1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
//! Orphan checker: every impl either implements a trait defined in this
//! crate or pertains to a type defined in this crate.
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::itemlikevisit::ItemLikeVisitor;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::ty::{self, TyCtxt};
use rustc_trait_selection::traits;
pub fn check(tcx: TyCtxt<'_>) {
let mut orphan = OrphanChecker { tcx };
tcx.hir().visit_all_item_likes(&mut orphan);
}
struct OrphanChecker<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl ItemLikeVisitor<'v> for OrphanChecker<'tcx> {
/// Checks exactly one impl for orphan rules and other such
/// restrictions. In this fn, it can happen that multiple errors
/// apply to a specific impl, so just return after reporting one
/// to prevent inundating the user with a bunch of similar error
/// reports.
fn visit_item(&mut self, item: &hir::Item<'_>) {
// "Trait" impl
if let hir::ItemKind::Impl(hir::Impl {
generics, of_trait: Some(ref tr), self_ty, ..
}) = &item.kind
{
debug!(
"coherence2::orphan check: trait impl {}",
self.tcx.hir().node_to_string(item.hir_id())
);
let trait_ref = self.tcx.impl_trait_ref(item.def_id).unwrap();
let trait_def_id = trait_ref.def_id;
let sm = self.tcx.sess.source_map();
let sp = sm.guess_head_span(item.span);
match traits::orphan_check(self.tcx, item.def_id.to_def_id()) {
Ok(()) => {}
Err(traits::OrphanCheckErr::NonLocalInputType(tys)) => {
let mut err = struct_span_err!(
self.tcx.sess,
sp,
E0117,
"only traits defined in the current crate can be implemented for \
arbitrary types"
);
err.span_label(sp, "impl doesn't use only types from inside the current crate");
for (ty, is_target_ty) in &tys {
let mut ty = *ty;
self.tcx.infer_ctxt().enter(|infcx| {
// Remove the lifetimes unnecessary for this error.
ty = infcx.freshen(ty);
});
ty = match ty.kind() {
// Remove the type arguments from the output, as they are not relevant.
// You can think of this as the reverse of `resolve_vars_if_possible`.
// That way if we had `Vec<MyType>`, we will properly attribute the
// problem to `Vec<T>` and avoid confusing the user if they were to see
// `MyType` in the error.
ty::Adt(def, _) => self.tcx.mk_adt(def, ty::List::empty()),
_ => ty,
};
let this = "this".to_string();
let (ty, postfix) = match &ty.kind() {
ty::Slice(_) => (this, " because slices are always foreign"),
ty::Array(..) => (this, " because arrays are always foreign"),
ty::Tuple(..) => (this, " because tuples are always foreign"),
_ => (format!("`{}`", ty), ""),
};
let msg = format!("{} is not defined in the current crate{}", ty, postfix);
if *is_target_ty {
// Point at `D<A>` in `impl<A, B> for C<B> in D<A>`
err.span_label(self_ty.span, &msg);
} else {
// Point at `C<B>` in `impl<A, B> for C<B> in D<A>`
err.span_label(tr.path.span, &msg);
}
}
err.note("define and implement a trait or new type instead");
err.emit();
return;
}
Err(traits::OrphanCheckErr::UncoveredTy(param_ty, local_type)) => {
let mut sp = sp;
for param in generics.params {
if param.name.ident().to_string() == param_ty.to_string() {
sp = param.span;
}
}
match local_type {
Some(local_type) => {
struct_span_err!(
self.tcx.sess,
sp,
E0210,
"type parameter `{}` must be covered by another type \
when it appears before the first local type (`{}`)",
param_ty,
local_type
)
.span_label(
sp,
format!(
"type parameter `{}` must be covered by another type \
when it appears before the first local type (`{}`)",
param_ty, local_type
),
)
.note(
"implementing a foreign trait is only possible if at \
