1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
use std::mem;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir::def_id::{CrateNum, DefId, CRATE_DEF_INDEX};
use rustc_middle::middle::privacy::AccessLevels;
use rustc_middle::ty::TyCtxt;
use rustc_span::symbol::sym;
use crate::clean::{self, GetDefId, ItemId, PrimitiveType};
use crate::config::RenderOptions;
use crate::fold::DocFolder;
use crate::formats::item_type::ItemType;
use crate::formats::Impl;
use crate::html::markdown::short_markdown_summary;
use crate::html::render::cache::{get_index_search_type, ExternalLocation};
use crate::html::render::IndexItem;
/// This cache is used to store information about the [`clean::Crate`] being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to `Send` so it may be stored in an `Arc` instance and shared among the various
/// rendering threads.
#[derive(Default)]
crate struct Cache {
/// Maps a type ID to all known implementations for that type. This is only
/// recognized for intra-crate `ResolvedPath` types, and is used to print
/// out extra documentation on the page of an enum/struct.
///
/// The values of the map are a list of implementations and documentation
/// found on that implementation.
crate impls: FxHashMap<DefId, Vec<Impl>>,
/// Maintains a mapping of local crate `DefId`s to the fully qualified name
/// and "short type description" of that node. This is used when generating
/// URLs when a type is being linked to. External paths are not located in
/// this map because the `External` type itself has all the information
/// necessary.
crate paths: FxHashMap<DefId, (Vec<String>, ItemType)>,
/// Similar to `paths`, but only holds external paths. This is only used for
/// generating explicit hyperlinks to other crates.
crate external_paths: FxHashMap<DefId, (Vec<String>, ItemType)>,
/// Maps local `DefId`s of exported types to fully qualified paths.
/// Unlike 'paths', this mapping ignores any renames that occur
/// due to 'use' statements.
///
/// This map is used when writing out the special 'implementors'
/// javascript file. By using the exact path that the type
/// is declared with, we ensure that each path will be identical
/// to the path used if the corresponding type is inlined. By
/// doing this, we can detect duplicate impls on a trait page, and only display
/// the impl for the inlined type.
crate exact_paths: FxHashMap<DefId, Vec<String>>,
/// This map contains information about all known traits of this crate.
/// Implementations of a crate should inherit the documentation of the
/// parent trait if no extra documentation is specified, and default methods
/// should show up in documentation about trait implementations.
crate traits: FxHashMap<DefId, clean::TraitWithExtraInfo>,
/// When rendering traits, it's often useful to be able to list all
/// implementors of the trait, and this mapping is exactly, that: a mapping
/// of trait ids to the list of known implementors of the trait
crate implementors: FxHashMap<DefId, Vec<Impl>>,
/// Cache of where external crate documentation can be found.
crate extern_locations: FxHashMap<CrateNum, ExternalLocation>,
/// Cache of where documentation for primitives can be found.
crate primitive_locations: FxHashMap<clean::PrimitiveType, DefId>,
// Note that external items for which `doc(hidden)` applies to are shown as
// non-reachable while local items aren't. This is because we're reusing
// the access levels from the privacy check pass.
crate access_levels: AccessLevels<DefId>,
/// The version of the crate being documented, if given from the `--crate-version` flag.
crate crate_version: Option<String>,
/// Whether to document private items.
/// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions.
crate document_private: bool,
/// Crates marked with [`#[doc(masked)]`][doc_masked].
///
/// [doc_masked]: https://doc.rust-lang.org/nightly/unstable-book/language-features/doc-masked.html
crate masked_crates: FxHashSet<CrateNum>,
// Private fields only used when initially crawling a crate to build a cache
stack: Vec<String>,
parent_stack: Vec<DefId>,
parent_is_trait_impl: bool,
stripped_mod: bool,
crate search_index: Vec<IndexItem>,
// In rare case where a structure is defined in one module but implemented
// in another, if the implementing module is parsed before defining module,
// then the fully qualified name of the structure isn't presented in `paths`
// yet when its implementation methods are being indexed. Caches such methods
// and their parent id here and indexes them at the end of crate parsing.
crate orphan_impl_items: Vec<(DefId, clean::Item)>,
// Similarly to `orphan_impl_items`, sometimes trait impls are picked up
// even though the trait itself is not exported. This can happen if a trait
// was defined in function/expression scope, since the impl will be picked
// up by `collect-trait-impls` but the trait won't be scraped out in the HIR
// crawl. In order to prevent crashes when looking for notable traits or
// when gathering trait documentation on a type, hold impls here while
// folding and add them to the cache later on if we find the trait.
orphan_trait_impls: Vec<(DefId, FxHashSet<DefId>, Impl)>,
/// All intra-doc links resolved so far.
