Struct rustc_const_eval::interpret::eval_context::InterpCx [−][src]
pub struct InterpCx<'mir, 'tcx, M: Machine<'mir, 'tcx>> {
pub machine: M,
pub tcx: TyCtxtAt<'tcx>,
pub(crate) param_env: ParamEnv<'tcx>,
pub memory: Memory<'mir, 'tcx, M>,
pub recursion_limit: Limit,
}
Fields
machine: M
Stores the Machine
instance.
Note: the stack is provided by the machine.
tcx: TyCtxtAt<'tcx>
The results of the type checker, from rustc. The span in this is the “root” of the evaluation, i.e., the const we are evaluating (if this is CTFE).
param_env: ParamEnv<'tcx>
Bounds in scope for polymorphic evaluations.
memory: Memory<'mir, 'tcx, M>
The virtual memory system.
recursion_limit: Limit
The recursion limit (cached from tcx.recursion_limit(())
)
Implementations
fn hook_special_const_fn(
&mut self,
instance: Instance<'tcx>,
args: &[OpTy<'tcx>],
is_const_fn: bool
) -> InterpResult<'tcx, Option<Instance<'tcx>>>
fn hook_special_const_fn(
&mut self,
instance: Instance<'tcx>,
args: &[OpTy<'tcx>],
is_const_fn: bool
) -> InterpResult<'tcx, Option<Instance<'tcx>>>
“Intercept” a function call to a panic-related function
because we have something special to do for it.
If this returns successfully (Ok
), the function should just be evaluated normally.
pub fn cast(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
cast_kind: CastKind,
cast_ty: Ty<'tcx>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
fn misc_cast(
&self,
src: &ImmTy<'tcx, M::PointerTag>,
cast_ty: Ty<'tcx>
) -> InterpResult<'tcx, Immediate<M::PointerTag>>
pub(super) fn cast_from_scalar(
&self,
v: u128,
src_layout: TyAndLayout<'tcx>,
cast_ty: Ty<'tcx>
) -> Scalar<M::PointerTag>
fn cast_from_float<F>(&self, f: F, dest_ty: Ty<'tcx>) -> Scalar<M::PointerTag> where
F: Float + Into<Scalar<M::PointerTag>> + FloatConvert<Single> + FloatConvert<Double>,
fn unsize_into_ptr(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>,
source_ty: Ty<'tcx>,
cast_ty: Ty<'tcx>
) -> InterpResult<'tcx>
fn unsize_into(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
cast_ty: TyAndLayout<'tcx>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn new(
tcx: TyCtxt<'tcx>,
root_span: Span,
param_env: ParamEnv<'tcx>,
machine: M,
memory_extra: M::MemoryExtra
) -> Self
Call this to turn untagged “global” pointers (obtained via tcx
) into
the machine pointer to the allocation. Must never be used
for any other pointers, nor for TLS statics.
Using the resulting pointer represents a direct access to that memory
(e.g. by directly using a static
),
as opposed to access through a pointer that was created by the program.
This function can fail only if ptr
points to an extern static
.
pub(crate) fn stack_mut(
&mut self
) -> &mut Vec<Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>>
pub fn load_mir(
&self,
instance: InstanceDef<'tcx>,
promoted: Option<Promoted>
) -> InterpResult<'tcx, &'tcx Body<'tcx>>
pub(super) fn subst_from_current_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
&self,
value: T
) -> T
pub(super) fn subst_from_current_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
&self,
value: T
) -> T
Call this on things you got out of the MIR (so it is as generic as the current stack frame), to bring it into the proper environment for this interpreter.
pub(super) fn subst_from_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
&self,
frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
value: T
) -> T
pub(super) fn subst_from_frame_and_normalize_erasing_regions<T: TypeFoldable<'tcx>>(
&self,
frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
value: T
) -> T
Call this on things you got out of the MIR (so it is as generic as the provided stack frame), to bring it into the proper environment for this interpreter.
pub(super) fn resolve(
&self,
def: WithOptConstParam<DefId>,
substs: SubstsRef<'tcx>
) -> InterpResult<'tcx, Instance<'tcx>>
pub(super) fn resolve(
&self,
def: WithOptConstParam<DefId>,
substs: SubstsRef<'tcx>
) -> InterpResult<'tcx, Instance<'tcx>>
The substs
are assumed to already be in our interpreter “universe” (param_env).
