1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
//! A classic liveness analysis based on dataflow over the AST. Computes,
//! for each local variable in a function, whether that variable is live
//! at a given point. Program execution points are identified by their
//! IDs.
//!
//! # Basic idea
//!
//! The basic model is that each local variable is assigned an index. We
//! represent sets of local variables using a vector indexed by this
//! index. The value in the vector is either 0, indicating the variable
//! is dead, or the ID of an expression that uses the variable.
//!
//! We conceptually walk over the AST in reverse execution order. If we
//! find a use of a variable, we add it to the set of live variables. If
//! we find an assignment to a variable, we remove it from the set of live
//! variables. When we have to merge two flows, we take the union of
//! those two flows -- if the variable is live on both paths, we simply
//! pick one ID. In the event of loops, we continue doing this until a
//! fixed point is reached.
//!
//! ## Checking initialization
//!
//! At the function entry point, all variables must be dead. If this is
//! not the case, we can report an error using the ID found in the set of
//! live variables, which identifies a use of the variable which is not
//! dominated by an assignment.
//!
//! ## Checking moves
//!
//! After each explicit move, the variable must be dead.
//!
//! ## Computing last uses
//!
//! Any use of the variable where the variable is dead afterwards is a
//! last use.
//!
//! # Implementation details
//!
//! The actual implementation contains two (nested) walks over the AST.
//! The outer walk has the job of building up the ir_maps instance for the
//! enclosing function. On the way down the tree, it identifies those AST
//! nodes and variable IDs that will be needed for the liveness analysis
//! and assigns them contiguous IDs. The liveness ID for an AST node is
//! called a `live_node` (it's a newtype'd `u32`) and the ID for a variable
//! is called a `variable` (another newtype'd `u32`).
//!
//! On the way back up the tree, as we are about to exit from a function
//! declaration we allocate a `liveness` instance. Now that we know
//! precisely how many nodes and variables we need, we can allocate all
//! the various arrays that we will need to precisely the right size. We then
//! perform the actual propagation on the `liveness` instance.
//!
//! This propagation is encoded in the various `propagate_through_*()`
//! methods. It effectively does a reverse walk of the AST; whenever we
//! reach a loop node, we iterate until a fixed point is reached.
//!
//! ## The `RWU` struct
//!
//! At each live node `N`, we track three pieces of information for each
//! variable `V` (these are encapsulated in the `RWU` struct):
//!
//! - `reader`: the `LiveNode` ID of some node which will read the value
//!    that `V` holds on entry to `N`. Formally: a node `M` such
//!    that there exists a path `P` from `N` to `M` where `P` does not
//!    write `V`. If the `reader` is `None`, then the current
//!    value will never be read (the variable is dead, essentially).
//!
//! - `writer`: the `LiveNode` ID of some node which will write the
//!    variable `V` and which is reachable from `N`. Formally: a node `M`
//!    such that there exists a path `P` from `N` to `M` and `M` writes
//!    `V`. If the `writer` is `None`, then there is no writer
//!    of `V` that follows `N`.
//!
//! - `used`: a boolean value indicating whether `V` is *used*. We
//!   distinguish a *read* from a *use* in that a *use* is some read that
//!   is not just used to generate a new value. For example, `x += 1` is
//!   a read but not a use. This is used to generate better warnings.
//!
//! ## Special nodes and variables
//!
//! We generate various special nodes for various, well, special purposes.
//! These are described in the `Liveness` struct.

use self::LiveNodeKind::*;
use self::VarKind::*;

use rustc_ast::InlineAsmOptions;
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::def::*;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::{Expr, HirId, HirIdMap, HirIdSet};
use rustc_index::vec::IndexVec;
use rustc_middle::hir::map::Map;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, DefIdTree, RootVariableMinCaptureList, Ty, TyCtxt};
use rustc_session::lint;
use rustc_span::symbol::{kw, sym, Symbol};
use rustc_span::Span;

use std::collections::VecDeque;
use std::io;
use std::io::prelude::*;
use std::iter;
use std::rc::Rc;

mod rwu_table;

rustc_index::newtype_index! {
    pub struct Variable {
        DEBUG_FORMAT = "v({})",
    }
}

rustc_index::newtype_index! {
    pub struct LiveNode {
        DEBUG_FORMAT = "ln({})",
    }
}

#[derive(Copy, Clone, PartialEq, Debug)]
enum LiveNodeKind {
    UpvarNode(Span),
    ExprNode(Span, HirId),
    VarDefNode(Span, HirId),
    ClosureNode,
    ExitNode,
}

fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt<'_>) -> String {
    let sm = tcx.sess.source_map();
    match lnk {
        UpvarNode(s) => format!("Upvar node [{}]", sm.span_to_diagnostic_string(s)),
        ExprNode(s, _) => format!("Expr node [{}]", sm.span_to_diagnostic_string(s)),
        VarDefNode(s, _) => format!("Var def node [{}]", sm.span_to_diagnostic_string(s)),
        ClosureNode => "Closure node".to_owned(),
        ExitNode => "Exit node".to_owned(),
    }
}

fn check_mod_liveness(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
    tcx.hir().visit_item_likes_in_module(module_def_id, &mut IrMaps::new(tcx).as_deep_visitor());
}

pub fn provide(providers: &mut Providers) {
    *providers = Providers { check_mod_liveness, ..*providers };
}

// ______________________________________________________________________
// Creating ir_maps
//
// This is the first pass and the one that drives the main
// computation.  It walks up and down the IR once.  On the way down,
// we count for each function the number of variables as well as
// liveness nodes.  A liveness node is basically an expression or
// capture clause that does something of interest: either it has
// interesting control flow or it uses/defines a local variable.
//
// On the way back up, at each function node we create liveness sets
// (we now know precisely how big to make our various vectors and so
// forth) and then do the data-flow propagation to compute the set
// of live variables at each program point.
//
// Finally, we run back over the IR one last time and, using the
// computed liveness, check various safety conditions.  For example,
// there must be no live nodes at the definition site for a variable
// unless it has an initializer.  Similarly, each non-mutable local
// variable must not be assigned if there is some successor
// assignment.  And so forth.

struct CaptureInfo {
    ln: LiveNode,
    var_hid: HirId,
}

#[derive(Copy, Clone, Debug)]
struct LocalInfo {
    id: HirId,
    name: Symbol,
    is_shorthand: bool,
}