///
/// Links are indexed by the DefId of the item they document.
crate intra_doc_links: FxHashMap<ItemId, Vec<clean::ItemLink>>,
/// Cfg that have been hidden via #![doc(cfg_hide(...))]
crate hidden_cfg: FxHashSet<clean::cfg::Cfg>,
}
/// This struct is used to wrap the `cache` and `tcx` in order to run `DocFolder`.
struct CacheBuilder<'a, 'tcx> {
cache: &'a mut Cache,
tcx: TyCtxt<'tcx>,
}
impl Cache {
crate fn new(access_levels: AccessLevels<DefId>, document_private: bool) -> Self {
Cache { access_levels, document_private, ..Cache::default() }
}
/// Populates the `Cache` with more data. The returned `Crate` will be missing some data that was
/// in `krate` due to the data being moved into the `Cache`.
crate fn populate(
&mut self,
mut krate: clean::Crate,
tcx: TyCtxt<'_>,
render_options: &RenderOptions,
) -> clean::Crate {
// Crawl the crate to build various caches used for the output
debug!(?self.crate_version);
self.traits = krate.external_traits.take();
let RenderOptions { extern_html_root_takes_precedence, output: dst, .. } = render_options;
// Cache where all our extern crates are located
// FIXME: this part is specific to HTML so it'd be nice to remove it from the common code
for &e in &krate.externs {
let name = e.name(tcx);
let extern_url =
render_options.extern_html_root_urls.get(&*name.as_str()).map(|u| &**u);
let location = e.location(extern_url, *extern_html_root_takes_precedence, dst, tcx);
self.extern_locations.insert(e.crate_num, location);
self.external_paths.insert(e.def_id(), (vec![name.to_string()], ItemType::Module));
}
// FIXME: avoid this clone (requires implementing Default manually)
self.primitive_locations = PrimitiveType::primitive_locations(tcx).clone();
for (prim, &def_id) in &self.primitive_locations {
let crate_name = tcx.crate_name(def_id.krate);
// Recall that we only allow primitive modules to be at the root-level of the crate.
// If that restriction is ever lifted, this will have to include the relative paths instead.
self.external_paths.insert(
def_id,
(vec![crate_name.to_string(), prim.as_sym().to_string()], ItemType::Primitive),
);
}
krate = CacheBuilder { tcx, cache: self }.fold_crate(krate);
for (trait_did, dids, impl_) in self.orphan_trait_impls.drain(..) {
if self.traits.contains_key(&trait_did) {
for did in dids {
self.impls.entry(did).or_default().push(impl_.clone());
}
}
}
krate
}
}
impl<'a, 'tcx> DocFolder for CacheBuilder<'a, 'tcx> {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
if item.def_id.is_local() {
debug!("folding {} \"{:?}\", id {:?}", item.type_(), item.name, item.def_id);
}
// If this is a stripped module,
// we don't want it or its children in the search index.
let orig_stripped_mod = match *item.kind {
clean::StrippedItem(box clean::ModuleItem(..)) => {
mem::replace(&mut self.cache.stripped_mod, true)
}
_ => self.cache.stripped_mod,
};
// If the impl is from a masked crate or references something from a
// masked crate then remove it completely.
if let clean::ImplItem(ref i) = *item.kind {
if self.cache.masked_crates.contains(&item.def_id.krate())
|| i.trait_
.as_ref()
.map_or(false, |t| self.cache.masked_crates.contains(&t.def_id().krate))
|| i.for_.def_id().map_or(false, |d| self.cache.masked_crates.contains(&d.krate))
{
return None;
}
}
// Propagate a trait method's documentation to all implementors of the
// trait.
