1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
use parking_lot::Mutex;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::profiling::{EventId, QueryInvocationId, SelfProfilerRef};
use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::steal::Steal;
use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, Lrc, Ordering};
use rustc_index::vec::IndexVec;
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
use smallvec::{smallvec, SmallVec};
use std::collections::hash_map::Entry;
use std::fmt::Debug;
use std::hash::Hash;
use std::marker::PhantomData;
use std::sync::atomic::Ordering::Relaxed;

use super::query::DepGraphQuery;
use super::serialized::{GraphEncoder, SerializedDepGraph, SerializedDepNodeIndex};
use super::{DepContext, DepKind, DepNode, HasDepContext, WorkProductId};
use crate::ich::StableHashingContext;
use crate::query::{QueryContext, QuerySideEffects};

#[cfg(debug_assertions)]
use {super::debug::EdgeFilter, std::env};

#[derive(Clone)]
pub struct DepGraph<K: DepKind> {
    data: Option<Lrc<DepGraphData<K>>>,

    /// This field is used for assigning DepNodeIndices when running in
    /// non-incremental mode. Even in non-incremental mode we make sure that
    /// each task has a `DepNodeIndex` that uniquely identifies it. This unique
    /// ID is used for self-profiling.
    virtual_dep_node_index: Lrc<AtomicU32>,
}

rustc_index::newtype_index! {
    pub struct DepNodeIndex { .. }
}

impl DepNodeIndex {
    pub const INVALID: DepNodeIndex = DepNodeIndex::MAX;
    pub const SINGLETON_DEPENDENCYLESS_ANON_NODE: DepNodeIndex = DepNodeIndex::from_u32(0);
}

impl std::convert::From<DepNodeIndex> for QueryInvocationId {
    #[inline]
    fn from(dep_node_index: DepNodeIndex) -> Self {
        QueryInvocationId(dep_node_index.as_u32())
    }
}

#[derive(PartialEq)]
pub enum DepNodeColor {
    Red,
    Green(DepNodeIndex),
}

impl DepNodeColor {
    pub fn is_green(self) -> bool {
        match self {
            DepNodeColor::Red => false,
            DepNodeColor::Green(_) => true,
        }
    }
}

struct DepGraphData<K: DepKind> {
    /// The new encoding of the dependency graph, optimized for red/green
    /// tracking. The `current` field is the dependency graph of only the
    /// current compilation session: We don't merge the previous dep-graph into
    /// current one anymore, but we do reference shared data to save space.
    current: CurrentDepGraph<K>,

    /// The dep-graph from the previous compilation session. It contains all
    /// nodes and edges as well as all fingerprints of nodes that have them.
    previous: SerializedDepGraph<K>,

    colors: DepNodeColorMap,

    processed_side_effects: Mutex<FxHashSet<DepNodeIndex>>,

    /// When we load, there may be `.o` files, cached MIR, or other such
    /// things available to us. If we find that they are not dirty, we
    /// load the path to the file storing those work-products here into
    /// this map. We can later look for and extract that data.
    previous_work_products: FxHashMap<WorkProductId, WorkProduct>,

    dep_node_debug: Lock<FxHashMap<DepNode<K>, String>>,
}

pub fn hash_result<R>(hcx: &mut StableHashingContext<'_>, result: &R) -> Fingerprint
where
    R: for<'a> HashStable<StableHashingContext<'a>>,
{
    let mut stable_hasher = StableHasher::new();
    result.hash_stable(hcx, &mut stable_hasher);
    stable_hasher.finish()
}

impl<K: DepKind> DepGraph<K> {
    pub fn new(
        profiler: &SelfProfilerRef,
        prev_graph: SerializedDepGraph<K>,
        prev_work_products: FxHashMap<WorkProductId, WorkProduct>,
        encoder: FileEncoder,
        record_graph: bool,
        record_stats: bool,
    ) -> DepGraph<K> {
        let prev_graph_node_count = prev_graph.node_count();

        let current = CurrentDepGraph::new(
            profiler,
            prev_graph_node_count,
            encoder,
            record_graph,
            record_stats,
        );

        // Instantiate a dependy-less node only once for anonymous queries.
        let _green_node_index = current.intern_new_node(
            profiler,
            DepNode { kind: DepKind::NULL, hash: current.anon_id_seed.into() },
            smallvec![],
            Fingerprint::ZERO,
        );
        debug_assert_eq!(_green_node_index, DepNodeIndex::SINGLETON_DEPENDENCYLESS_ANON_NODE);

        DepGraph {
            data: Some(Lrc::new(DepGraphData {
                previous_work_products: prev_work_products,
                dep_node_debug: Default::default(),
                current,
                processed_side_effects: Default::default(),
                previous: prev_graph,
                colors: DepNodeColorMap::new(prev_graph_node_count),
            })),
            virtual_dep_node_index: Lrc::new(AtomicU32::new(0)),
        }
    }

    pub fn new_disabled() -> DepGraph<K> {
        DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) }
    }