#[derive(Copy, Clone, Debug)]
enum VarKind {
    Param(HirId, Symbol),
    Local(LocalInfo),
    Upvar(HirId, Symbol),
}

struct IrMaps<'tcx> {
    tcx: TyCtxt<'tcx>,
    live_node_map: HirIdMap<LiveNode>,
    variable_map: HirIdMap<Variable>,
    capture_info_map: HirIdMap<Rc<Vec<CaptureInfo>>>,
    var_kinds: IndexVec<Variable, VarKind>,
    lnks: IndexVec<LiveNode, LiveNodeKind>,
}

impl IrMaps<'tcx> {
    fn new(tcx: TyCtxt<'tcx>) -> IrMaps<'tcx> {
        IrMaps {
            tcx,
            live_node_map: HirIdMap::default(),
            variable_map: HirIdMap::default(),
            capture_info_map: Default::default(),
            var_kinds: IndexVec::new(),
            lnks: IndexVec::new(),
        }
    }

    fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
        let ln = self.lnks.push(lnk);

        debug!("{:?} is of kind {}", ln, live_node_kind_to_string(lnk, self.tcx));

        ln
    }

    fn add_live_node_for_node(&mut self, hir_id: HirId, lnk: LiveNodeKind) {
        let ln = self.add_live_node(lnk);
        self.live_node_map.insert(hir_id, ln);

        debug!("{:?} is node {:?}", ln, hir_id);
    }

    fn add_variable(&mut self, vk: VarKind) -> Variable {
        let v = self.var_kinds.push(vk);

        match vk {
            Local(LocalInfo { id: node_id, .. }) | Param(node_id, _) | Upvar(node_id, _) => {
                self.variable_map.insert(node_id, v);
            }
        }

        debug!("{:?} is {:?}", v, vk);

        v
    }

    fn variable(&self, hir_id: HirId, span: Span) -> Variable {
        match self.variable_map.get(&hir_id) {
            Some(&var) => var,
            None => {
                span_bug!(span, "no variable registered for id {:?}", hir_id);
            }
        }
    }

    fn variable_name(&self, var: Variable) -> Symbol {
        match self.var_kinds[var] {
            Local(LocalInfo { name, .. }) | Param(_, name) | Upvar(_, name) => name,
        }
    }

    fn variable_is_shorthand(&self, var: Variable) -> bool {
        match self.var_kinds[var] {
            Local(LocalInfo { is_shorthand, .. }) => is_shorthand,
            Param(..) | Upvar(..) => false,
        }
    }

    fn set_captures(&mut self, hir_id: HirId, cs: Vec<CaptureInfo>) {
        self.capture_info_map.insert(hir_id, Rc::new(cs));
    }

    fn collect_shorthand_field_ids(&self, pat: &hir::Pat<'tcx>) -> HirIdSet {
        // For struct patterns, take note of which fields used shorthand
        // (`x` rather than `x: x`).
        let mut shorthand_field_ids = HirIdSet::default();
        let mut pats = VecDeque::new();
        pats.push_back(pat);

        while let Some(pat) = pats.pop_front() {
            use rustc_hir::PatKind::*;
            match &pat.kind {
                Binding(.., inner_pat) => {
                    pats.extend(inner_pat.iter());
                }
                Struct(_, fields, _) => {
                    let (short, not_short): (Vec<&_>, Vec<&_>) =
                        fields.iter().partition(|f| f.is_shorthand);
                    shorthand_field_ids.extend(short.iter().map(|f| f.pat.hir_id));
                    pats.extend(not_short.iter().map(|f| f.pat));
                }
                Ref(inner_pat, _) | Box(inner_pat) => {
                    pats.push_back(inner_pat);
                }
                TupleStruct(_, inner_pats, _) | Tuple(inner_pats, _) | Or(inner_pats) => {
                    pats.extend(inner_pats.iter());
                }
                Slice(pre_pats, inner_pat, post_pats) => {
                    pats.extend(pre_pats.iter());
                    pats.extend(inner_pat.iter());
                    pats.extend(post_pats.iter());
                }
                _ => {}
            }
        }

        return shorthand_field_ids;
    }

    fn add_from_pat(&mut self, pat: &hir::Pat<'tcx>) {
        let shorthand_field_ids = self.collect_shorthand_field_ids(pat);

        pat.each_binding(|_, hir_id, _, ident| {
            self.add_live_node_for_node(hir_id, VarDefNode(ident.span, hir_id));
            self.add_variable(Local(LocalInfo {
                id: hir_id,
                name: ident.name,
                is_shorthand: shorthand_field_ids.contains(&hir_id),
            }));
        });
    }
}

impl<'tcx> Visitor<'tcx> for IrMaps<'tcx> {
    type Map = Map<'tcx>;

    fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
        NestedVisitorMap::OnlyBodies(self.tcx.hir())
    }

    fn visit_body(&mut self, body: &'tcx hir::Body<'tcx>) {
        debug!("visit_body {:?}", body.id());

        // swap in a new set of IR maps for this body
        let mut maps = IrMaps::new(self.tcx);
        let hir_id = maps.tcx.hir().body_owner(body.id());
        let local_def_id = maps.tcx.hir().local_def_id(hir_id);
        let def_id = local_def_id.to_def_id();

        // Don't run unused pass for #[derive()]
        if let Some(parent) = self.tcx.parent(def_id) {
            if let DefKind::Impl = self.tcx.def_kind(parent.expect_local()) {
                if self.tcx.has_attr(parent, sym::automatically_derived) {
                    return;
                }
            }
        }

        // Don't run unused pass for #[naked]
        if self.tcx.has_attr(def_id, sym::naked) {
            return;
        }

        if let Some(upvars) = maps.tcx.upvars_mentioned(def_id) {
            for &var_hir_id in upvars.keys() {
                let var_name = maps.tcx.hir().name(var_hir_id);
                maps.add_variable(Upvar(var_hir_id, var_name));
            }
        }

        // gather up the various local variables, significant expressions,
        // and so forth:
        intravisit::walk_body(&mut maps, body);

        // compute liveness
        let mut lsets = Liveness::new(&mut maps, local_def_id);
        let entry_ln = lsets.compute(&body, hir_id);
        lsets.log_liveness(entry_ln, body.id().hir_id);

        // check for various error conditions
        lsets.visit_body(body);
        lsets.warn_about_unused_upvars(entry_ln);
        lsets.warn_about_unused_args(body, entry_ln);
    }

    fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
        self.add_from_pat(&local.pat);
        intravisit::walk_local(self, local);
    }

    fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
        self.add_from_pat(&arm.pat);
        if let Some(hir::Guard::IfLet(ref pat, _)) = arm.guard {
            self.add_from_pat(pat);
        }
        intravisit::walk_arm(self, arm);
    }

    fn visit_param(&mut self, param: &'tcx hir::Param<'tcx>) {
        let shorthand_field_ids = self.collect_shorthand_field_ids(param.pat);
        param.pat.each_binding(|_bm, hir_id, _x, ident| {
            let var = match param.pat.kind {
                rustc_hir::PatKind::Struct(..) => Local(LocalInfo {
                    id: hir_id,
                    name: ident.name,
                    is_shorthand: shorthand_field_ids.contains(&hir_id),
                }),
                _ => Param(hir_id, ident.name),
            };
            self.add_variable(var);
        });
        intravisit::walk_param(self, param);
    }

    fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
        match expr.kind {
            // live nodes required for uses or definitions of variables:
            hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
                debug!("expr {}: path that leads to {:?}", expr.hir_id, path.res);
                if let Res::Local(_var_hir_id) = path.res {
                    self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
                }
                intravisit::walk_expr(self, expr);
            }
            hir::ExprKind::Closure(..) => {
                // Interesting control flow (for loops can contain labeled
                // breaks or continues)
                self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));