if let clean::TraitItem(ref t) = *item.kind {
self.cache.traits.entry(item.def_id.expect_def_id()).or_insert_with(|| {
clean::TraitWithExtraInfo {
trait_: t.clone(),
is_notable: item.attrs.has_doc_flag(sym::notable_trait),
}
});
}
// Collect all the implementors of traits.
if let clean::ImplItem(ref i) = *item.kind {
if let Some(trait_) = &i.trait_ {
if i.blanket_impl.is_none() {
self.cache
.implementors
.entry(trait_.def_id())
.or_default()
.push(Impl { impl_item: item.clone() });
}
}
}
// Index this method for searching later on.
if let Some(ref s) = item.name {
let (parent, is_inherent_impl_item) = match *item.kind {
clean::StrippedItem(..) => ((None, None), false),
clean::AssocConstItem(..) | clean::TypedefItem(_, true)
if self.cache.parent_is_trait_impl =>
{
// skip associated items in trait impls
((None, None), false)
}
clean::AssocTypeItem(..)
| clean::TyMethodItem(..)
| clean::StructFieldItem(..)
| clean::VariantItem(..) => (
(
Some(*self.cache.parent_stack.last().expect("parent_stack is empty")),
Some(&self.cache.stack[..self.cache.stack.len() - 1]),
),
false,
),
clean::MethodItem(..) | clean::AssocConstItem(..) => {
if self.cache.parent_stack.is_empty() {
((None, None), false)
} else {
let last = self.cache.parent_stack.last().expect("parent_stack is empty 2");
let did = *last;
let path = match self.cache.paths.get(&did) {
// The current stack not necessarily has correlation
// for where the type was defined. On the other
// hand, `paths` always has the right
// information if present.
Some(&(
ref fqp,
ItemType::Trait
| ItemType::Struct
| ItemType::Union
| ItemType::Enum,
)) => Some(&fqp[..fqp.len() - 1]),
Some(..) => Some(&*self.cache.stack),
None => None,
};
((Some(*last), path), true)
}
}
_ => ((None, Some(&*self.cache.stack)), false),
};
match parent {
(parent, Some(path)) if is_inherent_impl_item || !self.cache.stripped_mod => {
debug_assert!(!item.is_stripped());
// A crate has a module at its root, containing all items,
// which should not be indexed. The crate-item itself is
// inserted later on when serializing the search-index.
if item.def_id.index().map_or(false, |idx| idx != CRATE_DEF_INDEX) {
let desc = item.doc_value().map_or_else(String::new, |x| {
short_markdown_summary(&x.as_str(), &item.link_names(&self.cache))
});
self.cache.search_index.push(IndexItem {
ty: item.type_(),
name: s.to_string(),
path: path.join("::"),
desc,
parent,
parent_idx: None,
search_type: get_index_search_type(&item, self.tcx),
aliases: item.attrs.get_doc_aliases(),
});
}
}
(Some(parent), None) if is_inherent_impl_item => {
// We have a parent, but we don't know where they're
// defined yet. Wait for later to index this item.
self.cache.orphan_impl_items.push((parent, item.clone()));
}
_ => {}
}
}
// Keep track of the fully qualified path for this item.
let pushed = match item.name {
Some(n) if !n.is_empty() => {
self.cache.stack.push(n.to_string());
true
}
_ => false,
};
match *item.kind {
clean::StructItem(..)
| clean::EnumItem(..)
| clean::TypedefItem(..)
| clean::TraitItem(..)
| clean::TraitAliasItem(..)
| clean::FunctionItem(..)
| clean::ModuleItem(..)
| clean::ForeignFunctionItem(..)
| clean::ForeignStaticItem(..)
| clean::ConstantItem(..)
| clean::StaticItem(..)
| clean::UnionItem(..)
| clean::ForeignTypeItem
| clean::MacroItem(..)
| clean::ProcMacroItem(..)
| clean::VariantItem(..) => {
if !self.cache.stripped_mod {
// Re-exported items mean that the same id can show up twice
// in the rustdoc ast that we're looking at. We know,
// however, that a re-exported item doesn't show up in the
// `public_items` map, so we can skip inserting into the
// paths map if there was already an entry present and we're
// not a public item.