pub fn layout_of_local(
&self,
frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
local: Local,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, TyAndLayout<'tcx>>
pub(super) fn size_and_align_of(
&self,
metadata: &MemPlaceMeta<M::PointerTag>,
layout: &TyAndLayout<'tcx>
) -> InterpResult<'tcx, Option<(Size, Align)>>
pub(super) fn size_and_align_of(
&self,
metadata: &MemPlaceMeta<M::PointerTag>,
layout: &TyAndLayout<'tcx>
) -> InterpResult<'tcx, Option<(Size, Align)>>
Returns the actual dynamic size and alignment of the place at the given type. Only the “meta” (metadata) part of the place matters. This can fail to provide an answer for extern types.
pub fn size_and_align_of_mplace(
&self,
mplace: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Option<(Size, Align)>>
pub fn push_stack_frame(
&mut self,
instance: Instance<'tcx>,
body: &'mir Body<'tcx>,
return_place: Option<&PlaceTy<'tcx, M::PointerTag>>,
return_to_block: StackPopCleanup
) -> InterpResult<'tcx>
Jump to the given block.
Return to the given target
basic block.
Do not use for unwinding! Use unwind_to_block
instead.
If target
is None
, that indicates the function cannot return, so we raise UB.
Unwind to the given target
basic block.
Do not use for returning! Use return_to_block
instead.
If target
is StackPopUnwind::Skip
, that indicates the function does not need cleanup
during unwinding, and we will just keep propagating that upwards.
If target
is StackPopUnwind::NotAllowed
, that indicates the function does not allow
unwinding, and doing so is UB.
Pops the current frame from the stack, deallocating the memory for allocated locals.
If unwinding
is false
, then we are performing a normal return
from a function. In this case, we jump back into the frame of the caller,
and continue execution as normal.
If unwinding
is true
, then we are in the middle of a panic,
and need to unwind this frame. In this case, we jump to the
cleanup
block for the function, which is responsible for running
Drop
impls for any locals that have been initialized at this point.
The cleanup block ends with a special Resume
terminator, which will
cause us to continue unwinding.
Mark a storage as live, killing the previous content.
pub fn eval_to_allocation(
&self,
gid: GlobalId<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub fn dump_place<'a>(
&'a self,
place: Place<M::PointerTag>
) -> PlacePrinter<'a, 'mir, 'tcx, M>
pub fn intern_with_temp_alloc(
&mut self,
layout: TyAndLayout<'tcx>,
f: impl FnOnce(&mut InterpCx<'mir, 'tcx, M>, &PlaceTy<'tcx, M::PointerTag>) -> InterpResult<'tcx, ()>
) -> InterpResult<'tcx, &'tcx Allocation>
pub fn intern_with_temp_alloc(
&mut self,
layout: TyAndLayout<'tcx>,
f: impl FnOnce(&mut InterpCx<'mir, 'tcx, M>, &PlaceTy<'tcx, M::PointerTag>) -> InterpResult<'tcx, ()>
) -> InterpResult<'tcx, &'tcx Allocation>
A helper function that allocates memory for the layout given and gives you access to mutate
it. Once your own mutation code is done, the backing Allocation
is removed from the
current Memory
and returned.
Walks up the callstack from the intrinsic’s callsite, searching for the first callsite in a
frame which is not #[track_caller]
.
pub(crate) fn alloc_caller_location(
&mut self,
filename: Symbol,
line: u32,
col: u32
) -> MPlaceTy<'tcx, M::PointerTag>
pub(crate) fn alloc_caller_location(
&mut self,
filename: Symbol,
line: u32,
col: u32
) -> MPlaceTy<'tcx, M::PointerTag>
Allocate a const core::panic::Location
with the provided filename and line/column numbers.
pub fn emulate_intrinsic(
&mut self,
instance: Instance<'tcx>,
args: &[OpTy<'tcx, M::PointerTag>],
ret: Option<(&PlaceTy<'tcx, M::PointerTag>, BasicBlock)>
) -> InterpResult<'tcx, bool>
pub fn emulate_intrinsic(
&mut self,
instance: Instance<'tcx>,
args: &[OpTy<'tcx, M::PointerTag>],
ret: Option<(&PlaceTy<'tcx, M::PointerTag>, BasicBlock)>
) -> InterpResult<'tcx, bool>
Returns true
if emulation happened.
Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own
intrinsic handling.
pub fn exact_div(
&mut self,
a: &ImmTy<'tcx, M::PointerTag>,
b: &ImmTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn ptr_offset_inbounds(
&self,
ptr: Pointer<Option<M::PointerTag>>,
pointee_ty: Ty<'tcx>,
offset_count: i64
) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>>
pub fn ptr_offset_inbounds(
&self,
ptr: Pointer<Option<M::PointerTag>>,
pointee_ty: Ty<'tcx>,
offset_count: i64
) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>>
Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its allocation. For integer pointers, we consider each of them their own tiny allocation of size 0, so offset-by-0 (and only 0) is okay – except that null cannot be offset by any value.
pub(crate) fn copy_intrinsic(
&mut self,
src: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
nonoverlapping: bool
) -> InterpResult<'tcx>
pub(crate) fn copy_intrinsic(
&mut self,
src: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
nonoverlapping: bool
) -> InterpResult<'tcx>
Copy count*size_of::<T>()
many bytes from *src
to *dst
.
pub(crate) fn raw_eq_intrinsic(
&mut self,
lhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>,
rhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::PointerTag>
) -> InterpResult<'tcx, Scalar<M::PointerTag>>
fn try_read_immediate_from_mplace(
&self,
mplace: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::PointerTag>>>
fn try_read_immediate_from_mplace(
&self,
mplace: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::PointerTag>>>
Try reading an immediate in memory; this is interesting particularly for ScalarPair
.
Returns None
if the layout does not permit loading this as a value.
pub fn try_read_immediate(
&self,
src: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::PointerTag>, MPlaceTy<'tcx, M::PointerTag>>>
pub fn try_read_immediate(
&self,
src: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::PointerTag>, MPlaceTy<'tcx, M::PointerTag>>>
Try returning an immediate for the operand.
If the layout does not permit loading this as an immediate, return where in memory
we can find the data.
Note that for a given layout, this operation will either always fail or always
succeed! Whether it succeeds depends on whether the layout can be represented
in an Immediate
, not on which data is stored there currently.
pub fn read_immediate(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
pub fn read_immediate(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
Read an immediate from a place, asserting that that is possible with the given layout.
pub fn read_scalar(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ScalarMaybeUninit<M::PointerTag>>
pub fn read_scalar(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ScalarMaybeUninit<M::PointerTag>>
Read a scalar from a place
pub fn read_pointer(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>>
pub fn read_pointer(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>>
Read a pointer from a place.
pub fn operand_field(
&self,
op: &OpTy<'tcx, M::PointerTag>,
field: usize
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn operand_field(
&self,
op: &OpTy<'tcx, M::PointerTag>,
field: usize
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
Projection functions
pub fn operand_index(
&self,
op: &OpTy<'tcx, M::PointerTag>,
index: u64
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn operand_downcast(
&self,
op: &OpTy<'tcx, M::PointerTag>,
variant: VariantIdx
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn operand_projection(
&self,
base: &OpTy<'tcx, M::PointerTag>,
proj_elem: PlaceElem<'tcx>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn access_local(
&self,
frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
local: Local,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn access_local(
&self,
frame: &Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
local: Local,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
Read from a local. Will not actually access the local if reading from a ZST.
Will not access memory, instead an indirect Operand
is returned.
This is public because it is used by priroda to get an OpTy from a local
pub fn place_to_op(
&self,
place: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn place_to_op(
&self,
place: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
Every place can be read from, so we can turn them into an operand.