                // Make a live_node for each mentioned variable, with the span
                // being the location that the variable is used.  This results
                // in better error messages than just pointing at the closure
                // construction site.
                let mut call_caps = Vec::new();
                let closure_def_id = self.tcx.hir().local_def_id(expr.hir_id);
                if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
                    call_caps.extend(upvars.keys().map(|var_id| {
                        let upvar = upvars[var_id];
                        let upvar_ln = self.add_live_node(UpvarNode(upvar.span));
                        CaptureInfo { ln: upvar_ln, var_hid: *var_id }
                    }));
                }
                self.set_captures(expr.hir_id, call_caps);
                intravisit::walk_expr(self, expr);
            }

            hir::ExprKind::Let(ref pat, ..) => {
                self.add_from_pat(pat);
                intravisit::walk_expr(self, expr);
            }

            // live nodes required for interesting control flow:
            hir::ExprKind::If(..)
            | hir::ExprKind::Match(..)
            | hir::ExprKind::Loop(..)
            | hir::ExprKind::Yield(..) => {
                self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
                intravisit::walk_expr(self, expr);
            }
            hir::ExprKind::Binary(op, ..) if op.node.is_lazy() => {
                self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
                intravisit::walk_expr(self, expr);
            }

            // otherwise, live nodes are not required:
            hir::ExprKind::Index(..)
            | hir::ExprKind::Field(..)
            | hir::ExprKind::Array(..)
            | hir::ExprKind::Call(..)
            | hir::ExprKind::MethodCall(..)
            | hir::ExprKind::Tup(..)
            | hir::ExprKind::Binary(..)
            | hir::ExprKind::AddrOf(..)
            | hir::ExprKind::Cast(..)
            | hir::ExprKind::DropTemps(..)
            | hir::ExprKind::Unary(..)
            | hir::ExprKind::Break(..)
            | hir::ExprKind::Continue(_)
            | hir::ExprKind::Lit(_)
            | hir::ExprKind::ConstBlock(..)
            | hir::ExprKind::Ret(..)
            | hir::ExprKind::Block(..)
            | hir::ExprKind::Assign(..)
            | hir::ExprKind::AssignOp(..)
            | hir::ExprKind::Struct(..)
            | hir::ExprKind::Repeat(..)
            | hir::ExprKind::InlineAsm(..)
            | hir::ExprKind::LlvmInlineAsm(..)
            | hir::ExprKind::Box(..)
            | hir::ExprKind::Type(..)
            | hir::ExprKind::Err
            | hir::ExprKind::Path(hir::QPath::TypeRelative(..))
            | hir::ExprKind::Path(hir::QPath::LangItem(..)) => {
                intravisit::walk_expr(self, expr);
            }
        }
    }
}

// ______________________________________________________________________
// Computing liveness sets
//
// Actually we compute just a bit more than just liveness, but we use
// the same basic propagation framework in all cases.

const ACC_READ: u32 = 1;
const ACC_WRITE: u32 = 2;
const ACC_USE: u32 = 4;

struct Liveness<'a, 'tcx> {
    ir: &'a mut IrMaps<'tcx>,
    typeck_results: &'a ty::TypeckResults<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    closure_min_captures: Option<&'tcx RootVariableMinCaptureList<'tcx>>,
    successors: IndexVec<LiveNode, Option<LiveNode>>,
    rwu_table: rwu_table::RWUTable,

    /// A live node representing a point of execution before closure entry &
    /// after closure exit. Used to calculate liveness of captured variables
    /// through calls to the same closure. Used for Fn & FnMut closures only.
    closure_ln: LiveNode,
    /// A live node representing every 'exit' from the function, whether it be
    /// by explicit return, panic, or other means.
    exit_ln: LiveNode,

    // mappings from loop node ID to LiveNode
    // ("break" label should map to loop node ID,
    // it probably doesn't now)
    break_ln: HirIdMap<LiveNode>,
    cont_ln: HirIdMap<LiveNode>,
}

impl<'a, 'tcx> Liveness<'a, 'tcx> {
    fn new(ir: &'a mut IrMaps<'tcx>, body_owner: LocalDefId) -> Liveness<'a, 'tcx> {
        let typeck_results = ir.tcx.typeck(body_owner);
        let param_env = ir.tcx.param_env(body_owner);
        let closure_min_captures = typeck_results.closure_min_captures.get(&body_owner.to_def_id());
        let closure_ln = ir.add_live_node(ClosureNode);
        let exit_ln = ir.add_live_node(ExitNode);

        let num_live_nodes = ir.lnks.len();
        let num_vars = ir.var_kinds.len();

        Liveness {
            ir,
            typeck_results,
            param_env,
            closure_min_captures,
            successors: IndexVec::from_elem_n(None, num_live_nodes),
            rwu_table: rwu_table::RWUTable::new(num_live_nodes, num_vars),
            closure_ln,
            exit_ln,
            break_ln: Default::default(),
            cont_ln: Default::default(),
        }
    }

    fn live_node(&self, hir_id: HirId, span: Span) -> LiveNode {
        match self.ir.live_node_map.get(&hir_id) {
            Some(&ln) => ln,
            None => {
                // This must be a mismatch between the ir_map construction
                // above and the propagation code below; the two sets of
                // code have to agree about which AST nodes are worth
                // creating liveness nodes for.
                span_bug!(span, "no live node registered for node {:?}", hir_id);
            }
        }
    }

    fn variable(&self, hir_id: HirId, span: Span) -> Variable {
        self.ir.variable(hir_id, span)
    }

    fn define_bindings_in_pat(&mut self, pat: &hir::Pat<'_>, mut succ: LiveNode) -> LiveNode {
        // In an or-pattern, only consider the first pattern; any later patterns
        // must have the same bindings, and we also consider the first pattern
        // to be the "authoritative" set of ids.
        pat.each_binding_or_first(&mut |_, hir_id, pat_sp, ident| {
            let ln = self.live_node(hir_id, pat_sp);
            let var = self.variable(hir_id, ident.span);
            self.init_from_succ(ln, succ);
            self.define(ln, var);
            succ = ln;
        });
        succ
    }

    fn live_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
        self.rwu_table.get_reader(ln, var)
    }

    // Is this variable live on entry to any of its successor nodes?
    fn live_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
        let successor = self.successors[ln].unwrap();
        self.live_on_entry(successor, var)
    }

    fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
        self.rwu_table.get_used(ln, var)
    }

    fn assigned_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
        self.rwu_table.get_writer(ln, var)
    }

    fn assigned_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
        let successor = self.successors[ln].unwrap();
        self.assigned_on_entry(successor, var)
    }

    fn write_vars<F>(&self, wr: &mut dyn Write, mut test: F) -> io::Result<()>
    where
        F: FnMut(Variable) -> bool,
    {
        for var_idx in 0..self.ir.var_kinds.len() {
            let var = Variable::from(var_idx);
            if test(var) {
                write!(wr, " {:?}", var)?;
            }
        }
        Ok(())
    }

