1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
//! The region check is a final pass that runs over the AST after we have
//! inferred the type constraints but before we have actually finalized
//! the types. Its purpose is to embed a variety of region constraints.
//! Inserting these constraints as a separate pass is good because (1) it
//! localizes the code that has to do with region inference and (2) often
//! we cannot know what constraints are needed until the basic types have
//! been inferred.
//!
//! ### Interaction with the borrow checker
//!
//! In general, the job of the borrowck module (which runs later) is to
//! check that all soundness criteria are met, given a particular set of
//! regions. The job of *this* module is to anticipate the needs of the
//! borrow checker and infer regions that will satisfy its requirements.
//! It is generally true that the inference doesn't need to be sound,
//! meaning that if there is a bug and we inferred bad regions, the borrow
//! checker should catch it. This is not entirely true though; for
//! example, the borrow checker doesn't check subtyping, and it doesn't
//! check that region pointers are always live when they are used. It
//! might be worthwhile to fix this so that borrowck serves as a kind of
//! verification step -- that would add confidence in the overall
//! correctness of the compiler, at the cost of duplicating some type
//! checks and effort.
//!
//! ### Inferring the duration of borrows, automatic and otherwise
//!
//! Whenever we introduce a borrowed pointer, for example as the result of
//! a borrow expression `let x = &data`, the lifetime of the pointer `x`
//! is always specified as a region inference variable. `regionck` has the
//! job of adding constraints such that this inference variable is as
//! narrow as possible while still accommodating all uses (that is, every
//! dereference of the resulting pointer must be within the lifetime).
//!
//! #### Reborrows
//!
//! Generally speaking, `regionck` does NOT try to ensure that the data
//! `data` will outlive the pointer `x`. That is the job of borrowck. The
//! one exception is when "re-borrowing" the contents of another borrowed
//! pointer. For example, imagine you have a borrowed pointer `b` with
//! lifetime `L1` and you have an expression `&*b`. The result of this
//! expression will be another borrowed pointer with lifetime `L2` (which is
//! an inference variable). The borrow checker is going to enforce the
//! constraint that `L2 < L1`, because otherwise you are re-borrowing data
//! for a lifetime larger than the original loan. However, without the
//! routines in this module, the region inferencer would not know of this
//! dependency and thus it might infer the lifetime of `L2` to be greater
//! than `L1` (issue #3148).
//!
//! There are a number of troublesome scenarios in the tests
//! `region-dependent-*.rs`, but here is one example:
//!
//! struct Foo { i: i32 }
//! struct Bar { foo: Foo }
//! fn get_i<'a>(x: &'a Bar) -> &'a i32 {
//! let foo = &x.foo; // Lifetime L1
//! &foo.i // Lifetime L2
//! }
//!
//! Note that this comes up either with `&` expressions, `ref`
//! bindings, and `autorefs`, which are the three ways to introduce
//! a borrow.
//!
//! The key point here is that when you are borrowing a value that
//! is "guaranteed" by a borrowed pointer, you must link the
//! lifetime of that borrowed pointer (`L1`, here) to the lifetime of
//! the borrow itself (`L2`). What do I mean by "guaranteed" by a
//! borrowed pointer? I mean any data that is reached by first
//! dereferencing a borrowed pointer and then either traversing
//! interior offsets or boxes. We say that the guarantor
//! of such data is the region of the borrowed pointer that was
//! traversed. This is essentially the same as the ownership
//! relation, except that a borrowed pointer never owns its
//! contents.