    /// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
    #[inline]
    pub fn is_fully_enabled(&self) -> bool {
        self.data.is_some()
    }

    pub fn with_query(&self, f: impl Fn(&DepGraphQuery<K>)) {
        if let Some(data) = &self.data {
            data.current.encoder.borrow().with_query(f)
        }
    }

    pub fn assert_ignored(&self) {
        if let Some(..) = self.data {
            K::read_deps(|task_deps| {
                assert!(task_deps.is_none(), "expected no task dependency tracking");
            })
        }
    }

    pub fn with_ignore<OP, R>(&self, op: OP) -> R
    where
        OP: FnOnce() -> R,
    {
        K::with_deps(None, op)
    }

    /// Starts a new dep-graph task. Dep-graph tasks are specified
    /// using a free function (`task`) and **not** a closure -- this
    /// is intentional because we want to exercise tight control over
    /// what state they have access to. In particular, we want to
    /// prevent implicit 'leaks' of tracked state into the task (which
    /// could then be read without generating correct edges in the
    /// dep-graph -- see the [rustc dev guide] for more details on
    /// the dep-graph). To this end, the task function gets exactly two
    /// pieces of state: the context `cx` and an argument `arg`. Both
    /// of these bits of state must be of some type that implements
    /// `DepGraphSafe` and hence does not leak.
    ///
    /// The choice of two arguments is not fundamental. One argument
    /// would work just as well, since multiple values can be
    /// collected using tuples. However, using two arguments works out
    /// to be quite convenient, since it is common to need a context
    /// (`cx`) and some argument (e.g., a `DefId` identifying what
    /// item to process).
    ///
    /// For cases where you need some other number of arguments:
    ///
    /// - If you only need one argument, just use `()` for the `arg`
    ///   parameter.
    /// - If you need 3+ arguments, use a tuple for the
    ///   `arg` parameter.
    ///
    /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/incremental-compilation.html
    pub fn with_task<Ctxt: HasDepContext<DepKind = K>, A: Debug, R>(
        &self,
        key: DepNode<K>,
        cx: Ctxt,
        arg: A,
        task: fn(Ctxt, A) -> R,
        hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
    ) -> (R, DepNodeIndex) {
        if self.is_fully_enabled() {
            self.with_task_impl(key, cx, arg, task, hash_result)
        } else {
            // Incremental compilation is turned off. We just execute the task
            // without tracking. We still provide a dep-node index that uniquely
            // identifies the task so that we have a cheap way of referring to
            // the query for self-profiling.
            (task(cx, arg), self.next_virtual_depnode_index())
        }
    }

    fn with_task_impl<Ctxt: HasDepContext<DepKind = K>, A: Debug, R>(
        &self,
        key: DepNode<K>,
        cx: Ctxt,
        arg: A,
        task: fn(Ctxt, A) -> R,
        hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
    ) -> (R, DepNodeIndex) {
        // This function is only called when the graph is enabled.
        let data = self.data.as_ref().unwrap();

        // If the following assertion triggers, it can have two reasons:
        // 1. Something is wrong with DepNode creation, either here or
        //    in `DepGraph::try_mark_green()`.
        // 2. Two distinct query keys get mapped to the same `DepNode`
        //    (see for example #48923).
        assert!(
            !self.dep_node_exists(&key),
            "forcing query with already existing `DepNode`\n\
                 - query-key: {:?}\n\
                 - dep-node: {:?}",
            arg,
            key
        );

        let task_deps = if cx.dep_context().is_eval_always(key.kind) {
            None
        } else {
            Some(Lock::new(TaskDeps {
                #[cfg(debug_assertions)]
                node: Some(key),
                reads: SmallVec::new(),
                read_set: Default::default(),
                phantom_data: PhantomData,
            }))
        };
        let result = K::with_deps(task_deps.as_ref(), || task(cx, arg));
        let edges = task_deps.map_or_else(|| smallvec![], |lock| lock.into_inner().reads);

        let dcx = cx.dep_context();
        let hashing_timer = dcx.profiler().incr_result_hashing();
        let current_fingerprint = hash_result.map(|f| {
            let mut hcx = dcx.create_stable_hashing_context();
            f(&mut hcx, &result)
        });

        let print_status = cfg!(debug_assertions) && dcx.sess().opts.debugging_opts.dep_tasks;

        // Intern the new `DepNode`.
        let (dep_node_index, prev_and_color) = data.current.intern_node(
            dcx.profiler(),
            &data.previous,
            key,
            edges,
            current_fingerprint,
            print_status,
        );

        hashing_timer.finish_with_query_invocation_id(dep_node_index.into());

        if let Some((prev_index, color)) = prev_and_color {
            debug_assert!(
                data.colors.get(prev_index).is_none(),
                "DepGraph::with_task() - Duplicate DepNodeColor \
                            insertion for {:?}",
                key
            );