    #[allow(unused_must_use)]
    fn ln_str(&self, ln: LiveNode) -> String {
        let mut wr = Vec::new();
        {
            let wr = &mut wr as &mut dyn Write;
            write!(wr, "[{:?} of kind {:?} reads", ln, self.ir.lnks[ln]);
            self.write_vars(wr, |var| self.rwu_table.get_reader(ln, var));
            write!(wr, "  writes");
            self.write_vars(wr, |var| self.rwu_table.get_writer(ln, var));
            write!(wr, "  uses");
            self.write_vars(wr, |var| self.rwu_table.get_used(ln, var));

            write!(wr, "  precedes {:?}]", self.successors[ln]);
        }
        String::from_utf8(wr).unwrap()
    }

    fn log_liveness(&self, entry_ln: LiveNode, hir_id: hir::HirId) {
        // hack to skip the loop unless debug! is enabled:
        debug!(
            "^^ liveness computation results for body {} (entry={:?})",
            {
                for ln_idx in 0..self.ir.lnks.len() {
                    debug!("{:?}", self.ln_str(LiveNode::from(ln_idx)));
                }
                hir_id
            },
            entry_ln
        );
    }

    fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
        self.successors[ln] = Some(succ_ln);

        // It is not necessary to initialize the RWUs here because they are all
        // empty when created, and the sets only grow during iterations.
    }

    fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
        // more efficient version of init_empty() / merge_from_succ()
        self.successors[ln] = Some(succ_ln);
        self.rwu_table.copy(ln, succ_ln);
        debug!("init_from_succ(ln={}, succ={})", self.ln_str(ln), self.ln_str(succ_ln));
    }

    fn merge_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) -> bool {
        if ln == succ_ln {
            return false;
        }

        let changed = self.rwu_table.union(ln, succ_ln);
        debug!("merge_from_succ(ln={:?}, succ={}, changed={})", ln, self.ln_str(succ_ln), changed);
        changed
    }

    // Indicates that a local variable was *defined*; we know that no
    // uses of the variable can precede the definition (resolve checks
    // this) so we just clear out all the data.
    fn define(&mut self, writer: LiveNode, var: Variable) {
        let used = self.rwu_table.get_used(writer, var);
        self.rwu_table.set(writer, var, rwu_table::RWU { reader: false, writer: false, used });
        debug!("{:?} defines {:?}: {}", writer, var, self.ln_str(writer));
    }

    // Either read, write, or both depending on the acc bitset
    fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
        debug!("{:?} accesses[{:x}] {:?}: {}", ln, acc, var, self.ln_str(ln));

        let mut rwu = self.rwu_table.get(ln, var);

        if (acc & ACC_WRITE) != 0 {
            rwu.reader = false;
            rwu.writer = true;
        }

        // Important: if we both read/write, must do read second
        // or else the write will override.
        if (acc & ACC_READ) != 0 {
            rwu.reader = true;
        }

        if (acc & ACC_USE) != 0 {
            rwu.used = true;
        }

        self.rwu_table.set(ln, var, rwu);
    }

    fn compute(&mut self, body: &hir::Body<'_>, hir_id: HirId) -> LiveNode {
        debug!("compute: for body {:?}", body.id().hir_id);

        // # Liveness of captured variables
        //
        // When computing the liveness for captured variables we take into
        // account how variable is captured (ByRef vs ByValue) and what is the
        // closure kind (Generator / FnOnce vs Fn / FnMut).
        //
        // Variables captured by reference are assumed to be used on the exit
        // from the closure.
        //
        // In FnOnce closures, variables captured by value are known to be dead
        // on exit since it is impossible to call the closure again.
        //
        // In Fn / FnMut closures, variables captured by value are live on exit
        // if they are live on the entry to the closure, since only the closure
        // itself can access them on subsequent calls.

        if let Some(closure_min_captures) = self.closure_min_captures {
            // Mark upvars captured by reference as used after closure exits.
            for (&var_hir_id, min_capture_list) in closure_min_captures {
                for captured_place in min_capture_list {
                    match captured_place.info.capture_kind {
                        ty::UpvarCapture::ByRef(_) => {
                            let var = self.variable(
                                var_hir_id,
                                captured_place.get_capture_kind_span(self.ir.tcx),
                            );
                            self.acc(self.exit_ln, var, ACC_READ | ACC_USE);
                        }
                        ty::UpvarCapture::ByValue(_) => {}
                    }
                }
            }
        }

        let succ = self.propagate_through_expr(&body.value, self.exit_ln);

        if self.closure_min_captures.is_none() {
            // Either not a closure, or closure without any captured variables.
            // No need to determine liveness of captured variables, since there
            // are none.
            return succ;
        }

        let ty = self.typeck_results.node_type(hir_id);
        match ty.kind() {
            ty::Closure(_def_id, substs) => match substs.as_closure().kind() {
                ty::ClosureKind::Fn => {}
                ty::ClosureKind::FnMut => {}
                ty::ClosureKind::FnOnce => return succ,
            },
            ty::Generator(..) => return succ,
            _ => {
                span_bug!(
                    body.value.span,
                    "{} has upvars so it should have a closure type: {:?}",
                    hir_id,
                    ty
                );
            }
        };

        // Propagate through calls to the closure.
        loop {
            self.init_from_succ(self.closure_ln, succ);
            for param in body.params {
                param.pat.each_binding(|_bm, hir_id, _x, ident| {
                    let var = self.variable(hir_id, ident.span);
                    self.define(self.closure_ln, var);
                })
            }

            if !self.merge_from_succ(self.exit_ln, self.closure_ln) {
                break;
            }
            assert_eq!(succ, self.propagate_through_expr(&body.value, self.exit_ln));
        }

        succ
    }

    fn propagate_through_block(&mut self, blk: &hir::Block<'_>, succ: LiveNode) -> LiveNode {
        if blk.targeted_by_break {
            self.break_ln.insert(blk.hir_id, succ);
        }
        let succ = self.propagate_through_opt_expr(blk.expr, succ);
        blk.stmts.iter().rev().fold(succ, |succ, stmt| self.propagate_through_stmt(stmt, succ))
    }

    fn propagate_through_stmt(&mut self, stmt: &hir::Stmt<'_>, succ: LiveNode) -> LiveNode {
        match stmt.kind {
            hir::StmtKind::Local(ref local) => {
                // Note: we mark the variable as defined regardless of whether
                // there is an initializer.  Initially I had thought to only mark
                // the live variable as defined if it was initialized, and then we
                // could check for uninit variables just by scanning what is live
                // at the start of the function. But that doesn't work so well for
                // immutable variables defined in a loop:
                //     loop { let x; x = 5; }
                // because the "assignment" loops back around and generates an error.
                //
                // So now we just check that variables defined w/o an
                // initializer are not live at the point of their
                // initialization, which is mildly more complex than checking
                // once at the func header but otherwise equivalent.

                let succ = self.propagate_through_opt_expr(local.init, succ);
                self.define_bindings_in_pat(&local.pat, succ)
            }
            hir::StmtKind::Item(..) => succ,
            hir::StmtKind::Expr(ref expr) | hir::StmtKind::Semi(ref expr) => {
                self.propagate_through_expr(&expr, succ)
            }
        }
    }

    fn propagate_through_exprs(&mut self, exprs: &[Expr<'_>], succ: LiveNode) -> LiveNode {
        exprs.iter().rev().fold(succ, |succ, expr| self.propagate_through_expr(&expr, succ))
    }

    fn propagate_through_opt_expr(
        &mut self,
        opt_expr: Option<&Expr<'_>>,
        succ: LiveNode,
    ) -> LiveNode {
        opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
    }

    fn propagate_through_expr(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
        debug!("propagate_through_expr: {:?}", expr);

        match expr.kind {
            // Interesting cases with control flow or which gen/kill
            hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
                self.access_path(expr.hir_id, path, succ, ACC_READ | ACC_USE)
            }

            hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),

            hir::ExprKind::Closure(..) => {
                debug!("{:?} is an ExprKind::Closure", expr);