use crate::check::dropck;
use crate::check::FnCtxt;
use crate::mem_categorization as mc;
use crate::middle::region;
use crate::outlives::outlives_bounds::InferCtxtExt as _;
use rustc_data_structures::stable_set::FxHashSet;
use rustc_hir as hir;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::PatKind;
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{self, InferCtxt, RegionObligation, RegionckMode};
use rustc_middle::hir::place::{PlaceBase, PlaceWithHirId};
use rustc_middle::ty::adjustment;
use rustc_middle::ty::{self, Ty};
use rustc_span::Span;
use rustc_trait_selection::opaque_types::InferCtxtExt as _;
use std::ops::Deref;
// a variation on try that just returns unit
macro_rules! ignore_err {
($e:expr) => {
match $e {
Ok(e) => e,
Err(_) => {
debug!("ignoring mem-categorization error!");
return ();
}
}
};
}
trait OutlivesEnvironmentExt<'tcx> {
fn add_implied_bounds(
&mut self,
infcx: &InferCtxt<'a, 'tcx>,
fn_sig_tys: FxHashSet<Ty<'tcx>>,
body_id: hir::HirId,
span: Span,
);
}
impl<'tcx> OutlivesEnvironmentExt<'tcx> for OutlivesEnvironment<'tcx> {
/// This method adds "implied bounds" into the outlives environment.
/// Implied bounds are outlives relationships that we can deduce
/// on the basis that certain types must be well-formed -- these are
/// either the types that appear in the function signature or else
/// the input types to an impl. For example, if you have a function
/// like
///
/// ```
/// fn foo<'a, 'b, T>(x: &'a &'b [T]) { }
/// ```
///
/// we can assume in the caller's body that `'b: 'a` and that `T:
/// 'b` (and hence, transitively, that `T: 'a`). This method would
/// add those assumptions into the outlives-environment.
///
/// Tests: `src/test/ui/regions/regions-free-region-ordering-*.rs`
fn add_implied_bounds(
&mut self,
infcx: &InferCtxt<'a, 'tcx>,
fn_sig_tys: FxHashSet<Ty<'tcx>>,
body_id: hir::HirId,
span: Span,
) {
debug!("add_implied_bounds()");
for ty in fn_sig_tys {
let ty = infcx.resolve_vars_if_possible(ty);
debug!("add_implied_bounds: ty = {}", ty);
let implied_bounds = infcx.implied_outlives_bounds(self.param_env, body_id, ty, span);
self.add_outlives_bounds(Some(infcx), implied_bounds)
}
}
}
///////////////////////////////////////////////////////////////////////////
// PUBLIC ENTRY POINTS
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn regionck_expr(&self, body: &'tcx hir::Body<'tcx>) {
let subject = self.tcx.hir().body_owner_def_id(body.id());
let id = body.value.hir_id;
let mut rcx = RegionCtxt::new(self, id, Subject(subject), self.param_env);
// There are no add'l implied bounds when checking a
// standalone expr (e.g., the `E` in a type like `[u32; E]`).
rcx.outlives_environment.save_implied_bounds(id);
if !self.errors_reported_since_creation() {
// regionck assumes typeck succeeded
rcx.visit_body(body);
rcx.visit_region_obligations(id);
}
rcx.resolve_regions_and_report_errors(RegionckMode::for_item_body(self.tcx));
}
/// Region checking during the WF phase for items. `wf_tys` are the
/// types from which we should derive implied bounds, if any.
pub fn regionck_item(&self, item_id: hir::HirId, span: Span, wf_tys: FxHashSet<Ty<'tcx>>) {
debug!("regionck_item(item.id={:?}, wf_tys={:?})", item_id, wf_tys);
let subject = self.tcx.hir().local_def_id(item_id);
let mut rcx = RegionCtxt::new(self, item_id, Subject(subject), self.param_env);
rcx.outlives_environment.add_implied_bounds(self, wf_tys, item_id, span);
rcx.outlives_environment.save_implied_bounds(item_id);
rcx.visit_region_obligations(item_id);
rcx.resolve_regions_and_report_errors(RegionckMode::default());
}
/// Region check a function body. Not invoked on closures, but
/// only on the "root" fn item (in which closures may be
/// embedded). Walks the function body and adds various add'l
/// constraints that are needed for region inference. This is
/// separated both to isolate "pure" region constraints from the
/// rest of type check and because sometimes we need type
/// inference to have completed before we can determine which
/// constraints to add.