            data.colors.insert(prev_index, color);
        }

        (result, dep_node_index)
    }

    /// Executes something within an "anonymous" task, that is, a task the
    /// `DepNode` of which is determined by the list of inputs it read from.
    pub fn with_anon_task<Ctxt: DepContext<DepKind = K>, OP, R>(
        &self,
        cx: Ctxt,
        dep_kind: K,
        op: OP,
    ) -> (R, DepNodeIndex)
    where
        OP: FnOnce() -> R,
    {
        debug_assert!(!cx.is_eval_always(dep_kind));

        if let Some(ref data) = self.data {
            let task_deps = Lock::new(TaskDeps::default());
            let result = K::with_deps(Some(&task_deps), op);
            let task_deps = task_deps.into_inner();
            let task_deps = task_deps.reads;

            let dep_node_index = match task_deps.len() {
                0 => {
                    // Because the dep-node id of anon nodes is computed from the sets of its
                    // dependencies we already know what the ID of this dependency-less node is
                    // going to be (i.e. equal to the precomputed
                    // `SINGLETON_DEPENDENCYLESS_ANON_NODE`). As a consequence we can skip creating
                    // a `StableHasher` and sending the node through interning.
                    DepNodeIndex::SINGLETON_DEPENDENCYLESS_ANON_NODE
                }
                1 => {
                    // When there is only one dependency, don't bother creating a node.
                    task_deps[0]
                }
                _ => {
                    // The dep node indices are hashed here instead of hashing the dep nodes of the
                    // dependencies. These indices may refer to different nodes per session, but this isn't
                    // a problem here because we that ensure the final dep node hash is per session only by
                    // combining it with the per session random number `anon_id_seed`. This hash only need
                    // to map the dependencies to a single value on a per session basis.
                    let mut hasher = StableHasher::new();
                    task_deps.hash(&mut hasher);

                    let target_dep_node = DepNode {
                        kind: dep_kind,
                        // Fingerprint::combine() is faster than sending Fingerprint
                        // through the StableHasher (at least as long as StableHasher
                        // is so slow).
                        hash: data.current.anon_id_seed.combine(hasher.finish()).into(),
                    };

                    data.current.intern_new_node(
                        cx.profiler(),
                        target_dep_node,
                        task_deps,
                        Fingerprint::ZERO,
                    )
                }
            };

            (result, dep_node_index)
        } else {
            (op(), self.next_virtual_depnode_index())
        }
    }

    #[inline]
    pub fn read_index(&self, dep_node_index: DepNodeIndex) {
        if let Some(ref data) = self.data {
            K::read_deps(|task_deps| {
                if let Some(task_deps) = task_deps {
                    let mut task_deps = task_deps.lock();
                    let task_deps = &mut *task_deps;
                    if cfg!(debug_assertions) {
                        data.current.total_read_count.fetch_add(1, Relaxed);
                    }

                    // As long as we only have a low number of reads we can avoid doing a hash
                    // insert and potentially allocating/reallocating the hashmap
                    let new_read = if task_deps.reads.len() < TASK_DEPS_READS_CAP {
                        task_deps.reads.iter().all(|other| *other != dep_node_index)
                    } else {
                        task_deps.read_set.insert(dep_node_index)
                    };
                    if new_read {
                        task_deps.reads.push(dep_node_index);
                        if task_deps.reads.len() == TASK_DEPS_READS_CAP {
                            // Fill `read_set` with what we have so far so we can use the hashset
                            // next time
                            task_deps.read_set.extend(task_deps.reads.iter().copied());
                        }

                        #[cfg(debug_assertions)]
                        {
                            if let Some(target) = task_deps.node {
                                if let Some(ref forbidden_edge) = data.current.forbidden_edge {
                                    let src = forbidden_edge.index_to_node.lock()[&dep_node_index];
                                    if forbidden_edge.test(&src, &target) {
                                        panic!("forbidden edge {:?} -> {:?} created", src, target)
                                    }
                                }
                            }
                        }
                    } else if cfg!(debug_assertions) {
                        data.current.total_duplicate_read_count.fetch_add(1, Relaxed);
                    }
                }
            })
        }
    }

    #[inline]
    pub fn dep_node_index_of(&self, dep_node: &DepNode<K>) -> DepNodeIndex {
        self.dep_node_index_of_opt(dep_node).unwrap()
    }

    #[inline]
    pub fn dep_node_index_of_opt(&self, dep_node: &DepNode<K>) -> Option<DepNodeIndex> {
        let data = self.data.as_ref().unwrap();
        let current = &data.current;

        if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
            current.prev_index_to_index.lock()[prev_index]
        } else {
            current.new_node_to_index.get_shard_by_value(dep_node).lock().get(dep_node).copied()
        }
    }

    #[inline]
    pub fn dep_node_exists(&self, dep_node: &DepNode<K>) -> bool {
        self.data.is_some() && self.dep_node_index_of_opt(dep_node).is_some()
    }

    pub fn prev_fingerprint_of(&self, dep_node: &DepNode<K>) -> Option<Fingerprint> {
        self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
    }

    /// Checks whether a previous work product exists for `v` and, if
    /// so, return the path that leads to it. Used to skip doing work.
    pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
        self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned())
    }

