) -> [...]
            // }
            // bb1: {
            //   _3 = discriminant(*(((*_1) as Some).0: &E))
            //   switchInt(_3) -> [...]
            // }
            // ```
            let discr_place = discr_info.place_of_adt_discr_read;
            let this_discr_place = this_bb_discr_info.place_of_adt_discr_read;
            if discr_place.local == this_discr_place.local
                && this_discr_place.projection.starts_with(discr_place.projection)
            {
                trace!("NO: one target is the projection of another");
                return None;
            }

            // if we reach this point, the optimization applies, and we should be able to optimize this case
            // store the info that is needed to apply the optimization

            Some(OptimizationInfo {
                first_switch_info: discr_info.clone(),
                second_switch_info: this_bb_discr_info,
            })
        } else {
            None
        }
    }

    fn find_switch_discriminant_info(
        &self,
        bb: &BasicBlockData<'tcx>,
        switch: &Terminator<'tcx>,
    ) -> Option<SwitchDiscriminantInfo<'tcx>> {
        match &switch.kind {
            TerminatorKind::SwitchInt { discr, targets, .. } => {
                let discr_local = discr.place()?.as_local()?;
                // the declaration of the discriminant read. Place of this read is being used in the switch
                let discr_decl = &self.body.local_decls()[discr_local];
                let discr_ty = discr_decl.ty;
                // the otherwise target lies as the last element
                let otherwise_bb = targets.otherwise();
                let targets_with_values = targets.iter().collect();

                // find the place of the adt where the discriminant is being read from
                // assume this is the last statement of the block
                let place_of_adt_discr_read = match bb.statements.last()?.kind {
                    StatementKind::Assign(box (_, Rvalue::Discriminant(adt_place))) => {
                        Some(adt_place)
                    }
                    _ => None,
                }?;

                let type_adt_matched_on = place_of_adt_discr_read.ty(self.body, self.tcx).ty;

                Some(SwitchDiscriminantInfo {
                    discr_used_in_switch: discr.place()?,
                    discr_ty,
                    otherwise_bb,
                    targets_with_values,
                    discr_source_info: discr_decl.source_info,
                    place_of_adt_discr_read,
                    type_adt_matched_on,
                })
            }
            _ => unreachable!("must only be passed terminator that is a switch"),
        }
    }
}