pub(crate) fn regionck_fn(
&self,
fn_id: hir::HirId,
body: &'tcx hir::Body<'tcx>,
span: Span,
wf_tys: FxHashSet<Ty<'tcx>>,
) {
debug!("regionck_fn(id={})", fn_id);
let subject = self.tcx.hir().body_owner_def_id(body.id());
let hir_id = body.value.hir_id;
let mut rcx = RegionCtxt::new(self, hir_id, Subject(subject), self.param_env);
// We need to add the implied bounds from the function signature
rcx.outlives_environment.add_implied_bounds(self, wf_tys, fn_id, span);
rcx.outlives_environment.save_implied_bounds(fn_id);
if !self.errors_reported_since_creation() {
// regionck assumes typeck succeeded
rcx.visit_fn_body(fn_id, body, self.tcx.hir().span(fn_id));
}
rcx.resolve_regions_and_report_errors(RegionckMode::for_item_body(self.tcx));
}
}
///////////////////////////////////////////////////////////////////////////
// INTERNALS
pub struct RegionCtxt<'a, 'tcx> {
pub fcx: &'a FnCtxt<'a, 'tcx>,
pub region_scope_tree: &'tcx region::ScopeTree,
outlives_environment: OutlivesEnvironment<'tcx>,
// id of innermost fn body id
body_id: hir::HirId,
body_owner: LocalDefId,
// id of AST node being analyzed (the subject of the analysis).
subject_def_id: LocalDefId,
}
impl<'a, 'tcx> Deref for RegionCtxt<'a, 'tcx> {
type Target = FnCtxt<'a, 'tcx>;
fn deref(&self) -> &Self::Target {
self.fcx
}
}
pub struct Subject(LocalDefId);
impl<'a, 'tcx> RegionCtxt<'a, 'tcx> {
pub fn new(
fcx: &'a FnCtxt<'a, 'tcx>,
initial_body_id: hir::HirId,
Subject(subject): Subject,
param_env: ty::ParamEnv<'tcx>,
) -> RegionCtxt<'a, 'tcx> {
let region_scope_tree = fcx.tcx.region_scope_tree(subject);
let outlives_environment = OutlivesEnvironment::new(param_env);
RegionCtxt {
fcx,
region_scope_tree,
body_id: initial_body_id,
body_owner: subject,
subject_def_id: subject,
outlives_environment,
}
}
/// Try to resolve the type for the given node, returning `t_err` if an error results. Note that
/// we never care about the details of the error, the same error will be detected and reported
/// in the writeback phase.
///
/// Note one important point: we do not attempt to resolve *region variables* here. This is
/// because regionck is essentially adding constraints to those region variables and so may yet
/// influence how they are resolved.
///
/// Consider this silly example:
///
/// ```
/// fn borrow(x: &i32) -> &i32 {x}
/// fn foo(x: @i32) -> i32 { // block: B
/// let b = borrow(x); // region: <R0>
/// *b
/// }
/// ```
///
/// Here, the region of `b` will be `<R0>`. `<R0>` is constrained to be some subregion of the
/// block B and some superregion of the call. If we forced it now, we'd choose the smaller
/// region (the call). But that would make the *b illegal. Since we don't resolve, the type
/// of b will be `&<R0>.i32` and then `*b` will require that `<R0>` be bigger than the let and
/// the `*b` expression, so we will effectively resolve `<R0>` to be the block B.
pub fn resolve_type(&self, unresolved_ty: Ty<'tcx>) -> Ty<'tcx> {
self.resolve_vars_if_possible(unresolved_ty)
}
/// Try to resolve the type for the given node.
fn resolve_node_type(&self, id: hir::HirId) -> Ty<'tcx> {
let t = self.node_ty(id);
self.resolve_type(t)
}
/// This is the "main" function when region-checking a function item or a
/// closure within a function item. It begins by updating various fields
/// (e.g., `outlives_environment`) to be appropriate to the function and
/// then adds constraints derived from the function body.