    /// Access the map of work-products created during the cached run. Only
    /// used during saving of the dep-graph.
    pub fn previous_work_products(&self) -> &FxHashMap<WorkProductId, WorkProduct> {
        &self.data.as_ref().unwrap().previous_work_products
    }

    #[inline(always)]
    pub fn register_dep_node_debug_str<F>(&self, dep_node: DepNode<K>, debug_str_gen: F)
    where
        F: FnOnce() -> String,
    {
        let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;

        if dep_node_debug.borrow().contains_key(&dep_node) {
            return;
        }
        let debug_str = debug_str_gen();
        dep_node_debug.borrow_mut().insert(dep_node, debug_str);
    }

    pub fn dep_node_debug_str(&self, dep_node: DepNode<K>) -> Option<String> {
        self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
    }

    fn node_color(&self, dep_node: &DepNode<K>) -> Option<DepNodeColor> {
        if let Some(ref data) = self.data {
            if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
                return data.colors.get(prev_index);
            } else {
                // This is a node that did not exist in the previous compilation session.
                return None;
            }
        }

        None
    }

    /// Try to mark a node index for the node dep_node.
    ///
    /// A node will have an index, when it's already been marked green, or when we can mark it
    /// green. This function will mark the current task as a reader of the specified node, when
    /// a node index can be found for that node.
    pub fn try_mark_green<Ctxt: QueryContext<DepKind = K>>(
        &self,
        tcx: Ctxt,
        dep_node: &DepNode<K>,
    ) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
        debug_assert!(!tcx.dep_context().is_eval_always(dep_node.kind));

        // Return None if the dep graph is disabled
        let data = self.data.as_ref()?;

        // Return None if the dep node didn't exist in the previous session
        let prev_index = data.previous.node_to_index_opt(dep_node)?;

        match data.colors.get(prev_index) {
            Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)),
            Some(DepNodeColor::Red) => None,
            None => {
                // This DepNode and the corresponding query invocation existed
                // in the previous compilation session too, so we can try to
                // mark it as green by recursively marking all of its
                // dependencies green.
                self.try_mark_previous_green(tcx, data, prev_index, &dep_node)
                    .map(|dep_node_index| (prev_index, dep_node_index))
            }
        }
    }

    fn try_mark_parent_green<Ctxt: QueryContext<DepKind = K>>(
        &self,
        tcx: Ctxt,
        data: &DepGraphData<K>,
        parent_dep_node_index: SerializedDepNodeIndex,
        dep_node: &DepNode<K>,
    ) -> Option<()> {
        let dep_dep_node_color = data.colors.get(parent_dep_node_index);
        let dep_dep_node = &data.previous.index_to_node(parent_dep_node_index);

        match dep_dep_node_color {
            Some(DepNodeColor::Green(_)) => {
                // This dependency has been marked as green before, we are
                // still fine and can continue with checking the other
                // dependencies.
                debug!(
                    "try_mark_previous_green({:?}) --- found dependency {:?} to \
                            be immediately green",
                    dep_node, dep_dep_node,
                );
                return Some(());
            }
            Some(DepNodeColor::Red) => {
                // We found a dependency the value of which has changed
                // compared to the previous compilation session. We cannot
                // mark the DepNode as green and also don't need to bother
                // with checking any of the other dependencies.
                debug!(
                    "try_mark_previous_green({:?}) - END - dependency {:?} was immediately red",
                    dep_node, dep_dep_node,
                );
                return None;
            }
            None => {}
        }

        // We don't know the state of this dependency. If it isn't
        // an eval_always node, let's try to mark it green recursively.
        if !tcx.dep_context().is_eval_always(dep_dep_node.kind) {
            debug!(
                "try_mark_previous_green({:?}) --- state of dependency {:?} ({}) \
                                 is unknown, trying to mark it green",
                dep_node, dep_dep_node, dep_dep_node.hash,
            );

            let node_index =
                self.try_mark_previous_green(tcx, data, parent_dep_node_index, dep_dep_node);
            if node_index.is_some() {
                debug!(
                    "try_mark_previous_green({:?}) --- managed to MARK dependency {:?} as green",
                    dep_node, dep_dep_node
                );
                return Some(());
            }
        }

        // We failed to mark it green, so we try to force the query.
        debug!(
            "try_mark_previous_green({:?}) --- trying to force dependency {:?}",
            dep_node, dep_dep_node
        );
        if !tcx.dep_context().try_force_from_dep_node(*dep_dep_node) {
            // The DepNode could not be forced.
            debug!(
                "try_mark_previous_green({:?}) - END - dependency {:?} could not be forced",
                dep_node, dep_dep_node
            );
            return None;
        }

        let dep_dep_node_color = data.colors.get(parent_dep_node_index);

        match dep_dep_node_color {
            Some(DepNodeColor::Green(_)) => {
                debug!(
                    "try_mark_previous_green({:?}) --- managed to FORCE dependency {:?} to green",
                    dep_node, dep_dep_node
                );
                return Some(());
            }
            Some(DepNodeColor::Red) => {
                debug!(
                    "try_mark_previous_green({:?}) - END - dependency {:?} was red after forcing",
                    dep_node, dep_dep_node
                );
                return None;
            }
            None => {}
        }

        if !tcx.dep_context().sess().has_errors_or_delayed_span_bugs() {
            panic!("try_mark_previous_green() - Forcing the DepNode should have set its color")
        }

