1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// This file contains various trait resolution methods used by codegen.
// They all assume regions can be erased and monomorphic types. It
// seems likely that they should eventually be merged into more
// general routines.
use crate::infer::{InferCtxt, TyCtxtInferExt};
use crate::traits::{
FulfillmentContext, ImplSource, Obligation, ObligationCause, SelectionContext, TraitEngine,
Unimplemented,
};
use rustc_errors::ErrorReported;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{self, TyCtxt};
/// Attempts to resolve an obligation to an `ImplSource`. The result is
/// a shallow `ImplSource` resolution, meaning that we do not
/// (necessarily) resolve all nested obligations on the impl. Note
/// that type check should guarantee to us that all nested
/// obligations *could be* resolved if we wanted to.
///
/// Assumes that this is run after the entire crate has been successfully type-checked.
/// This also expects that `trait_ref` is fully normalized.
pub fn codegen_fulfill_obligation<'tcx>(
tcx: TyCtxt<'tcx>,
(param_env, trait_ref): (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>),
) -> Result<ImplSource<'tcx, ()>, ErrorReported> {
// Remove any references to regions; this helps improve caching.
let trait_ref = tcx.erase_regions(trait_ref);
// We expect the input to be fully normalized.
debug_assert_eq!(trait_ref, tcx.normalize_erasing_regions(param_env, trait_ref));
debug!(
"codegen_fulfill_obligation(trait_ref={:?}, def_id={:?})",
(param_env, trait_ref),
trait_ref.def_id()
);
// Do the initial selection for the obligation. This yields the
// shallow result we are looking for -- that is, what specific impl.
tcx.infer_ctxt().enter(|infcx| {
let mut selcx = SelectionContext::new(&infcx);
let obligation_cause = ObligationCause::dummy();
let obligation =
Obligation::new(obligation_cause, param_env, trait_ref.to_poly_trait_predicate());
let selection = match selcx.select(&obligation) {
Ok(Some(selection)) => selection,
Ok(None) => {
// Ambiguity can happen when monomorphizing during trans
// expands to some humongo type that never occurred
// statically -- this humongo type can then overflow,
// leading to an ambiguous result. So report this as an
// overflow bug, since I believe this is the only case
// where ambiguity can result.
infcx.tcx.sess.delay_span_bug(
rustc_span::DUMMY_SP,
&format!(
"encountered ambiguity selecting `{:?}` during codegen, presuming due to \
overflow or prior type error",
trait_ref
),
);
return Err(ErrorReported);
}
Err(Unimplemented) => {
// This can trigger when we probe for the source of a `'static` lifetime requirement
// on a trait object: `impl Foo for dyn Trait {}` has an implicit `'static` bound.
infcx.tcx.sess.delay_span_bug(
rustc_span::DUMMY_SP,
&format!(
"Encountered error `Unimplemented` selecting `{:?}` during codegen",
trait_ref
),
);
return Err(ErrorReported);
}
Err(e) => {
bug!("Encountered error `{:?}` selecting `{:?}` during codegen", e, trait_ref)
}
};
debug!("fulfill_obligation: selection={:?}", selection);
// Currently, we use a fulfillment context to completely resolve
// all nested obligations. This is because they can inform the
// inference of the impl's type parameters.
let mut fulfill_cx = FulfillmentContext::new();
let impl_source = selection.map(|predicate| {
debug!("fulfill_obligation: register_predicate_obligation {:?}", predicate);
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
let impl_source = drain_fulfillment_cx_or_panic(&infcx, &mut fulfill_cx, impl_source);
debug!("Cache miss: {:?} => {:?}", trait_ref, impl_source);
Ok(impl_source)
})
}
// # Global Cache
/// Finishes processes any obligations that remain in the
/// fulfillment context, and then returns the result with all type
/// variables removed and regions erased. Because this is intended
/// for use after type-check has completed, if any errors occur,
/// it will panic. It is used during normalization and other cases
/// where processing the obligations in `fulfill_cx` may cause
/// type inference variables that appear in `result` to be
/// unified, and hence we need to process those obligations to get
/// the complete picture of the type.
fn drain_fulfillment_cx_or_panic<T>(
infcx: &InferCtxt<'_, 'tcx>,
fulfill_cx: &mut FulfillmentContext<'tcx>,
result: T,
) -> T
where
T: TypeFoldable<'tcx>,
{
debug!("drain_fulfillment_cx_or_panic()");
// In principle, we only need to do this so long as `result`
// contains unbound type parameters. It could be a slight
// optimization to stop iterating early.
if let Err(errors) = fulfill_cx.select_all_or_error(infcx) {
infcx.tcx.sess.delay_span_bug(
rustc_span::DUMMY_SP,
&format!("Encountered errors `{:?}` resolving bounds after type-checking", errors),
);
}
let result = infcx.resolve_vars_if_possible(result);
infcx.tcx.erase_regions(result)
}