///
/// Note that it does **not** restore the state of the fields that
/// it updates! This is intentional, since -- for the main
/// function -- we wish to be able to read the final
/// `outlives_environment` and other fields from the caller. For
/// closures, however, we save and restore any "scoped state"
/// before we invoke this function. (See `visit_fn` in the
/// `intravisit::Visitor` impl below.)
fn visit_fn_body(
&mut self,
id: hir::HirId, // the id of the fn itself
body: &'tcx hir::Body<'tcx>,
span: Span,
) {
// When we enter a function, we can derive
debug!("visit_fn_body(id={:?})", id);
let body_id = body.id();
self.body_id = body_id.hir_id;
self.body_owner = self.tcx.hir().body_owner_def_id(body_id);
let fn_sig = {
match self.typeck_results.borrow().liberated_fn_sigs().get(id) {
Some(f) => *f,
None => {
bug!("No fn-sig entry for id={:?}", id);
}
}
};
// Collect the types from which we create inferred bounds.
// For the return type, if diverging, substitute `bool` just
// because it will have no effect.
//
// FIXME(#27579) return types should not be implied bounds
let fn_sig_tys: FxHashSet<_> =
fn_sig.inputs().iter().cloned().chain(Some(fn_sig.output())).collect();
self.outlives_environment.add_implied_bounds(self.fcx, fn_sig_tys, body_id.hir_id, span);
self.outlives_environment.save_implied_bounds(body_id.hir_id);
self.link_fn_params(body.params);
self.visit_body(body);
self.visit_region_obligations(body_id.hir_id);
self.constrain_opaque_types();
}
fn visit_region_obligations(&mut self, hir_id: hir::HirId) {
debug!("visit_region_obligations: hir_id={:?}", hir_id);
// region checking can introduce new pending obligations
// which, when processed, might generate new region
// obligations. So make sure we process those.
self.select_all_obligations_or_error();
}
fn resolve_regions_and_report_errors(&self, mode: RegionckMode) {
self.infcx.process_registered_region_obligations(
self.outlives_environment.region_bound_pairs_map(),
Some(self.tcx.lifetimes.re_root_empty),
self.param_env,
);
self.fcx.resolve_regions_and_report_errors(
self.subject_def_id.to_def_id(),
&self.outlives_environment,
mode,
);
}
fn constrain_bindings_in_pat(&mut self, pat: &hir::Pat<'_>) {
debug!("regionck::visit_pat(pat={:?})", pat);
pat.each_binding(|_, hir_id, span, _| {
let typ = self.resolve_node_type(hir_id);
let body_id = self.body_id;
dropck::check_drop_obligations(self, typ, span, body_id);
})
}
}
impl<'a, 'tcx> Visitor<'tcx> for RegionCtxt<'a, 'tcx> {
// (..) FIXME(#3238) should use visit_pat, not visit_arm/visit_local,
// However, right now we run into an issue whereby some free
// regions are not properly related if they appear within the
// types of arguments that must be inferred. This could be
// addressed by deferring the construction of the region
// hierarchy, and in particular the relationships between free
// regions, until regionck, as described in #3238.
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_fn(
&mut self,
fk: intravisit::FnKind<'tcx>,
_: &'tcx hir::FnDecl<'tcx>,
body_id: hir::BodyId,
span: Span,
hir_id: hir::HirId,
) {
assert!(
matches!(fk, intravisit::FnKind::Closure),
"visit_fn invoked for something other than a closure"
);
// Save state of current function before invoking
// `visit_fn_body`. We will restore afterwards.
let old_body_id = self.body_id;
let old_body_owner = self.body_owner;
let env_snapshot = self.outlives_environment.push_snapshot_pre_closure();
let body = self.tcx.hir().body(body_id);
self.visit_fn_body(hir_id, body, span);
// Restore state from previous function.
self.outlives_environment.pop_snapshot_post_closure(env_snapshot);
self.body_id = old_body_id;
self.body_owner = old_body_owner;
}
//visit_pat: visit_pat, // (..) see above
fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
// see above
self.constrain_bindings_in_pat(arm.pat);
intravisit::walk_arm(self, arm);
}
fn visit_local(&mut self, l: &'tcx hir::Local<'tcx>) {
// see above
self.constrain_bindings_in_pat(l.pat);
self.link_local(l);
intravisit::walk_local(self, l);
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
// Check any autoderefs or autorefs that appear.