                // the construction of a closure itself is not important,
                // but we have to consider the closed over variables.
                let caps = self
                    .ir
                    .capture_info_map
                    .get(&expr.hir_id)
                    .cloned()
                    .unwrap_or_else(|| span_bug!(expr.span, "no registered caps"));

                caps.iter().rev().fold(succ, |succ, cap| {
                    self.init_from_succ(cap.ln, succ);
                    let var = self.variable(cap.var_hid, expr.span);
                    self.acc(cap.ln, var, ACC_READ | ACC_USE);
                    cap.ln
                })
            }

            hir::ExprKind::Let(ref pat, ref scrutinee, _) => {
                let succ = self.propagate_through_expr(scrutinee, succ);
                self.define_bindings_in_pat(pat, succ)
            }

            // Note that labels have been resolved, so we don't need to look
            // at the label ident
            hir::ExprKind::Loop(ref blk, ..) => self.propagate_through_loop(expr, &blk, succ),

            hir::ExprKind::Yield(ref e, ..) => {
                let yield_ln = self.live_node(expr.hir_id, expr.span);
                self.init_from_succ(yield_ln, succ);
                self.merge_from_succ(yield_ln, self.exit_ln);
                self.propagate_through_expr(e, yield_ln)
            }

            hir::ExprKind::If(ref cond, ref then, ref else_opt) => {
                //
                //     (cond)
                //       |
                //       v
                //     (expr)
                //     /   \
                //    |     |
                //    v     v
                //  (then)(els)
                //    |     |
                //    v     v
                //   (  succ  )
                //
                let else_ln =
                    self.propagate_through_opt_expr(else_opt.as_ref().map(|e| &**e), succ);
                let then_ln = self.propagate_through_expr(&then, succ);
                let ln = self.live_node(expr.hir_id, expr.span);
                self.init_from_succ(ln, else_ln);
                self.merge_from_succ(ln, then_ln);
                self.propagate_through_expr(&cond, ln)
            }

            hir::ExprKind::Match(ref e, arms, _) => {
                //
                //      (e)
                //       |
                //       v
                //     (expr)
                //     / | \
                //    |  |  |
                //    v  v  v
                //   (..arms..)
                //    |  |  |
                //    v  v  v
                //   (  succ  )
                //
                //
                let ln = self.live_node(expr.hir_id, expr.span);
                self.init_empty(ln, succ);
                for arm in arms {
                    let body_succ = self.propagate_through_expr(&arm.body, succ);

                    let guard_succ = arm.guard.as_ref().map_or(body_succ, |g| match g {
                        hir::Guard::If(e) => self.propagate_through_expr(e, body_succ),
                        hir::Guard::IfLet(pat, e) => {
                            let let_bind = self.define_bindings_in_pat(pat, body_succ);
                            self.propagate_through_expr(e, let_bind)
                        }
                    });
                    let arm_succ = self.define_bindings_in_pat(&arm.pat, guard_succ);
                    self.merge_from_succ(ln, arm_succ);
                }
                self.propagate_through_expr(&e, ln)
            }

            hir::ExprKind::Ret(ref o_e) => {
                // Ignore succ and subst exit_ln.
                self.propagate_through_opt_expr(o_e.as_ref().map(|e| &**e), self.exit_ln)
            }

            hir::ExprKind::Break(label, ref opt_expr) => {
                // Find which label this break jumps to
                let target = match label.target_id {
                    Ok(hir_id) => self.break_ln.get(&hir_id),
                    Err(err) => span_bug!(expr.span, "loop scope error: {}", err),
                }
                .cloned();

                // Now that we know the label we're going to,
                // look it up in the break loop nodes table

                match target {
                    Some(b) => self.propagate_through_opt_expr(opt_expr.as_ref().map(|e| &**e), b),
                    None => span_bug!(expr.span, "`break` to unknown label"),
                }
            }

            hir::ExprKind::Continue(label) => {
                // Find which label this expr continues to
                let sc = label
                    .target_id
                    .unwrap_or_else(|err| span_bug!(expr.span, "loop scope error: {}", err));

                // Now that we know the label we're going to,
                // look it up in the continue loop nodes table
                self.cont_ln
                    .get(&sc)
                    .cloned()
                    .unwrap_or_else(|| span_bug!(expr.span, "continue to unknown label"))
            }

            hir::ExprKind::Assign(ref l, ref r, _) => {
                // see comment on places in
                // propagate_through_place_components()
                let succ = self.write_place(&l, succ, ACC_WRITE);
                let succ = self.propagate_through_place_components(&l, succ);
                self.propagate_through_expr(&r, succ)
            }

            hir::ExprKind::AssignOp(_, ref l, ref r) => {
                // an overloaded assign op is like a method call
                if self.typeck_results.is_method_call(expr) {
                    let succ = self.propagate_through_expr(&l, succ);
                    self.propagate_through_expr(&r, succ)
                } else {
                    // see comment on places in
                    // propagate_through_place_components()
                    let succ = self.write_place(&l, succ, ACC_WRITE | ACC_READ);
                    let succ = self.propagate_through_expr(&r, succ);
                    self.propagate_through_place_components(&l, succ)
                }
            }

            // Uninteresting cases: just propagate in rev exec order
            hir::ExprKind::Array(ref exprs) => self.propagate_through_exprs(exprs, succ),

            hir::ExprKind::Struct(_, ref fields, ref with_expr) => {
                let succ = self.propagate_through_opt_expr(with_expr.as_ref().map(|e| &**e), succ);
                fields
                    .iter()
                    .rev()
                    .fold(succ, |succ, field| self.propagate_through_expr(&field.expr, succ))
            }

            hir::ExprKind::Call(ref f, ref args) => {
                let succ = self.check_is_ty_uninhabited(expr, succ);
                let succ = self.propagate_through_exprs(args, succ);
                self.propagate_through_expr(&f, succ)
            }

            hir::ExprKind::MethodCall(.., ref args, _) => {
                let succ = self.check_is_ty_uninhabited(expr, succ);
                self.propagate_through_exprs(args, succ)
            }

            hir::ExprKind::Tup(ref exprs) => self.propagate_through_exprs(exprs, succ),

            hir::ExprKind::Binary(op, ref l, ref r) if op.node.is_lazy() => {
                let r_succ = self.propagate_through_expr(&r, succ);

                let ln = self.live_node(expr.hir_id, expr.span);
                self.init_from_succ(ln, succ);
                self.merge_from_succ(ln, r_succ);

                self.propagate_through_expr(&l, ln)
            }

            hir::ExprKind::Index(ref l, ref r) | hir::ExprKind::Binary(_, ref l, ref r) => {
                let r_succ = self.propagate_through_expr(&r, succ);
                self.propagate_through_expr(&l, r_succ)
            }

            hir::ExprKind::Box(ref e)
            | hir::ExprKind::AddrOf(_, _, ref e)
            | hir::ExprKind::Cast(ref e, _)
            | hir::ExprKind::Type(ref e, _)
            | hir::ExprKind::DropTemps(ref e)
            | hir::ExprKind::Unary(_, ref e)
            | hir::ExprKind::Repeat(ref e, _) => self.propagate_through_expr(&e, succ),

            hir::ExprKind::InlineAsm(ref asm) => {
                // Handle non-returning asm
                let mut succ = if asm.options.contains(InlineAsmOptions::NORETURN) {
                    self.exit_ln
                } else {
                    succ
                };