        // If the query we just forced has resulted in
        // some kind of compilation error, we cannot rely on
        // the dep-node color having been properly updated.
        // This means that the query system has reached an
        // invalid state. We let the compiler continue (by
        // returning `None`) so it can emit error messages
        // and wind down, but rely on the fact that this
        // invalid state will not be persisted to the
        // incremental compilation cache because of
        // compilation errors being present.
        debug!(
            "try_mark_previous_green({:?}) - END - dependency {:?} resulted in compilation error",
            dep_node, dep_dep_node
        );
        return None;
    }

    /// Try to mark a dep-node which existed in the previous compilation session as green.
    fn try_mark_previous_green<Ctxt: QueryContext<DepKind = K>>(
        &self,
        tcx: Ctxt,
        data: &DepGraphData<K>,
        prev_dep_node_index: SerializedDepNodeIndex,
        dep_node: &DepNode<K>,
    ) -> Option<DepNodeIndex> {
        debug!("try_mark_previous_green({:?}) - BEGIN", dep_node);

        #[cfg(not(parallel_compiler))]
        {
            debug_assert!(!self.dep_node_exists(dep_node));
            debug_assert!(data.colors.get(prev_dep_node_index).is_none());
        }

        // We never try to mark eval_always nodes as green
        debug_assert!(!tcx.dep_context().is_eval_always(dep_node.kind));

        debug_assert_eq!(data.previous.index_to_node(prev_dep_node_index), *dep_node);

        let prev_deps = data.previous.edge_targets_from(prev_dep_node_index);

        for &dep_dep_node_index in prev_deps {
            self.try_mark_parent_green(tcx, data, dep_dep_node_index, dep_node)?
        }

        // If we got here without hitting a `return` that means that all
        // dependencies of this DepNode could be marked as green. Therefore we
        // can also mark this DepNode as green.

        // There may be multiple threads trying to mark the same dep node green concurrently

        // We allocating an entry for the node in the current dependency graph and
        // adding all the appropriate edges imported from the previous graph
        let dep_node_index = data.current.promote_node_and_deps_to_current(
            tcx.dep_context().profiler(),
            &data.previous,
            prev_dep_node_index,
        );

        // ... emitting any stored diagnostic ...

        // FIXME: Store the fact that a node has diagnostics in a bit in the dep graph somewhere
        // Maybe store a list on disk and encode this fact in the DepNodeState
        let side_effects = tcx.load_side_effects(prev_dep_node_index);

        #[cfg(not(parallel_compiler))]
        debug_assert!(
            data.colors.get(prev_dep_node_index).is_none(),
            "DepGraph::try_mark_previous_green() - Duplicate DepNodeColor \
                      insertion for {:?}",
            dep_node
        );

        if unlikely!(!side_effects.is_empty()) {
            self.emit_side_effects(tcx, data, dep_node_index, side_effects);
        }

        // ... and finally storing a "Green" entry in the color map.
        // Multiple threads can all write the same color here
        data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));

        debug!("try_mark_previous_green({:?}) - END - successfully marked as green", dep_node);
        Some(dep_node_index)
    }

    /// Atomically emits some loaded diagnostics.
    /// This may be called concurrently on multiple threads for the same dep node.
    #[cold]
    #[inline(never)]
    fn emit_side_effects<Ctxt: QueryContext<DepKind = K>>(
        &self,
        tcx: Ctxt,
        data: &DepGraphData<K>,
        dep_node_index: DepNodeIndex,
        side_effects: QuerySideEffects,
    ) {
        let mut processed = data.processed_side_effects.lock();

        if processed.insert(dep_node_index) {
            // We were the first to insert the node in the set so this thread
            // must process side effects

            // Promote the previous diagnostics to the current session.
            tcx.store_side_effects(dep_node_index, side_effects.clone());

            let handle = tcx.dep_context().sess().diagnostic();

            for diagnostic in side_effects.diagnostics {
                handle.emit_diagnostic(&diagnostic);
            }
        }
    }

    // Returns true if the given node has been marked as red during the
    // current compilation session. Used in various assertions
    pub fn is_red(&self, dep_node: &DepNode<K>) -> bool {
        self.node_color(dep_node) == Some(DepNodeColor::Red)
    }

    // Returns true if the given node has been marked as green during the
    // current compilation session. Used in various assertions
    pub fn is_green(&self, dep_node: &DepNode<K>) -> bool {
        self.node_color(dep_node).map_or(false, |c| c.is_green())
    }