let cmt_result = self.constrain_adjustments(expr);
// If necessary, constrain destructors in this expression. This will be
// the adjusted form if there is an adjustment.
match cmt_result {
Ok(head_cmt) => {
self.check_safety_of_rvalue_destructor_if_necessary(&head_cmt, expr.span);
}
Err(..) => {
self.tcx.sess.delay_span_bug(expr.span, "cat_expr Errd");
}
}
match expr.kind {
hir::ExprKind::AddrOf(hir::BorrowKind::Ref, m, ref base) => {
self.link_addr_of(expr, m, base);
intravisit::walk_expr(self, expr);
}
hir::ExprKind::Match(ref discr, arms, _) => {
self.link_match(discr, arms);
intravisit::walk_expr(self, expr);
}
_ => intravisit::walk_expr(self, expr),
}
}
}
impl<'a, 'tcx> RegionCtxt<'a, 'tcx> {
/// Creates a temporary `MemCategorizationContext` and pass it to the closure.
fn with_mc<F, R>(&self, f: F) -> R
where
F: for<'b> FnOnce(mc::MemCategorizationContext<'b, 'tcx>) -> R,
{
f(mc::MemCategorizationContext::new(
&self.infcx,
self.outlives_environment.param_env,
self.body_owner,
&self.typeck_results.borrow(),
))
}
/// Invoked on any adjustments that occur. Checks that if this is a region pointer being
/// dereferenced, the lifetime of the pointer includes the deref expr.
fn constrain_adjustments(
&mut self,
expr: &hir::Expr<'_>,
) -> mc::McResult<PlaceWithHirId<'tcx>> {
debug!("constrain_adjustments(expr={:?})", expr);
let mut place = self.with_mc(|mc| mc.cat_expr_unadjusted(expr))?;
let typeck_results = self.typeck_results.borrow();
let adjustments = typeck_results.expr_adjustments(expr);
if adjustments.is_empty() {
return Ok(place);
}
debug!("constrain_adjustments: adjustments={:?}", adjustments);
// If necessary, constrain destructors in the unadjusted form of this
// expression.
self.check_safety_of_rvalue_destructor_if_necessary(&place, expr.span);
for adjustment in adjustments {
debug!("constrain_adjustments: adjustment={:?}, place={:?}", adjustment, place);
if let adjustment::Adjust::Deref(Some(deref)) = adjustment.kind {
self.link_region(
expr.span,
deref.region,
ty::BorrowKind::from_mutbl(deref.mutbl),
&place,
);
}
if let adjustment::Adjust::Borrow(ref autoref) = adjustment.kind {
self.link_autoref(expr, &place, autoref);
}
place = self.with_mc(|mc| mc.cat_expr_adjusted(expr, place, adjustment))?;
}
Ok(place)
}
fn check_safety_of_rvalue_destructor_if_necessary(
&mut self,
place_with_id: &PlaceWithHirId<'tcx>,
span: Span,
) {
if let PlaceBase::Rvalue = place_with_id.place.base {
if place_with_id.place.projections.is_empty() {
let typ = self.resolve_type(place_with_id.place.ty());
let body_id = self.body_id;
dropck::check_drop_obligations(self, typ, span, body_id);
}
}
}
/// Adds constraints to inference such that `T: 'a` holds (or
/// reports an error if it cannot).
