1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
//! how this works.
//!
//! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
//! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
use crate::infer::{CombinedSnapshot, InferOk, TyCtxtInferExt};
use crate::traits::select::IntercrateAmbiguityCause;
use crate::traits::SkipLeakCheck;
use crate::traits::{self, Normalized, Obligation, ObligationCause, SelectionContext};
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, fast_reject, Ty, TyCtxt};
use rustc_span::symbol::sym;
use rustc_span::DUMMY_SP;
use std::iter;
/// Whether we do the orphan check relative to this crate or
/// to some remote crate.
#[derive(Copy, Clone, Debug)]
enum InCrate {
Local,
Remote,
}
#[derive(Debug, Copy, Clone)]
pub enum Conflict {
Upstream,
Downstream,
}
pub struct OverlapResult<'tcx> {
pub impl_header: ty::ImplHeader<'tcx>,
pub intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>,
/// `true` if the overlap might've been permitted before the shift
/// to universes.
pub involves_placeholder: bool,
}
pub fn add_placeholder_note(err: &mut rustc_errors::DiagnosticBuilder<'_>) {
err.note(
"this behavior recently changed as a result of a bug fix; \
see rust-lang/rust#56105 for details",
);
}
/// If there are types that satisfy both impls, invokes `on_overlap`
/// with a suitably-freshened `ImplHeader` with those types
/// substituted. Otherwise, invokes `no_overlap`.
pub fn overlapping_impls<F1, F2, R>(
tcx: TyCtxt<'_>,
impl1_def_id: DefId,
impl2_def_id: DefId,
skip_leak_check: SkipLeakCheck,
on_overlap: F1,
no_overlap: F2,
) -> R
where
F1: FnOnce(OverlapResult<'_>) -> R,
F2: FnOnce() -> R,
{
debug!(
"overlapping_impls(\
impl1_def_id={:?}, \
impl2_def_id={:?})",
impl1_def_id, impl2_def_id,
);
// Before doing expensive operations like entering an inference context, do
// a quick check via fast_reject to tell if the impl headers could possibly
// unify.
let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
// Check if any of the input types definitely do not unify.
if iter::zip(
impl1_ref.iter().flat_map(|tref| tref.substs.types()),
impl2_ref.iter().flat_map(|tref| tref.substs.types()),
)
.any(|(ty1, ty2)| {
let t1 = fast_reject::simplify_type(tcx, ty1, false);
let t2 = fast_reject::simplify_type(tcx, ty2, false);
if let (Some(t1), Some(t2)) = (t1, t2) {
// Simplified successfully
// Types cannot unify if they differ in their reference mutability or simplify to different types
t1 != t2 || ty1.ref_mutability() != ty2.ref_mutability()
} else {
// Types might unify
false
}
}) {
// Some types involved are definitely different, so the impls couldn't possibly overlap.
debug!("overlapping_impls: fast_reject early-exit");
return no_overlap();
}
let overlaps = tcx.infer_ctxt().enter(|infcx| {
let selcx = &mut SelectionContext::intercrate(&infcx);
overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id).is_some()
});
if !overlaps {
return no_overlap();
}
// In the case where we detect an error, run the check again, but
// this time tracking intercrate ambuiguity causes for better
// diagnostics. (These take time and can lead to false errors.)
tcx.infer_ctxt().enter(|infcx| {
let selcx = &mut SelectionContext::intercrate(&infcx);
selcx.enable_tracking_intercrate_ambiguity_causes();
on_overlap(overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id).unwrap())
})
}
fn with_fresh_ty_vars<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl_def_id: DefId,
) -> ty::ImplHeader<'tcx> {
let tcx = selcx.tcx();
let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);
let header = ty::ImplHeader {
impl_def_id,
self_ty: tcx.type_of(impl_def_id).subst(tcx, impl_substs),
trait_ref: tcx.impl_trait_ref(impl_def_id).subst(tcx, impl_substs),
predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates,
};
let Normalized { value: mut header, obligations } =
traits::normalize(selcx, param_env, ObligationCause::dummy(), header);
header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
header
}
/// Can both impl `a` and impl `b` be satisfied by a common type (including
/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
fn overlap<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
skip_leak_check: SkipLeakCheck,
a_def_id: DefId,
b_def_id: DefId,
) -> Option<OverlapResult<'tcx>> {
debug!("overlap(a_def_id={:?}, b_def_id={:?})", a_def_id, b_def_id);
selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| {
overlap_within_probe(selcx, skip_leak_check, a_def_id, b_def_id, snapshot)
})
}
fn overlap_within_probe(
selcx: &mut SelectionContext<'cx, 'tcx>,
skip_leak_check: SkipLeakCheck,
a_def_id: DefId,
b_def_id: DefId,
snapshot: &CombinedSnapshot<'_, 'tcx>,
) -> Option<OverlapResult<'tcx>> {
// For the purposes of this check, we don't bring any placeholder
// types into scope; instead, we replace the generic types with
// fresh type variables, and hence we do our evaluations in an
// empty environment.