This will definitely return Indirect
if the place is a Ptr
, i.e., this
will never actually read from memory.
pub fn eval_place_to_op(
&self,
place: Place<'tcx>,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn eval_operand(
&self,
mir_op: &Operand<'tcx>,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn eval_operand(
&self,
mir_op: &Operand<'tcx>,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
Evaluate the operand, returning a place where you can then find the data. If you already know the layout, you can save two table lookups by passing it in here.
pub(super) fn eval_operands(
&self,
ops: &[Operand<'tcx>]
) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::PointerTag>>>
pub(super) fn eval_operands(
&self,
ops: &[Operand<'tcx>]
) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::PointerTag>>>
Evaluate a bunch of operands at once
pub fn const_to_op(
&self,
val: &Const<'tcx>,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn const_to_op(
&self,
val: &Const<'tcx>,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
The val
and layout
are assumed to already be in our interpreter
“universe” (param_env).
pub fn mir_const_to_op(
&self,
val: &ConstantKind<'tcx>,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub(crate) fn const_val_to_op(
&self,
val_val: ConstValue<'tcx>,
ty: Ty<'tcx>,
layout: Option<TyAndLayout<'tcx>>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>
pub fn read_discriminant(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, VariantIdx)>
pub fn read_discriminant(
&self,
op: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, VariantIdx)>
Read discriminant, return the runtime value as well as the variant index. Can also legally be called on non-enums (e.g. through the discriminant_value intrinsic)!
pub fn binop_with_overflow(
&mut self,
op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn binop_with_overflow(
&mut self,
op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Applies the binary operation op
to the two operands and writes a tuple of the result
and a boolean signifying the potential overflow to the destination.
pub fn binop_ignore_overflow(
&mut self,
op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn binop_ignore_overflow(
&mut self,
op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Applies the binary operation op
to the arguments and writes the result to the
destination.
fn binary_char_op(
&self,
bin_op: BinOp,
l: char,
r: char
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>)
fn binary_bool_op(
&self,
bin_op: BinOp,
l: bool,
r: bool
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>)
fn binary_float_op<F: Float + Into<Scalar<M::PointerTag>>>(
&self,
bin_op: BinOp,
ty: Ty<'tcx>,
l: F,
r: F
) -> (Scalar<M::PointerTag>, bool, Ty<'tcx>)
fn binary_int_op(
&self,
bin_op: BinOp,
l: u128,
left_layout: TyAndLayout<'tcx>,
r: u128,
right_layout: TyAndLayout<'tcx>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
pub fn overflowing_binary_op(
&self,
bin_op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
pub fn overflowing_binary_op(
&self,
bin_op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
Returns the result of the specified operation, whether it overflowed, and the result type.
pub fn binary_op(
&self,
bin_op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
pub fn binary_op(
&self,
bin_op: BinOp,
left: &ImmTy<'tcx, M::PointerTag>,
right: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
Typed version of overflowing_binary_op
, returning an ImmTy
. Also ignores overflows.
pub fn overflowing_unary_op(
&self,
un_op: UnOp,
val: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
pub fn overflowing_unary_op(
&self,
un_op: UnOp,
val: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Scalar<M::PointerTag>, bool, Ty<'tcx>)>
Returns the result of the specified operation, whether it overflowed, and the result type.
pub fn unary_op(
&self,
un_op: UnOp,
val: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>>
pub fn ref_to_mplace(
&self,
val: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub fn ref_to_mplace(
&self,
val: &ImmTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
Take a value, which represents a (thin or wide) reference, and make it a place.
Alignment is just based on the type. This is the inverse of MemPlace::to_ref()
.
Only call this if you are sure the place is “valid” (aligned and inbounds), or do not
want to ever use the place for memory access!
Generally prefer deref_operand
.
pub fn deref_operand(
&self,
src: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub fn deref_operand(
&self,
src: &OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
Take an operand, representing a pointer, and dereference it to a place – that
will always be a MemPlace. Lives in place.rs
because it creates a place.
pub(super) fn get_alloc(
&self,
place: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Option<AllocRef<'_, 'tcx, M::PointerTag, M::AllocExtra>>>
pub(super) fn get_alloc_mut(
&mut self,
place: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, Option<AllocRefMut<'_, 'tcx, M::PointerTag, M::AllocExtra>>>
fn check_mplace_access(
&self,
mplace: MPlaceTy<'tcx, M::PointerTag>,
msg: CheckInAllocMsg
) -> InterpResult<'tcx>
fn check_mplace_access(
&self,
mplace: MPlaceTy<'tcx, M::PointerTag>,
msg: CheckInAllocMsg
) -> InterpResult<'tcx>
Check if this mplace is dereferencable and sufficiently aligned.
pub fn mplace_field(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
field: usize
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub fn mplace_field(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
field: usize
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
Offset a pointer to project to a field of a struct/union. Unlike place_field
, this is
always possible without allocating, so it can take &self
. Also return the field’s layout.