                // Do a first pass for writing outputs only
                for (op, _op_sp) in asm.operands.iter().rev() {
                    match op {
                        hir::InlineAsmOperand::In { .. }
                        | hir::InlineAsmOperand::Const { .. }
                        | hir::InlineAsmOperand::Sym { .. } => {}
                        hir::InlineAsmOperand::Out { expr, .. } => {
                            if let Some(expr) = expr {
                                succ = self.write_place(expr, succ, ACC_WRITE);
                            }
                        }
                        hir::InlineAsmOperand::InOut { expr, .. } => {
                            succ = self.write_place(expr, succ, ACC_READ | ACC_WRITE | ACC_USE);
                        }
                        hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
                            if let Some(expr) = out_expr {
                                succ = self.write_place(expr, succ, ACC_WRITE);
                            }
                        }
                    }
                }

                // Then do a second pass for inputs
                let mut succ = succ;
                for (op, _op_sp) in asm.operands.iter().rev() {
                    match op {
                        hir::InlineAsmOperand::In { expr, .. }
                        | hir::InlineAsmOperand::Sym { expr, .. } => {
                            succ = self.propagate_through_expr(expr, succ)
                        }
                        hir::InlineAsmOperand::Out { expr, .. } => {
                            if let Some(expr) = expr {
                                succ = self.propagate_through_place_components(expr, succ);
                            }
                        }
                        hir::InlineAsmOperand::InOut { expr, .. } => {
                            succ = self.propagate_through_place_components(expr, succ);
                        }
                        hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
                            if let Some(expr) = out_expr {
                                succ = self.propagate_through_place_components(expr, succ);
                            }
                            succ = self.propagate_through_expr(in_expr, succ);
                        }
                        hir::InlineAsmOperand::Const { .. } => {}
                    }
                }
                succ
            }

            hir::ExprKind::LlvmInlineAsm(ref asm) => {
                let ia = &asm.inner;
                let outputs = asm.outputs_exprs;
                let inputs = asm.inputs_exprs;
                let succ = iter::zip(&ia.outputs, outputs).rev().fold(succ, |succ, (o, output)| {
                    // see comment on places
                    // in propagate_through_place_components()
                    if o.is_indirect {
                        self.propagate_through_expr(output, succ)
                    } else {
                        let acc = if o.is_rw { ACC_WRITE | ACC_READ } else { ACC_WRITE };
                        let succ = self.write_place(output, succ, acc);
                        self.propagate_through_place_components(output, succ)
                    }
                });

                // Inputs are executed first. Propagate last because of rev order
                self.propagate_through_exprs(inputs, succ)
            }

            hir::ExprKind::Lit(..)
            | hir::ExprKind::ConstBlock(..)
            | hir::ExprKind::Err
            | hir::ExprKind::Path(hir::QPath::TypeRelative(..))
            | hir::ExprKind::Path(hir::QPath::LangItem(..)) => succ,

            // Note that labels have been resolved, so we don't need to look
            // at the label ident
            hir::ExprKind::Block(ref blk, _) => self.propagate_through_block(&blk, succ),
        }
    }

    fn propagate_through_place_components(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
        // # Places
        //
        // In general, the full flow graph structure for an
        // assignment/move/etc can be handled in one of two ways,
        // depending on whether what is being assigned is a "tracked
        // value" or not. A tracked value is basically a local
        // variable or argument.
        //
        // The two kinds of graphs are:
        //
        //    Tracked place          Untracked place
        // ----------------------++-----------------------
        //                       ||
        //         |             ||           |
        //         v             ||           v
        //     (rvalue)          ||       (rvalue)
        //         |             ||           |
        //         v             ||           v
        // (write of place)     ||   (place components)
        //         |             ||           |
        //         v             ||           v
        //      (succ)           ||        (succ)
        //                       ||
        // ----------------------++-----------------------
        //
        // I will cover the two cases in turn:
        //
        // # Tracked places
        //
        // A tracked place is a local variable/argument `x`.  In
        // these cases, the link_node where the write occurs is linked
        // to node id of `x`.  The `write_place()` routine generates
        // the contents of this node.  There are no subcomponents to
        // consider.
        //
        // # Non-tracked places
        //
        // These are places like `x[5]` or `x.f`.  In that case, we
        // basically ignore the value which is written to but generate
        // reads for the components---`x` in these two examples.  The
        // components reads are generated by
        // `propagate_through_place_components()` (this fn).
        //
        // # Illegal places
        //
        // It is still possible to observe assignments to non-places;
        // these errors are detected in the later pass borrowck.  We
        // just ignore such cases and treat them as reads.

        match expr.kind {
            hir::ExprKind::Path(_) => succ,
            hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(&e, succ),
            _ => self.propagate_through_expr(expr, succ),
        }
    }

    // see comment on propagate_through_place()
    fn write_place(&mut self, expr: &Expr<'_>, succ: LiveNode, acc: u32) -> LiveNode {
        match expr.kind {
            hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
                self.access_path(expr.hir_id, path, succ, acc)
            }

            // We do not track other places, so just propagate through
            // to their subcomponents.  Also, it may happen that
            // non-places occur here, because those are detected in the
            // later pass borrowck.
            _ => succ,
        }
    }

    fn access_var(
        &mut self,
        hir_id: HirId,
        var_hid: HirId,
        succ: LiveNode,
        acc: u32,
        span: Span,
    ) -> LiveNode {
        let ln = self.live_node(hir_id, span);
        if acc != 0 {
            self.init_from_succ(ln, succ);
            let var = self.variable(var_hid, span);
            self.acc(ln, var, acc);
        }
        ln
    }

    fn access_path(
        &mut self,
        hir_id: HirId,
        path: &hir::Path<'_>,
        succ: LiveNode,
        acc: u32,
    ) -> LiveNode {
        match path.res {
            Res::Local(hid) => self.access_var(hir_id, hid, succ, acc, path.span),
            _ => succ,
        }
    }

    fn propagate_through_loop(
        &mut self,
        expr: &Expr<'_>,
        body: &hir::Block<'_>,
        succ: LiveNode,
    ) -> LiveNode {
        /*
        We model control flow like this:

              (expr) <-+
                |      |
                v      |
              (body) --+

        Note that a `continue` expression targeting the `loop` will have a successor of `expr`.
        Meanwhile, a `break` expression will have a successor of `succ`.
        */

        // first iteration:
        let ln = self.live_node(expr.hir_id, expr.span);
        self.init_empty(ln, succ);
        debug!("propagate_through_loop: using id for loop body {} {:?}", expr.hir_id, body);

        self.break_ln.insert(expr.hir_id, succ);

        self.cont_ln.insert(expr.hir_id, ln);

        let body_ln = self.propagate_through_block(body, ln);