///
/// # Parameters
///
/// - `origin`, the reason we need this constraint
/// - `ty`, the type `T`
/// - `region`, the region `'a`
pub fn type_must_outlive(
&self,
origin: infer::SubregionOrigin<'tcx>,
ty: Ty<'tcx>,
region: ty::Region<'tcx>,
) {
self.infcx.register_region_obligation(
self.body_id,
RegionObligation { sub_region: region, sup_type: ty, origin },
);
}
/// Computes the guarantor for an expression `&base` and then ensures that the lifetime of the
/// resulting pointer is linked to the lifetime of its guarantor (if any).
fn link_addr_of(
&mut self,
expr: &hir::Expr<'_>,
mutability: hir::Mutability,
base: &hir::Expr<'_>,
) {
debug!("link_addr_of(expr={:?}, base={:?})", expr, base);
let cmt = ignore_err!(self.with_mc(|mc| mc.cat_expr(base)));
debug!("link_addr_of: cmt={:?}", cmt);
self.link_region_from_node_type(expr.span, expr.hir_id, mutability, &cmt);
}
/// Computes the guarantors for any ref bindings in a `let` and
/// then ensures that the lifetime of the resulting pointer is
/// linked to the lifetime of the initialization expression.
fn link_local(&self, local: &hir::Local<'_>) {
debug!("regionck::for_local()");
let init_expr = match local.init {
None => {
return;
}
Some(expr) => &*expr,
};
let discr_cmt = ignore_err!(self.with_mc(|mc| mc.cat_expr(init_expr)));
self.link_pattern(discr_cmt, local.pat);
}
/// Computes the guarantors for any ref bindings in a match and
/// then ensures that the lifetime of the resulting pointer is
/// linked to the lifetime of its guarantor (if any).
fn link_match(&self, discr: &hir::Expr<'_>, arms: &[hir::Arm<'_>]) {
debug!("regionck::for_match()");
let discr_cmt = ignore_err!(self.with_mc(|mc| mc.cat_expr(discr)));
debug!("discr_cmt={:?}", discr_cmt);
for arm in arms {
self.link_pattern(discr_cmt.clone(), arm.pat);
}
}
/// Computes the guarantors for any ref bindings in a match and
/// then ensures that the lifetime of the resulting pointer is
/// linked to the lifetime of its guarantor (if any).
fn link_fn_params(&self, params: &[hir::Param<'_>]) {
for param in params {
let param_ty = self.node_ty(param.hir_id);
let param_cmt =
self.with_mc(|mc| mc.cat_rvalue(param.hir_id, param.pat.span, param_ty));
debug!("param_ty={:?} param_cmt={:?} param={:?}", param_ty, param_cmt, param);
self.link_pattern(param_cmt, param.pat);
}
}
/// Link lifetimes of any ref bindings in `root_pat` to the pointers found
/// in the discriminant, if needed.
fn link_pattern(&self, discr_cmt: PlaceWithHirId<'tcx>, root_pat: &hir::Pat<'_>) {
debug!("link_pattern(discr_cmt={:?}, root_pat={:?})", discr_cmt, root_pat);
ignore_err!(self.with_mc(|mc| {
mc.cat_pattern(discr_cmt, root_pat, |sub_cmt, hir::Pat { kind, span, hir_id, .. }| {
// `ref x` pattern
if let PatKind::Binding(..) = kind {
if let Some(ty::BindByReference(mutbl)) =
mc.typeck_results.extract_binding_mode(self.tcx.sess, *hir_id, *span)
{
self.link_region_from_node_type(*span, *hir_id, mutbl, sub_cmt);
}
}
})
}));
}
/// Link lifetime of borrowed pointer resulting from autoref to lifetimes in the value being
/// autoref'd.
fn link_autoref(
&self,
expr: &hir::Expr<'_>,
expr_cmt: &PlaceWithHirId<'tcx>,
autoref: &adjustment::AutoBorrow<'tcx>,
) {
debug!("link_autoref(autoref={:?}, expr_cmt={:?})", autoref, expr_cmt);
match *autoref {
adjustment::AutoBorrow::Ref(r, m) => {
self.link_region(expr.span, r, ty::BorrowKind::from_mutbl(m.into()), expr_cmt);
}
adjustment::AutoBorrow::RawPtr(_) => {}
}
}
/// Like `link_region()`, except that the region is extracted from the type of `id`,
/// which must be some reference (`&T`, `&str`, etc).