This supports both struct and array fields.
This also works for arrays, but then the usize
index type is restricting.
For indexing into arrays, use mplace_index
.
pub fn mplace_index(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
index: u64
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub fn mplace_index(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
index: u64
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
Index into an array.
pub(super) fn mplace_array_fields<'a>(
&self,
base: &'a MPlaceTy<'tcx, Tag>
) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'a>
fn mplace_subslice(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
from: u64,
to: u64,
from_end: bool
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub(crate) fn mplace_downcast(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
variant: VariantIdx
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub(super) fn mplace_projection(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
proj_elem: PlaceElem<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub(super) fn mplace_projection(
&self,
base: &MPlaceTy<'tcx, M::PointerTag>,
proj_elem: PlaceElem<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
Project into an mplace
pub fn place_field(
&mut self,
base: &PlaceTy<'tcx, M::PointerTag>,
field: usize
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
pub fn place_field(
&mut self,
base: &PlaceTy<'tcx, M::PointerTag>,
field: usize
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
Gets the place of a field inside the place, and also the field’s type.
Just a convenience function, but used quite a bit.
This is the only projection that might have a side-effect: We cannot project
into the field of a local ScalarPair
, we have to first allocate it.
pub fn place_index(
&mut self,
base: &PlaceTy<'tcx, M::PointerTag>,
index: u64
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
pub fn place_downcast(
&self,
base: &PlaceTy<'tcx, M::PointerTag>,
variant: VariantIdx
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
pub fn place_projection(
&mut self,
base: &PlaceTy<'tcx, M::PointerTag>,
proj_elem: &ProjectionElem<Local, Ty<'tcx>>
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
pub fn place_projection(
&mut self,
base: &PlaceTy<'tcx, M::PointerTag>,
proj_elem: &ProjectionElem<Local, Ty<'tcx>>
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
Projects into a place.
pub fn eval_place(
&mut self,
place: Place<'tcx>
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
pub fn eval_place(
&mut self,
place: Place<'tcx>
) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>
Computes a place. You should only use this if you intend to write into this
place; for reading, a more efficient alternative is eval_place_for_read
.
pub fn write_immediate(
&mut self,
src: Immediate<M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn write_immediate(
&mut self,
src: Immediate<M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Write an immediate to a place
pub fn write_scalar(
&mut self,
val: impl Into<ScalarMaybeUninit<M::PointerTag>>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn write_scalar(
&mut self,
val: impl Into<ScalarMaybeUninit<M::PointerTag>>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Write a scalar to a place
pub fn write_pointer(
&mut self,
ptr: impl Into<Pointer<Option<M::PointerTag>>>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn write_pointer(
&mut self,
ptr: impl Into<Pointer<Option<M::PointerTag>>>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Write a pointer to a place
fn write_immediate_no_validate(
&mut self,
src: Immediate<M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
fn write_immediate_no_validate(
&mut self,
src: Immediate<M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Write an immediate to a place. If you use this you are responsible for validating that things got copied at the right type.
fn write_immediate_to_mplace_no_validate(
&mut self,
value: Immediate<M::PointerTag>,
dest: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
fn write_immediate_to_mplace_no_validate(
&mut self,
value: Immediate<M::PointerTag>,
dest: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Write an immediate to memory. If you use this you are responsible for validating that things got copied at the right type.
pub fn copy_op(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn copy_op(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Copies the data from an operand to a place. This does not support transmuting!
Use copy_op_transmute
if the layouts could disagree.
fn copy_op_no_validate(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
fn copy_op_no_validate(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Copies the data from an operand to a place. This does not support transmuting!
Use copy_op_transmute
if the layouts could disagree.