let param_env = ty::ParamEnv::empty();
let a_impl_header = with_fresh_ty_vars(selcx, param_env, a_def_id);
let b_impl_header = with_fresh_ty_vars(selcx, param_env, b_def_id);
debug!("overlap: a_impl_header={:?}", a_impl_header);
debug!("overlap: b_impl_header={:?}", b_impl_header);
// Do `a` and `b` unify? If not, no overlap.
let obligations = match selcx
.infcx()
.at(&ObligationCause::dummy(), param_env)
.eq_impl_headers(&a_impl_header, &b_impl_header)
{
Ok(InferOk { obligations, value: () }) => obligations,
Err(_) => {
return None;
}
};
debug!("overlap: unification check succeeded");
// Are any of the obligations unsatisfiable? If so, no overlap.
let infcx = selcx.infcx();
let opt_failing_obligation = a_impl_header
.predicates
.iter()
.copied()
.chain(b_impl_header.predicates)
.map(|p| infcx.resolve_vars_if_possible(p))
.map(|p| Obligation {
cause: ObligationCause::dummy(),
param_env,
recursion_depth: 0,
predicate: p,
})
.chain(obligations)
.find(|o| !selcx.predicate_may_hold_fatal(o));
// FIXME: the call to `selcx.predicate_may_hold_fatal` above should be ported
// to the canonical trait query form, `infcx.predicate_may_hold`, once
// the new system supports intercrate mode (which coherence needs).
if let Some(failing_obligation) = opt_failing_obligation {
debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
return None;
}
if !skip_leak_check.is_yes() {
if infcx.leak_check(true, snapshot).is_err() {
debug!("overlap: leak check failed");
return None;
}
}
let impl_header = selcx.infcx().resolve_vars_if_possible(a_impl_header);
let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
let involves_placeholder =
matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true));
Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
}
pub fn trait_ref_is_knowable<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> Option<Conflict> {
debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
// A downstream or cousin crate is allowed to implement some
// substitution of this trait-ref.
return Some(Conflict::Downstream);
}
if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
// This is a local or fundamental trait, so future-compatibility
// is no concern. We know that downstream/cousin crates are not
// allowed to implement a substitution of this trait ref, which
// means impls could only come from dependencies of this crate,
// which we already know about.
return None;
}
// This is a remote non-fundamental trait, so if another crate
// can be the "final owner" of a substitution of this trait-ref,
// they are allowed to implement it future-compatibly.
//
// However, if we are a final owner, then nobody else can be,
// and if we are an intermediate owner, then we don't care
// about future-compatibility, which means that we're OK if
// we are an owner.
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
debug!("trait_ref_is_knowable: orphan check passed");
None
} else {
debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
Some(Conflict::Upstream)
}
}
pub fn trait_ref_is_local_or_fundamental<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> bool {
trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
}
pub enum OrphanCheckErr<'tcx> {
NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>),
UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
}
/// Checks the coherence orphan rules. `impl_def_id` should be the
/// `DefId` of a trait impl. To pass, either the trait must be local, or else
/// two conditions must be satisfied:
///
/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
/// 2. Some local type must appear in `Self`.
pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
debug!("orphan_check({:?})", impl_def_id);
// We only except this routine to be invoked on implementations
// of a trait, not inherent implementations.
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
debug!("orphan_check: trait_ref={:?}", trait_ref);
// If the *trait* is local to the crate, ok.
if trait_ref.def_id.is_local() {
debug!("trait {:?} is local to current crate", trait_ref.def_id);
return Ok(());
}
orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
}
/// Checks whether a trait-ref is potentially implementable by a crate.
///
/// The current rule is that a trait-ref orphan checks in a crate C:
///
/// 1. Order the parameters in the trait-ref in subst order - Self first,
/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
/// 2. Of these type parameters, there is at least one type parameter
/// in which, walking the type as a tree, you can reach a type local
/// to C where all types in-between are fundamental types. Call the
/// first such parameter the "local key parameter".
/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
/// going through `Box`, which is fundamental.
/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
/// the same reason.
/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
/// the local type and the type parameter.
/// 3. Before this local type, no generic type parameter of the impl must
/// be reachable through fundamental types.