        // repeat until fixed point is reached:
        while self.merge_from_succ(ln, body_ln) {
            assert_eq!(body_ln, self.propagate_through_block(body, ln));
        }

        ln
    }

    fn check_is_ty_uninhabited(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
        let ty = self.typeck_results.expr_ty(expr);
        let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id();
        if self.ir.tcx.is_ty_uninhabited_from(m, ty, self.param_env) {
            match self.ir.lnks[succ] {
                LiveNodeKind::ExprNode(succ_span, succ_id) => {
                    self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "expression");
                }
                LiveNodeKind::VarDefNode(succ_span, succ_id) => {
                    self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "definition");
                }
                _ => {}
            };
            self.exit_ln
        } else {
            succ
        }
    }

    fn warn_about_unreachable(
        &mut self,
        orig_span: Span,
        orig_ty: Ty<'tcx>,
        expr_span: Span,
        expr_id: HirId,
        descr: &str,
    ) {
        if !orig_ty.is_never() {
            // Unreachable code warnings are already emitted during type checking.
            // However, during type checking, full type information is being
            // calculated but not yet available, so the check for diverging
            // expressions due to uninhabited result types is pretty crude and
            // only checks whether ty.is_never(). Here, we have full type
            // information available and can issue warnings for less obviously
            // uninhabited types (e.g. empty enums). The check above is used so
            // that we do not emit the same warning twice if the uninhabited type
            // is indeed `!`.

            self.ir.tcx.struct_span_lint_hir(
                lint::builtin::UNREACHABLE_CODE,
                expr_id,
                expr_span,
                |lint| {
                    let msg = format!("unreachable {}", descr);
                    lint.build(&msg)
                        .span_label(expr_span, &msg)
                        .span_label(orig_span, "any code following this expression is unreachable")
                        .span_note(
                            orig_span,
                            &format!(
                                "this expression has type `{}`, which is uninhabited",
                                orig_ty
                            ),
                        )
                        .emit();
                },
            );
        }
    }
}

// _______________________________________________________________________
// Checking for error conditions

impl<'a, 'tcx> Visitor<'tcx> for Liveness<'a, 'tcx> {
    type Map = intravisit::ErasedMap<'tcx>;

    fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
        NestedVisitorMap::None
    }

    fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
        self.check_unused_vars_in_pat(&local.pat, None, |spans, hir_id, ln, var| {
            if local.init.is_some() {
                self.warn_about_dead_assign(spans, hir_id, ln, var);
            }
        });

        intravisit::walk_local(self, local);
    }

    fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
        check_expr(self, ex);
        intravisit::walk_expr(self, ex);
    }

    fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
        self.check_unused_vars_in_pat(&arm.pat, None, |_, _, _, _| {});
        intravisit::walk_arm(self, arm);
    }
}

fn check_expr<'tcx>(this: &mut Liveness<'_, 'tcx>, expr: &'tcx Expr<'tcx>) {
    match expr.kind {
        hir::ExprKind::Assign(ref l, ..) => {
            this.check_place(&l);
        }

        hir::ExprKind::AssignOp(_, ref l, _) => {
            if !this.typeck_results.is_method_call(expr) {
                this.check_place(&l);
            }
        }

        hir::ExprKind::InlineAsm(ref asm) => {
            for (op, _op_sp) in asm.operands {
                match op {
                    hir::InlineAsmOperand::Out { expr, .. } => {
                        if let Some(expr) = expr {
                            this.check_place(expr);
                        }
                    }
                    hir::InlineAsmOperand::InOut { expr, .. } => {
                        this.check_place(expr);
                    }
                    hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
                        if let Some(out_expr) = out_expr {
                            this.check_place(out_expr);
                        }
                    }
                    _ => {}
                }
            }
        }

        hir::ExprKind::LlvmInlineAsm(ref asm) => {
            for input in asm.inputs_exprs {
                this.visit_expr(input);
            }

            // Output operands must be places
            for (o, output) in iter::zip(&asm.inner.outputs, asm.outputs_exprs) {
                if !o.is_indirect {
                    this.check_place(output);
                }
                this.visit_expr(output);
            }
        }

        hir::ExprKind::Let(ref pat, ..) => {
            this.check_unused_vars_in_pat(pat, None, |_, _, _, _| {});
        }

        // no correctness conditions related to liveness
        hir::ExprKind::Call(..)
        | hir::ExprKind::MethodCall(..)
        | hir::ExprKind::Match(..)
        | hir::ExprKind::Loop(..)
        | hir::ExprKind::Index(..)
        | hir::ExprKind::Field(..)
        | hir::ExprKind::Array(..)
        | hir::ExprKind::Tup(..)
        | hir::ExprKind::Binary(..)
        | hir::ExprKind::Cast(..)
        | hir::ExprKind::If(..)
        | hir::ExprKind::DropTemps(..)
        | hir::ExprKind::Unary(..)
        | hir::ExprKind::Ret(..)
        | hir::ExprKind::Break(..)
        | hir::ExprKind::Continue(..)
        | hir::ExprKind::Lit(_)
        | hir::ExprKind::ConstBlock(..)
        | hir::ExprKind::Block(..)
        | hir::ExprKind::AddrOf(..)
        | hir::ExprKind::Struct(..)
        | hir::ExprKind::Repeat(..)
        | hir::ExprKind::Closure(..)
        | hir::ExprKind::Path(_)
        | hir::ExprKind::Yield(..)
        | hir::ExprKind::Box(..)
        | hir::ExprKind::Type(..)
        | hir::ExprKind::Err => {}
    }
}

impl<'tcx> Liveness<'_, 'tcx> {
    fn check_place(&mut self, expr: &'tcx Expr<'tcx>) {
        match expr.kind {
            hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) => {
                if let Res::Local(var_hid) = path.res {
                    // Assignment to an immutable variable or argument: only legal
                    // if there is no later assignment. If this local is actually
                    // mutable, then check for a reassignment to flag the mutability
                    // as being used.
                    let ln = self.live_node(expr.hir_id, expr.span);
                    let var = self.variable(var_hid, expr.span);
                    self.warn_about_dead_assign(vec![expr.span], expr.hir_id, ln, var);
                }
            }
            _ => {
                // For other kinds of places, no checks are required,
                // and any embedded expressions are actually rvalues
                intravisit::walk_expr(self, expr);
            }
        }
    }

    fn should_warn(&self, var: Variable) -> Option<String> {
        let name = self.ir.variable_name(var);
        if name == kw::Empty {
            return None;
        }
        let name: &str = &name.as_str();
        if name.as_bytes()[0] == b'_' {
            return None;
        }
        Some(name.to_owned())
    }

    fn warn_about_unused_upvars(&self, entry_ln: LiveNode) {
        let closure_min_captures = match self.closure_min_captures {
            None => return,
            Some(closure_min_captures) => closure_min_captures,
        };