least one of the types for which it is implemented is local, \
and no uncovered type parameters appear before that first \
local type",
)
.note(
"in this case, 'before' refers to the following order: \
`impl<..> ForeignTrait<T1, ..., Tn> for T0`, \
where `T0` is the first and `Tn` is the last",
)
.emit();
}
None => {
struct_span_err!(
self.tcx.sess,
sp,
E0210,
"type parameter `{}` must be used as the type parameter for some \
local type (e.g., `MyStruct<{}>`)",
param_ty,
param_ty
).span_label(sp, format!(
"type parameter `{}` must be used as the type parameter for some \
local type",
param_ty,
)).note("implementing a foreign trait is only possible if at \
least one of the types for which it is implemented is local"
).note("only traits defined in the current crate can be \
implemented for a type parameter"
).emit();
}
};
return;
}
}
// In addition to the above rules, we restrict impls of auto traits
// so that they can only be implemented on nominal types, such as structs,
// enums or foreign types. To see why this restriction exists, consider the
// following example (#22978). Imagine that crate A defines an auto trait
// `Foo` and a fn that operates on pairs of types:
//
// ```
// // Crate A
// auto trait Foo { }
// fn two_foos<A:Foo,B:Foo>(..) {
// one_foo::<(A,B)>(..)
// }
// fn one_foo<T:Foo>(..) { .. }
// ```
//
// This type-checks fine; in particular the fn
// `two_foos` is able to conclude that `(A,B):Foo`
// because `A:Foo` and `B:Foo`.
//
// Now imagine that crate B comes along and does the following:
//
// ```
// struct A { }
// struct B { }
// impl Foo for A { }
// impl Foo for B { }
// impl !Send for (A, B) { }
// ```
//
// This final impl is legal according to the orphan
// rules, but it invalidates the reasoning from
// `two_foos` above.
debug!(
"trait_ref={:?} trait_def_id={:?} trait_is_auto={}",
trait_ref,
trait_def_id,
self.tcx.trait_is_auto(trait_def_id)
);
if self.tcx.trait_is_auto(trait_def_id) && !trait_def_id.is_local() {
let self_ty = trait_ref.self_ty();
let opt_self_def_id = match *self_ty.kind() {
ty::Adt(self_def, _) => Some(self_def.did),
ty::Foreign(did) => Some(did),
_ => None,
};
let msg = match opt_self_def_id {
// We only want to permit nominal types, but not *all* nominal types.
// They must be local to the current crate, so that people
// can't do `unsafe impl Send for Rc<SomethingLocal>` or
// `impl !Send for Box<SomethingLocalAndSend>`.
Some(self_def_id) => {
if self_def_id.is_local() {
None
} else {
Some((
format!(
"cross-crate traits with a default impl, like `{}`, \
can only be implemented for a struct/enum type \
defined in the current crate",
self.tcx.def_path_str(trait_def_id)
),
"can't implement cross-crate trait for type in another crate",
))
}
}
_ => Some((
format!(
"cross-crate traits with a default impl, like `{}`, can \
only be implemented for a struct/enum type, not `{}`",
self.tcx.def_path_str(trait_def_id),
self_ty
),
"can't implement cross-crate trait with a default impl for \
non-struct/enum type",
)),
};
if let Some((msg, label)) = msg {
struct_span_err!(self.tcx.sess, sp, E0321, "{}", msg)
.span_label(sp, label)
.emit();
return;
}
}
if let ty::Opaque(def_id, _) = *trait_ref.self_ty().kind() {
self.tcx
.sess
.struct_span_err(sp, "cannot implement trait on type alias impl trait")
.span_note(self.tcx.def_span(def_id), "type alias impl trait defined here")
.emit();
}
}
}
fn visit_trait_item(&mut self, _trait_item: &hir::TraitItem<'_>) {}
fn visit_impl_item(&mut self, _impl_item: &hir::ImplItem<'_>) {}
fn visit_foreign_item(&mut self, _foreign_item: &hir::ForeignItem<'_>) {}
}