    // This method loads all on-disk cacheable query results into memory, so
    // they can be written out to the new cache file again. Most query results
    // will already be in memory but in the case where we marked something as
    // green but then did not need the value, that value will never have been
    // loaded from disk.
    //
    // This method will only load queries that will end up in the disk cache.
    // Other queries will not be executed.
    pub fn exec_cache_promotions<Ctxt: DepContext<DepKind = K>>(&self, tcx: Ctxt) {
        let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion");

        let data = self.data.as_ref().unwrap();
        for prev_index in data.colors.values.indices() {
            match data.colors.get(prev_index) {
                Some(DepNodeColor::Green(_)) => {
                    let dep_node = data.previous.index_to_node(prev_index);
                    tcx.try_load_from_on_disk_cache(dep_node);
                }
                None | Some(DepNodeColor::Red) => {
                    // We can skip red nodes because a node can only be marked
                    // as red if the query result was recomputed and thus is
                    // already in memory.
                }
            }
        }
    }

    pub fn print_incremental_info(&self) {
        if let Some(data) = &self.data {
            data.current.encoder.borrow().print_incremental_info(
                data.current.total_read_count.load(Relaxed),
                data.current.total_duplicate_read_count.load(Relaxed),
            )
        }
    }

    pub fn encode(&self, profiler: &SelfProfilerRef) -> FileEncodeResult {
        if let Some(data) = &self.data {
            data.current.encoder.steal().finish(profiler)
        } else {
            Ok(())
        }
    }

    pub(crate) fn next_virtual_depnode_index(&self) -> DepNodeIndex {
        let index = self.virtual_dep_node_index.fetch_add(1, Relaxed);
        DepNodeIndex::from_u32(index)
    }
}

/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, Encodable, Decodable)]
pub struct WorkProduct {
    pub cgu_name: String,
    /// Saved file associated with this CGU.
    pub saved_file: Option<String>,
}

// Index type for `DepNodeData`'s edges.
rustc_index::newtype_index! {
    struct EdgeIndex { .. }
}

/// `CurrentDepGraph` stores the dependency graph for the current session. It
/// will be populated as we run queries or tasks. We never remove nodes from the
/// graph: they are only added.
///
/// The nodes in it are identified by a `DepNodeIndex`. We avoid keeping the nodes
/// in memory.  This is important, because these graph structures are some of the
/// largest in the compiler.
///
/// For this reason, we avoid storing `DepNode`s more than once as map
/// keys. The `new_node_to_index` map only contains nodes not in the previous
/// graph, and we map nodes in the previous graph to indices via a two-step
/// mapping. `SerializedDepGraph` maps from `DepNode` to `SerializedDepNodeIndex`,
/// and the `prev_index_to_index` vector (which is more compact and faster than
/// using a map) maps from `SerializedDepNodeIndex` to `DepNodeIndex`.
///
/// This struct uses three locks internally. The `data`, `new_node_to_index`,
/// and `prev_index_to_index` fields are locked separately. Operations that take
/// a `DepNodeIndex` typically just access the `data` field.
///
/// We only need to manipulate at most two locks simultaneously:
/// `new_node_to_index` and `data`, or `prev_index_to_index` and `data`. When
/// manipulating both, we acquire `new_node_to_index` or `prev_index_to_index`
/// first, and `data` second.
pub(super) struct CurrentDepGraph<K: DepKind> {
    encoder: Steal<GraphEncoder<K>>,
    new_node_to_index: Sharded<FxHashMap<DepNode<K>, DepNodeIndex>>,
    prev_index_to_index: Lock<IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>>,

    /// Used to trap when a specific edge is added to the graph.
    /// This is used for debug purposes and is only active with `debug_assertions`.
    #[cfg(debug_assertions)]
    forbidden_edge: Option<EdgeFilter<K>>,

    /// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
    /// their edges. This has the beneficial side-effect that multiple anonymous
    /// nodes can be coalesced into one without changing the semantics of the
    /// dependency graph. However, the merging of nodes can lead to a subtle
    /// problem during red-green marking: The color of an anonymous node from
    /// the current session might "shadow" the color of the node with the same
    /// ID from the previous session. In order to side-step this problem, we make
    /// sure that anonymous `NodeId`s allocated in different sessions don't overlap.
    /// This is implemented by mixing a session-key into the ID fingerprint of
    /// each anon node. The session-key is just a random number generated when
    /// the `DepGraph` is created.
    anon_id_seed: Fingerprint,

    /// These are simple counters that are for profiling and
    /// debugging and only active with `debug_assertions`.
    total_read_count: AtomicU64,
    total_duplicate_read_count: AtomicU64,

    /// The cached event id for profiling node interning. This saves us
    /// from having to look up the event id every time we intern a node
    /// which may incur too much overhead.
    /// This will be None if self-profiling is disabled.
    node_intern_event_id: Option<EventId>,
}

impl<K: DepKind> CurrentDepGraph<K> {
    fn new(
        profiler: &SelfProfilerRef,
        prev_graph_node_count: usize,
        encoder: FileEncoder,
        record_graph: bool,
        record_stats: bool,
    ) -> CurrentDepGraph<K> {
        use std::time::{SystemTime, UNIX_EPOCH};

        let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
        let nanos = duration.as_secs() * 1_000_000_000 + duration.subsec_nanos() as u64;
        let mut stable_hasher = StableHasher::new();
        nanos.hash(&mut stable_hasher);