if !self.cache.paths.contains_key(&item.def_id.expect_def_id())
|| self.cache.access_levels.is_public(item.def_id.expect_def_id())
{
self.cache.paths.insert(
item.def_id.expect_def_id(),
(self.cache.stack.clone(), item.type_()),
);
}
}
}
clean::PrimitiveItem(..) => {
self.cache
.paths
.insert(item.def_id.expect_def_id(), (self.cache.stack.clone(), item.type_()));
}
clean::ExternCrateItem { .. }
| clean::ImportItem(..)
| clean::OpaqueTyItem(..)
| clean::ImplItem(..)
| clean::TyMethodItem(..)
| clean::MethodItem(..)
| clean::StructFieldItem(..)
| clean::AssocConstItem(..)
| clean::AssocTypeItem(..)
| clean::StrippedItem(..)
| clean::KeywordItem(..) => {
// FIXME: Do these need handling?
// The person writing this comment doesn't know.
// So would rather leave them to an expert,
// as at least the list is better than `_ => {}`.
}
}
// Maintain the parent stack
let orig_parent_is_trait_impl = self.cache.parent_is_trait_impl;
let parent_pushed = match *item.kind {
clean::TraitItem(..)
| clean::EnumItem(..)
| clean::ForeignTypeItem
| clean::StructItem(..)
| clean::UnionItem(..)
| clean::VariantItem(..) => {
self.cache.parent_stack.push(item.def_id.expect_def_id());
self.cache.parent_is_trait_impl = false;
true
}
clean::ImplItem(ref i) => {
self.cache.parent_is_trait_impl = i.trait_.is_some();
match i.for_ {
clean::ResolvedPath { did, .. } => {
self.cache.parent_stack.push(did);
true
}
clean::DynTrait(ref bounds, _)
| clean::BorrowedRef { type_: box clean::DynTrait(ref bounds, _), .. } => {
self.cache.parent_stack.push(bounds[0].trait_.def_id());
true
}
ref t => {
let prim_did = t
.primitive_type()
.and_then(|t| self.cache.primitive_locations.get(&t).cloned());
match prim_did {
Some(did) => {
self.cache.parent_stack.push(did);
true
}
None => false,
}
}
}
}
_ => false,
};
// Once we've recursively found all the generics, hoard off all the
// implementations elsewhere.
let item = self.fold_item_recur(item);
let ret = if let clean::Item { kind: box clean::ImplItem(ref i), .. } = item {
// Figure out the id of this impl. This may map to a
// primitive rather than always to a struct/enum.
// Note: matching twice to restrict the lifetime of the `i` borrow.
let mut dids = FxHashSet::default();
match i.for_ {
clean::ResolvedPath { did, .. }
| clean::BorrowedRef { type_: box clean::ResolvedPath { did, .. }, .. } => {
dids.insert(did);
}
clean::DynTrait(ref bounds, _)
| clean::BorrowedRef { type_: box clean::DynTrait(ref bounds, _), .. } => {
dids.insert(bounds[0].trait_.def_id());
}
ref t => {
let did = t
.primitive_type()
.and_then(|t| self.cache.primitive_locations.get(&t).cloned());
if let Some(did) = did {
dids.insert(did);
}
}
}
if let Some(generics) = i.trait_.as_ref().and_then(|t| t.generics()) {
for bound in generics {
if let Some(did) = bound.def_id() {
dids.insert(did);
}
}
}
let impl_item = Impl { impl_item: item };
if impl_item.trait_did().map_or(true, |d| self.cache.traits.contains_key(&d)) {
for did in dids {
self.cache.impls.entry(did).or_insert(vec![]).push(impl_item.clone());
}
} else {
let trait_did = impl_item.trait_did().expect("no trait did");
self.cache.orphan_trait_impls.push((trait_did, dids, impl_item));
}
None
} else {
Some(item)
};
if pushed {
self.cache.stack.pop().expect("stack already empty");
}
if parent_pushed {
self.cache.parent_stack.pop().expect("parent stack already empty");
}
self.cache.stripped_mod = orig_stripped_mod;
self.cache.parent_is_trait_impl = orig_parent_is_trait_impl;
ret
}
}