fn link_region_from_node_type(
&self,
span: Span,
id: hir::HirId,
mutbl: hir::Mutability,
cmt_borrowed: &PlaceWithHirId<'tcx>,
) {
debug!(
"link_region_from_node_type(id={:?}, mutbl={:?}, cmt_borrowed={:?})",
id, mutbl, cmt_borrowed
);
let rptr_ty = self.resolve_node_type(id);
if let ty::Ref(r, _, _) = rptr_ty.kind() {
debug!("rptr_ty={}", rptr_ty);
self.link_region(span, r, ty::BorrowKind::from_mutbl(mutbl), cmt_borrowed);
}
}
/// Informs the inference engine that `borrow_cmt` is being borrowed with
/// kind `borrow_kind` and lifetime `borrow_region`.
/// In order to ensure borrowck is satisfied, this may create constraints
/// between regions, as explained in `link_reborrowed_region()`.
fn link_region(
&self,
span: Span,
borrow_region: ty::Region<'tcx>,
borrow_kind: ty::BorrowKind,
borrow_place: &PlaceWithHirId<'tcx>,
) {
let origin = infer::DataBorrowed(borrow_place.place.ty(), span);
self.type_must_outlive(origin, borrow_place.place.ty(), borrow_region);
for pointer_ty in borrow_place.place.deref_tys() {
debug!(
"link_region(borrow_region={:?}, borrow_kind={:?}, pointer_ty={:?})",
borrow_region, borrow_kind, borrow_place
);
match *pointer_ty.kind() {
ty::RawPtr(_) => return,
ty::Ref(ref_region, _, ref_mutability) => {
if self.link_reborrowed_region(span, borrow_region, ref_region, ref_mutability)
{
return;
}
}
_ => assert!(pointer_ty.is_box(), "unexpected built-in deref type {}", pointer_ty),
}
}
if let PlaceBase::Upvar(upvar_id) = borrow_place.place.base {
self.link_upvar_region(span, borrow_region, upvar_id);
}
}
/// This is the most complicated case: the path being borrowed is
/// itself the referent of a borrowed pointer. Let me give an
/// example fragment of code to make clear(er) the situation:
///
/// ```ignore (incomplete Rust code)
/// let r: &'a mut T = ...; // the original reference "r" has lifetime 'a
/// ...
/// &'z *r // the reborrow has lifetime 'z
/// ```
///
/// Now, in this case, our primary job is to add the inference
/// constraint that `'z <= 'a`. Given this setup, let's clarify the
/// parameters in (roughly) terms of the example:
///
/// ```plain,ignore (pseudo-Rust)
/// A borrow of: `& 'z bk * r` where `r` has type `& 'a bk T`
/// borrow_region ^~ ref_region ^~
/// borrow_kind ^~ ref_kind ^~
/// ref_cmt ^
/// ```
///
/// Here `bk` stands for some borrow-kind (e.g., `mut`, `uniq`, etc).
///
/// There is a complication beyond the simple scenario I just painted: there
/// may in fact be more levels of reborrowing. In the example, I said the
/// borrow was like `&'z *r`, but it might in fact be a borrow like
/// `&'z **q` where `q` has type `&'a &'b mut T`. In that case, we want to
/// ensure that `'z <= 'a` and `'z <= 'b`.
///
/// The return value of this function indicates whether we *don't* need to
/// the recurse to the next reference up.
///
/// This is explained more below.
fn link_reborrowed_region(
&self,
span: Span,
borrow_region: ty::Region<'tcx>,
ref_region: ty::Region<'tcx>,
ref_mutability: hir::Mutability,
) -> bool {
debug!("link_reborrowed_region: {:?} <= {:?}", borrow_region, ref_region);
self.sub_regions(infer::Reborrow(span), borrow_region, ref_region);
// Decide whether we need to recurse and link any regions within
// the `ref_cmt`. This is concerned for the case where the value
// being reborrowed is in fact a borrowed pointer found within
// another borrowed pointer. For example:
//
// let p: &'b &'a mut T = ...;
// ...