        // If closure_min_captures is Some(), upvars must be Some() too.
        for (&var_hir_id, min_capture_list) in closure_min_captures {
            for captured_place in min_capture_list {
                match captured_place.info.capture_kind {
                    ty::UpvarCapture::ByValue(_) => {}
                    ty::UpvarCapture::ByRef(..) => continue,
                };
                let span = captured_place.get_capture_kind_span(self.ir.tcx);
                let var = self.variable(var_hir_id, span);
                if self.used_on_entry(entry_ln, var) {
                    if !self.live_on_entry(entry_ln, var) {
                        if let Some(name) = self.should_warn(var) {
                            self.ir.tcx.struct_span_lint_hir(
                                lint::builtin::UNUSED_ASSIGNMENTS,
                                var_hir_id,
                                vec![span],
                                |lint| {
                                    lint.build(&format!(
                                        "value captured by `{}` is never read",
                                        name
                                    ))
                                    .help("did you mean to capture by reference instead?")
                                    .emit();
                                },
                            );
                        }
                    }
                } else {
                    if let Some(name) = self.should_warn(var) {
                        self.ir.tcx.struct_span_lint_hir(
                            lint::builtin::UNUSED_VARIABLES,
                            var_hir_id,
                            vec![span],
                            |lint| {
                                lint.build(&format!("unused variable: `{}`", name))
                                    .help("did you mean to capture by reference instead?")
                                    .emit();
                            },
                        );
                    }
                }
            }
        }
    }

    fn warn_about_unused_args(&self, body: &hir::Body<'_>, entry_ln: LiveNode) {
        for p in body.params {
            self.check_unused_vars_in_pat(&p.pat, Some(entry_ln), |spans, hir_id, ln, var| {
                if !self.live_on_entry(ln, var) {
                    self.report_unused_assign(hir_id, spans, var, |name| {
                        format!("value passed to `{}` is never read", name)
                    });
                }
            });
        }
    }

    fn check_unused_vars_in_pat(
        &self,
        pat: &hir::Pat<'_>,
        entry_ln: Option<LiveNode>,
        on_used_on_entry: impl Fn(Vec<Span>, HirId, LiveNode, Variable),
    ) {
        // In an or-pattern, only consider the variable; any later patterns must have the same
        // bindings, and we also consider the first pattern to be the "authoritative" set of ids.
        // However, we should take the ids and spans of variables with the same name from the later
        // patterns so the suggestions to prefix with underscores will apply to those too.
        let mut vars: FxIndexMap<Symbol, (LiveNode, Variable, Vec<(HirId, Span, Span)>)> =
            <_>::default();

        pat.each_binding(|_, hir_id, pat_sp, ident| {
            let ln = entry_ln.unwrap_or_else(|| self.live_node(hir_id, pat_sp));
            let var = self.variable(hir_id, ident.span);
            let id_and_sp = (hir_id, pat_sp, ident.span);
            vars.entry(self.ir.variable_name(var))
                .and_modify(|(.., hir_ids_and_spans)| hir_ids_and_spans.push(id_and_sp))
                .or_insert_with(|| (ln, var, vec![id_and_sp]));
        });

        for (_, (ln, var, hir_ids_and_spans)) in vars {
            if self.used_on_entry(ln, var) {
                let id = hir_ids_and_spans[0].0;
                let spans =
                    hir_ids_and_spans.into_iter().map(|(_, _, ident_span)| ident_span).collect();
                on_used_on_entry(spans, id, ln, var);
            } else {
                self.report_unused(hir_ids_and_spans, ln, var);
            }
        }
    }

    fn report_unused(
        &self,
        hir_ids_and_spans: Vec<(HirId, Span, Span)>,
        ln: LiveNode,
        var: Variable,
    ) {
        let first_hir_id = hir_ids_and_spans[0].0;

        if let Some(name) = self.should_warn(var).filter(|name| name != "self") {
            // annoying: for parameters in funcs like `fn(x: i32)
            // {ret}`, there is only one node, so asking about
            // assigned_on_exit() is not meaningful.
            let is_assigned =
                if ln == self.exit_ln { false } else { self.assigned_on_exit(ln, var) };

            if is_assigned {
                self.ir.tcx.struct_span_lint_hir(
                    lint::builtin::UNUSED_VARIABLES,
                    first_hir_id,
                    hir_ids_and_spans
                        .into_iter()
                        .map(|(_, _, ident_span)| ident_span)
                        .collect::<Vec<_>>(),
                    |lint| {
                        lint.build(&format!("variable `{}` is assigned to, but never used", name))
                            .note(&format!("consider using `_{}` instead", name))
                            .emit();
                    },
                )
            } else {
                let (shorthands, non_shorthands): (Vec<_>, Vec<_>) =
                    hir_ids_and_spans.iter().copied().partition(|(hir_id, _, ident_span)| {
                        let var = self.variable(*hir_id, *ident_span);
                        self.ir.variable_is_shorthand(var)
                    });

                // If we have both shorthand and non-shorthand, prefer the "try ignoring
                // the field" message, and suggest `_` for the non-shorthands. If we only
                // have non-shorthand, then prefix with an underscore instead.
                if !shorthands.is_empty() {
                    let shorthands = shorthands
                        .into_iter()
                        .map(|(_, pat_span, _)| (pat_span, format!("{}: _", name)))
                        .chain(
                            non_shorthands
                                .into_iter()
                                .map(|(_, pat_span, _)| (pat_span, "_".to_string())),
                        )
                        .collect::<Vec<_>>();

                    self.ir.tcx.struct_span_lint_hir(
                        lint::builtin::UNUSED_VARIABLES,
                        first_hir_id,
                        hir_ids_and_spans
                            .iter()
                            .map(|(_, pat_span, _)| *pat_span)
                            .collect::<Vec<_>>(),
                        |lint| {
                            let mut err = lint.build(&format!("unused variable: `{}`", name));
                            err.multipart_suggestion(
                                "try ignoring the field",
                                shorthands,
                                Applicability::MachineApplicable,
                            );
                            err.emit()
                        },
                    );
                } else {
                    let non_shorthands = non_shorthands
                        .into_iter()
                        .map(|(_, _, ident_span)| (ident_span, format!("_{}", name)))
                        .collect::<Vec<_>>();

                    self.ir.tcx.struct_span_lint_hir(
                        lint::builtin::UNUSED_VARIABLES,
                        first_hir_id,
                        hir_ids_and_spans
                            .iter()
                            .map(|(_, _, ident_span)| *ident_span)
                            .collect::<Vec<_>>(),
                        |lint| {
                            let mut err = lint.build(&format!("unused variable: `{}`", name));
                            err.multipart_suggestion(
                                "if this is intentional, prefix it with an underscore",
                                non_shorthands,
                                Applicability::MachineApplicable,
                            );
                            err.emit()
                        },
                    );
                }
            }
        }
    }

    fn warn_about_dead_assign(&self, spans: Vec<Span>, hir_id: HirId, ln: LiveNode, var: Variable) {
        if !self.live_on_exit(ln, var) {
            self.report_unused_assign(hir_id, spans, var, |name| {
                format!("value assigned to `{}` is never read", name)
            });
        }
    }

    fn report_unused_assign(
        &self,
        hir_id: HirId,
        spans: Vec<Span>,
        var: Variable,
        message: impl Fn(&str) -> String,
    ) {
        if let Some(name) = self.should_warn(var) {
            self.ir.tcx.struct_span_lint_hir(
                lint::builtin::UNUSED_ASSIGNMENTS,
                hir_id,
                spans,
                |lint| {
                    lint.build(&message(&name))
                        .help("maybe it is overwritten before being read?")
                        .emit();
                },
            )
        }
    }
}