        #[cfg(debug_assertions)]
        let forbidden_edge = match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
            Ok(s) => match EdgeFilter::new(&s) {
                Ok(f) => Some(f),
                Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
            },
            Err(_) => None,
        };

        // We store a large collection of these in `prev_index_to_index` during
        // non-full incremental builds, and want to ensure that the element size
        // doesn't inadvertently increase.
        static_assert_size!(Option<DepNodeIndex>, 4);

        let new_node_count_estimate = 102 * prev_graph_node_count / 100 + 200;

        let node_intern_event_id = profiler
            .get_or_alloc_cached_string("incr_comp_intern_dep_graph_node")
            .map(EventId::from_label);

        CurrentDepGraph {
            encoder: Steal::new(GraphEncoder::new(
                encoder,
                prev_graph_node_count,
                record_graph,
                record_stats,
            )),
            new_node_to_index: Sharded::new(|| {
                FxHashMap::with_capacity_and_hasher(
                    new_node_count_estimate / sharded::SHARDS,
                    Default::default(),
                )
            }),
            prev_index_to_index: Lock::new(IndexVec::from_elem_n(None, prev_graph_node_count)),
            anon_id_seed: stable_hasher.finish(),
            #[cfg(debug_assertions)]
            forbidden_edge,
            total_read_count: AtomicU64::new(0),
            total_duplicate_read_count: AtomicU64::new(0),
            node_intern_event_id,
        }
    }

    #[cfg(debug_assertions)]
    fn record_edge(&self, dep_node_index: DepNodeIndex, key: DepNode<K>) {
        if let Some(forbidden_edge) = &self.forbidden_edge {
            forbidden_edge.index_to_node.lock().insert(dep_node_index, key);
        }
    }

    /// Writes the node to the current dep-graph and allocates a `DepNodeIndex` for it.
    /// Assumes that this is a node that has no equivalent in the previous dep-graph.
    fn intern_new_node(
        &self,
        profiler: &SelfProfilerRef,
        key: DepNode<K>,
        edges: EdgesVec,
        current_fingerprint: Fingerprint,
    ) -> DepNodeIndex {
        match self.new_node_to_index.get_shard_by_value(&key).lock().entry(key) {
            Entry::Occupied(entry) => *entry.get(),
            Entry::Vacant(entry) => {
                let dep_node_index =
                    self.encoder.borrow().send(profiler, key, current_fingerprint, edges);
                entry.insert(dep_node_index);
                #[cfg(debug_assertions)]
                self.record_edge(dep_node_index, key);
                dep_node_index
            }
        }
    }

    fn intern_node(
        &self,
        profiler: &SelfProfilerRef,
        prev_graph: &SerializedDepGraph<K>,
        key: DepNode<K>,
        edges: EdgesVec,
        fingerprint: Option<Fingerprint>,
        print_status: bool,
    ) -> (DepNodeIndex, Option<(SerializedDepNodeIndex, DepNodeColor)>) {
        let print_status = cfg!(debug_assertions) && print_status;

        // Get timer for profiling `DepNode` interning
        let _node_intern_timer =
            self.node_intern_event_id.map(|eid| profiler.generic_activity_with_event_id(eid));

        if let Some(prev_index) = prev_graph.node_to_index_opt(&key) {
            // Determine the color and index of the new `DepNode`.
            if let Some(fingerprint) = fingerprint {
                if fingerprint == prev_graph.fingerprint_by_index(prev_index) {
                    if print_status {
                        eprintln!("[task::green] {:?}", key);
                    }

                    // This is a green node: it existed in the previous compilation,
                    // its query was re-executed, and it has the same result as before.
                    let mut prev_index_to_index = self.prev_index_to_index.lock();

                    let dep_node_index = match prev_index_to_index[prev_index] {
                        Some(dep_node_index) => dep_node_index,
                        None => {
                            let dep_node_index =
                                self.encoder.borrow().send(profiler, key, fingerprint, edges);
                            prev_index_to_index[prev_index] = Some(dep_node_index);
                            dep_node_index
                        }
                    };

                    #[cfg(debug_assertions)]
                    self.record_edge(dep_node_index, key);
                    (dep_node_index, Some((prev_index, DepNodeColor::Green(dep_node_index))))
                } else {
                    if print_status {
                        eprintln!("[task::red] {:?}", key);
                    }

                    // This is a red node: it existed in the previous compilation, its query
                    // was re-executed, but it has a different result from before.
                    let mut prev_index_to_index = self.prev_index_to_index.lock();

                    let dep_node_index = match prev_index_to_index[prev_index] {
                        Some(dep_node_index) => dep_node_index,
                        None => {
                            let dep_node_index =
                                self.encoder.borrow().send(profiler, key, fingerprint, edges);
                            prev_index_to_index[prev_index] = Some(dep_node_index);
                            dep_node_index
                        }
                    };