// &'z **p
//
// What makes this case particularly tricky is that, if the data
// being borrowed is a `&mut` or `&uniq` borrow, borrowck requires
// not only that `'z <= 'a`, (as before) but also `'z <= 'b`
// (otherwise the user might mutate through the `&mut T` reference
// after `'b` expires and invalidate the borrow we are looking at
// now).
//
// So let's re-examine our parameters in light of this more
// complicated (possible) scenario:
//
// A borrow of: `& 'z bk * * p` where `p` has type `&'b bk & 'a bk T`
// borrow_region ^~ ref_region ^~
// borrow_kind ^~ ref_kind ^~
// ref_cmt ^~~
//
// (Note that since we have not examined `ref_cmt.cat`, we don't
// know whether this scenario has occurred; but I wanted to show
// how all the types get adjusted.)
match ref_mutability {
hir::Mutability::Not => {
// The reference being reborrowed is a shareable ref of
// type `&'a T`. In this case, it doesn't matter where we
// *found* the `&T` pointer, the memory it references will
// be valid and immutable for `'a`. So we can stop here.
true
}
hir::Mutability::Mut => {
// The reference being reborrowed is either an `&mut T`. This is
// the case where recursion is needed.
false
}
}
}
/// An upvar may be behind up to 2 references:
///
/// * One can come from the reference to a "by-reference" upvar.
/// * Another one can come from the reference to the closure itself if it's
/// a `FnMut` or `Fn` closure.
///
/// This function links the lifetimes of those references to the lifetime
/// of the borrow that's provided. See [RegionCtxt::link_reborrowed_region] for some
/// more explanation of this in the general case.
///
/// We also supply a *cause*, and in this case we set the cause to
/// indicate that the reference being "reborrowed" is itself an upvar. This
/// provides a nicer error message should something go wrong.
fn link_upvar_region(
&self,
span: Span,
borrow_region: ty::Region<'tcx>,
upvar_id: ty::UpvarId,
) {
debug!("link_upvar_region(borrorw_region={:?}, upvar_id={:?}", borrow_region, upvar_id);
// A by-reference upvar can't be borrowed for longer than the
// upvar is borrowed from the environment.
let closure_local_def_id = upvar_id.closure_expr_id;
let mut all_captures_are_imm_borrow = true;
for captured_place in self
.typeck_results
.borrow()
.closure_min_captures
.get(&closure_local_def_id.to_def_id())
.and_then(|root_var_min_cap| root_var_min_cap.get(&upvar_id.var_path.hir_id))
.into_iter()
.flatten()
{
match captured_place.info.capture_kind {
ty::UpvarCapture::ByRef(upvar_borrow) => {
self.sub_regions(
infer::ReborrowUpvar(span, upvar_id),
borrow_region,
upvar_borrow.region,
);
if let ty::ImmBorrow = upvar_borrow.kind {
debug!("link_upvar_region: capture by shared ref");
} else {
all_captures_are_imm_borrow = false;
}
}
ty::UpvarCapture::ByValue(_) => {
all_captures_are_imm_borrow = false;
}
}
}
if all_captures_are_imm_borrow {
return;
}
let fn_hir_id = self.tcx.hir().local_def_id_to_hir_id(closure_local_def_id);
let ty = self.resolve_node_type(fn_hir_id);
debug!("link_upvar_region: ty={:?}", ty);
// A closure capture can't be borrowed for longer than the
// reference to the closure.
if let ty::Closure(_, substs) = ty.kind() {
match self.infcx.closure_kind(substs) {
Some(ty::ClosureKind::Fn | ty::ClosureKind::FnMut) => {
// Region of environment pointer
let env_region = self.tcx.mk_region(ty::ReFree(ty::FreeRegion {
scope: upvar_id.closure_expr_id.to_def_id(),
bound_region: ty::BrEnv,
}));
self.sub_regions(
infer::ReborrowUpvar(span, upvar_id),
borrow_region,
env_region,
);
}
Some(ty::ClosureKind::FnOnce) => {}
None => {
span_bug!(span, "Have not inferred closure kind before regionck");
}
}
}
}
}