/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
/// - while `impl<T> Trait<LocalType for Box<T>` results in an error, as `T` is
/// reachable through the fundamental type `Box`.
/// 4. Every type in the local key parameter not known in C, going
/// through the parameter's type tree, must appear only as a subtree of
/// a type local to C, with only fundamental types between the type
/// local to C and the local key parameter.
/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
/// is bad, because the only local type with `T` as a subtree is
/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
/// the second occurrence of `T` is not a subtree of *any* local type.
/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
/// `LocalType<Vec<T>>`, which is local and has no types between it and
/// the type parameter.
///
/// The orphan rules actually serve several different purposes:
///
/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
/// every type local to one crate is unknown in the other) can't implement
/// the same trait-ref. This follows because it can be seen that no such
/// type can orphan-check in 2 such crates.
///
/// To check that a local impl follows the orphan rules, we check it in
/// InCrate::Local mode, using type parameters for the "generic" types.
///
/// 2. They ground negative reasoning for coherence. If a user wants to
/// write both a conditional blanket impl and a specific impl, we need to
/// make sure they do not overlap. For example, if we write
/// ```
/// impl<T> IntoIterator for Vec<T>
/// impl<T: Iterator> IntoIterator for T
/// ```
/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
/// We can observe that this holds in the current crate, but we need to make
/// sure this will also hold in all unknown crates (both "independent" crates,
/// which we need for link-safety, and also child crates, because we don't want
/// child crates to get error for impl conflicts in a *dependency*).
///
/// For that, we only allow negative reasoning if, for every assignment to the
/// inference variables, every unknown crate would get an orphan error if they
/// try to implement this trait-ref. To check for this, we use InCrate::Remote
/// mode. That is sound because we already know all the impls from known crates.
///
/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
/// add "non-blanket" impls without breaking negative reasoning in dependent
/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
///
/// For that, we only a allow crate to perform negative reasoning on
/// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
///
/// Because we never perform negative reasoning generically (coherence does
/// not involve type parameters), this can be interpreted as doing the full
/// orphan check (using InCrate::Local mode), substituting non-local known
/// types for all inference variables.
///
/// This allows for crates to future-compatibly add impls as long as they
/// can't apply to types with a key parameter in a child crate - applying
/// the rules, this basically means that every type parameter in the impl
/// must appear behind a non-fundamental type (because this is not a
/// type-system requirement, crate owners might also go for "semantic
/// future-compatibility" involving things such as sealed traits, but
/// the above requirement is sufficient, and is necessary in "open world"
/// cases).
///
/// Note that this function is never called for types that have both type
/// parameters and inference variables.
fn orphan_check_trait_ref<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
in_crate: InCrate,
) -> Result<(), OrphanCheckErr<'tcx>> {
debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate);
if trait_ref.needs_infer() && trait_ref.definitely_needs_subst(tcx) {
bug!(
"can't orphan check a trait ref with both params and inference variables {:?}",
trait_ref
);
}
// Given impl<P1..=Pn> Trait<T1..=Tn> for T0, an impl is valid only
// if at least one of the following is true:
//
// - Trait is a local trait
// (already checked in orphan_check prior to calling this function)
// - All of
// - At least one of the types T0..=Tn must be a local type.
// Let Ti be the first such type.
// - No uncovered type parameters P1..=Pn may appear in T0..Ti (excluding Ti)
//
fn uncover_fundamental_ty<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
in_crate: InCrate,
) -> Vec<Ty<'tcx>> {
// FIXME: this is currently somewhat overly complicated,
// but fixing this requires a more complicated refactor.
if !contained_non_local_types(tcx, ty, in_crate).is_empty() {
if let Some(inner_tys) = fundamental_ty_inner_tys(tcx, ty) {
return inner_tys
.flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate))
.collect();
}
}
vec![ty]
}
let mut non_local_spans = vec![];
for (i, input_ty) in trait_ref
.substs
.types()
.flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate))
.enumerate()
{
debug!("orphan_check_trait_ref: check ty `{:?}`", input_ty);
let non_local_tys = contained_non_local_types(tcx, input_ty, in_crate);
if non_local_tys.is_empty() {
debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty);
return Ok(());
} else if let ty::Param(_) = input_ty.kind() {
debug!("orphan_check_trait_ref: uncovered ty: `{:?}`", input_ty);
let local_type = trait_ref
.substs
.types()
.flat_map(|ty| uncover_fundamental_ty(tcx, ty, in_crate))
.find(|ty| ty_is_local_constructor(ty, in_crate));
debug!("orphan_check_trait_ref: uncovered ty local_type: `{:?}`", local_type);
return Err(OrphanCheckErr::UncoveredTy(input_ty, local_type));
}
for input_ty in non_local_tys {
non_local_spans.push((input_ty, i == 0));
}
}
// If we exit above loop, never found a local type.
debug!("orphan_check_trait_ref: no local type");
Err(OrphanCheckErr::NonLocalInputType(non_local_spans))
}
/// Returns a list of relevant non-local types for `ty`.