                    #[cfg(debug_assertions)]
                    self.record_edge(dep_node_index, key);
                    (dep_node_index, Some((prev_index, DepNodeColor::Red)))
                }
            } else {
                if print_status {
                    eprintln!("[task::unknown] {:?}", key);
                }

                // This is a red node, effectively: it existed in the previous compilation
                // session, its query was re-executed, but it doesn't compute a result hash
                // (i.e. it represents a `no_hash` query), so we have no way of determining
                // whether or not the result was the same as before.
                let mut prev_index_to_index = self.prev_index_to_index.lock();

                let dep_node_index = match prev_index_to_index[prev_index] {
                    Some(dep_node_index) => dep_node_index,
                    None => {
                        let dep_node_index =
                            self.encoder.borrow().send(profiler, key, Fingerprint::ZERO, edges);
                        prev_index_to_index[prev_index] = Some(dep_node_index);
                        dep_node_index
                    }
                };

                #[cfg(debug_assertions)]
                self.record_edge(dep_node_index, key);
                (dep_node_index, Some((prev_index, DepNodeColor::Red)))
            }
        } else {
            if print_status {
                eprintln!("[task::new] {:?}", key);
            }

            let fingerprint = fingerprint.unwrap_or(Fingerprint::ZERO);

            // This is a new node: it didn't exist in the previous compilation session.
            let dep_node_index = self.intern_new_node(profiler, key, edges, fingerprint);

            (dep_node_index, None)
        }
    }

    fn promote_node_and_deps_to_current(
        &self,
        profiler: &SelfProfilerRef,
        prev_graph: &SerializedDepGraph<K>,
        prev_index: SerializedDepNodeIndex,
    ) -> DepNodeIndex {
        self.debug_assert_not_in_new_nodes(prev_graph, prev_index);

        let mut prev_index_to_index = self.prev_index_to_index.lock();

        match prev_index_to_index[prev_index] {
            Some(dep_node_index) => dep_node_index,
            None => {
                let key = prev_graph.index_to_node(prev_index);
                let dep_node_index = self.encoder.borrow().send(
                    profiler,
                    key,
                    prev_graph.fingerprint_by_index(prev_index),
                    prev_graph
                        .edge_targets_from(prev_index)
                        .iter()
                        .map(|i| prev_index_to_index[*i].unwrap())
                        .collect(),
                );
                prev_index_to_index[prev_index] = Some(dep_node_index);
                #[cfg(debug_assertions)]
                self.record_edge(dep_node_index, key);
                dep_node_index
            }
        }
    }

    #[inline]
    fn debug_assert_not_in_new_nodes(
        &self,
        prev_graph: &SerializedDepGraph<K>,
        prev_index: SerializedDepNodeIndex,
    ) {
        let node = &prev_graph.index_to_node(prev_index);
        debug_assert!(
            !self.new_node_to_index.get_shard_by_value(node).lock().contains_key(node),
            "node from previous graph present in new node collection"
        );
    }
}

/// The capacity of the `reads` field `SmallVec`
const TASK_DEPS_READS_CAP: usize = 8;
type EdgesVec = SmallVec<[DepNodeIndex; TASK_DEPS_READS_CAP]>;

pub struct TaskDeps<K> {
    #[cfg(debug_assertions)]
    node: Option<DepNode<K>>,
    reads: EdgesVec,
    read_set: FxHashSet<DepNodeIndex>,
    phantom_data: PhantomData<DepNode<K>>,
}

impl<K> Default for TaskDeps<K> {
    fn default() -> Self {
        Self {
            #[cfg(debug_assertions)]
            node: None,
            reads: EdgesVec::new(),
            read_set: FxHashSet::default(),
            phantom_data: PhantomData,
        }
    }
}

// A data structure that stores Option<DepNodeColor> values as a contiguous
// array, using one u32 per entry.
struct DepNodeColorMap {
    values: IndexVec<SerializedDepNodeIndex, AtomicU32>,
}

const COMPRESSED_NONE: u32 = 0;
const COMPRESSED_RED: u32 = 1;
const COMPRESSED_FIRST_GREEN: u32 = 2;

impl DepNodeColorMap {
    fn new(size: usize) -> DepNodeColorMap {
        DepNodeColorMap { values: (0..size).map(|_| AtomicU32::new(COMPRESSED_NONE)).collect() }
    }

    #[inline]
    fn get(&self, index: SerializedDepNodeIndex) -> Option<DepNodeColor> {
        match self.values[index].load(Ordering::Acquire) {
            COMPRESSED_NONE => None,
            COMPRESSED_RED => Some(DepNodeColor::Red),
            value => {
                Some(DepNodeColor::Green(DepNodeIndex::from_u32(value - COMPRESSED_FIRST_GREEN)))
            }
        }
    }

    fn insert(&self, index: SerializedDepNodeIndex, color: DepNodeColor) {
        self.values[index].store(
            match color {
                DepNodeColor::Red => COMPRESSED_RED,
                DepNodeColor::Green(index) => index.as_u32() + COMPRESSED_FIRST_GREEN,
            },
            Ordering::Release,
        )
    }
}