///
/// This is just `ty` itself unless `ty` is `#[fundamental]`,
/// in which case we recursively look into this type.
///
/// If `ty` is local itself, this method returns an empty `Vec`.
///
/// # Examples
///
/// - `u32` is not local, so this returns `[u32]`.
/// - for `Foo<u32>`, where `Foo` is a local type, this returns `[]`.
/// - `&mut u32` returns `[u32]`, as `&mut` is a fundamental type, similar to `Box`.
/// - `Box<Foo<u32>>` returns `[]`, as `Box` is a fundamental type and `Foo` is local.
fn contained_non_local_types(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, in_crate: InCrate) -> Vec<Ty<'tcx>> {
if ty_is_local_constructor(ty, in_crate) {
Vec::new()
} else {
match fundamental_ty_inner_tys(tcx, ty) {
Some(inner_tys) => {
inner_tys.flat_map(|ty| contained_non_local_types(tcx, ty, in_crate)).collect()
}
None => vec![ty],
}
}
}
/// For `#[fundamental]` ADTs and `&T` / `&mut T`, returns `Some` with the
/// type parameters of the ADT, or `T`, respectively. For non-fundamental
/// types, returns `None`.
fn fundamental_ty_inner_tys(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
) -> Option<impl Iterator<Item = Ty<'tcx>>> {
let (first_ty, rest_tys) = match *ty.kind() {
ty::Ref(_, ty, _) => (ty, ty::subst::InternalSubsts::empty().types()),
ty::Adt(def, substs) if def.is_fundamental() => {
let mut types = substs.types();
// FIXME(eddyb) actually validate `#[fundamental]` up-front.
match types.next() {
None => {
tcx.sess.span_err(
tcx.def_span(def.did),
"`#[fundamental]` requires at least one type parameter",
);
return None;
}
Some(first_ty) => (first_ty, types),
}
}
_ => return None,
};
Some(iter::once(first_ty).chain(rest_tys))
}
fn def_id_is_local(def_id: DefId, in_crate: InCrate) -> bool {
match in_crate {
// The type is local to *this* crate - it will not be
// local in any other crate.
InCrate::Remote => false,
InCrate::Local => def_id.is_local(),
}
}
fn ty_is_local_constructor(ty: Ty<'_>, in_crate: InCrate) -> bool {
debug!("ty_is_local_constructor({:?})", ty);
match *ty.kind() {
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Str
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Array(..)
| ty::Slice(..)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::Never
| ty::Tuple(..)
| ty::Param(..)
| ty::Projection(..) => false,
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match in_crate {
InCrate::Local => false,
// The inference variable might be unified with a local
// type in that remote crate.
InCrate::Remote => true,
},
ty::Adt(def, _) => def_id_is_local(def.did, in_crate),
ty::Foreign(did) => def_id_is_local(did, in_crate),
ty::Opaque(..) => {
// This merits some explanation.
// Normally, opaque types are not involed when performing
// coherence checking, since it is illegal to directly
// implement a trait on an opaque type. However, we might
// end up looking at an opaque type during coherence checking
// if an opaque type gets used within another type (e.g. as
// a type parameter). This requires us to decide whether or
// not an opaque type should be considered 'local' or not.
//
// We choose to treat all opaque types as non-local, even
// those that appear within the same crate. This seems
// somewhat surprising at first, but makes sense when
// you consider that opaque types are supposed to hide
// the underlying type *within the same crate*. When an
// opaque type is used from outside the module
// where it is declared, it should be impossible to observe
// anything about it other than the traits that it implements.
//
// The alternative would be to look at the underlying type
// to determine whether or not the opaque type itself should
// be considered local. However, this could make it a breaking change
// to switch the underlying ('defining') type from a local type
// to a remote type. This would violate the rule that opaque
// types should be completely opaque apart from the traits
// that they implement, so we don't use this behavior.
false
}
ty::Closure(..) => {
// Similar to the `Opaque` case (#83613).
false
}
ty::Dynamic(ref tt, ..) => {
if let Some(principal) = tt.principal() {
def_id_is_local(principal.def_id(), in_crate)
} else {
false
}
}
ty::Error(_) => true,
ty::Generator(..) | ty::GeneratorWitness(..) => {
bug!("ty_is_local invoked on unexpected type: {:?}", ty)
}
}
}