Also, if you use this you are responsible for validating that things get copied at the
right type.
pub fn copy_op_transmute(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn copy_op_transmute(
&mut self,
src: &OpTy<'tcx, M::PointerTag>,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Copies the data from an operand to a place. The layouts may disagree, but they must have the same size.
pub fn force_allocation_maybe_sized(
&mut self,
place: &PlaceTy<'tcx, M::PointerTag>,
meta: MemPlaceMeta<M::PointerTag>
) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)>
pub fn force_allocation_maybe_sized(
&mut self,
place: &PlaceTy<'tcx, M::PointerTag>,
meta: MemPlaceMeta<M::PointerTag>
) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)>
Ensures that a place is in memory, and returns where it is.
If the place currently refers to a local that doesn’t yet have a matching allocation,
create such an allocation.
This is essentially force_to_memplace
.
This supports unsized types and returns the computed size to avoid some
redundant computation when copying; use force_allocation
for a simpler, sized-only
version.
pub fn force_allocation(
&mut self,
place: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub fn allocate(
&mut self,
layout: TyAndLayout<'tcx>,
kind: MemoryKind<M::MemoryKind>
) -> InterpResult<'static, MPlaceTy<'tcx, M::PointerTag>>
pub fn allocate_str(
&mut self,
str: &str,
kind: MemoryKind<M::MemoryKind>,
mutbl: Mutability
) -> MPlaceTy<'tcx, M::PointerTag>
pub fn allocate_str(
&mut self,
str: &str,
kind: MemoryKind<M::MemoryKind>,
mutbl: Mutability
) -> MPlaceTy<'tcx, M::PointerTag>
Returns a wide MPlace of type &'static [mut] str
to a new 1-aligned allocation.
pub fn write_discriminant(
&mut self,
variant_index: VariantIdx,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
pub fn write_discriminant(
&mut self,
variant_index: VariantIdx,
dest: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Writes the discriminant of the given variant.
pub fn raw_const_to_mplace(
&self,
raw: ConstAlloc<'tcx>
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>
pub(super) fn unpack_dyn_trait(
&self,
mplace: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)>
pub(super) fn unpack_dyn_trait(
&self,
mplace: &MPlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, (Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)>
Turn a place with a dyn Trait
type into a place with the actual dynamic type.
Also return some more information so drop doesn’t have to run the same code twice.
Returns true
as long as there are more things to do.
This is used by priroda
This is marked #inline(always)
to work around adverserial codegen when opt-level = 3
Runs the interpretation logic for the given mir::Statement
at the current frame and
statement counter. This also moves the statement counter forward.
pub fn eval_rvalue_into_place(
&mut self,
rvalue: &Rvalue<'tcx>,
place: Place<'tcx>
) -> InterpResult<'tcx>
pub fn eval_rvalue_into_place(
&mut self,
rvalue: &Rvalue<'tcx>,
place: Place<'tcx>
) -> InterpResult<'tcx>
Evaluate an assignment statement.
There is no separate eval_rvalue
function. Instead, the code for handling each rvalue
type writes its results directly into the memory specified by the place.
fn check_argument_compat(
rust_abi: bool,
caller: TyAndLayout<'tcx>,
callee: TyAndLayout<'tcx>
) -> bool
fn pass_argument(
&mut self,
rust_abi: bool,
caller_arg: &mut impl Iterator<Item = OpTy<'tcx, M::PointerTag>>,
callee_arg: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
fn pass_argument(
&mut self,
rust_abi: bool,
caller_arg: &mut impl Iterator<Item = OpTy<'tcx, M::PointerTag>>,
callee_arg: &PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx>
Pass a single argument, checking the types for compatibility.
pub(crate) fn eval_fn_call(
&mut self,
fn_val: FnVal<'tcx, M::ExtraFnVal>,
caller_abi: Abi,
args: &[OpTy<'tcx, M::PointerTag>],
ret: Option<(&PlaceTy<'tcx, M::PointerTag>, BasicBlock)>,
unwind: StackPopUnwind
) -> InterpResult<'tcx>
pub(crate) fn eval_fn_call(
&mut self,
fn_val: FnVal<'tcx, M::ExtraFnVal>,
caller_abi: Abi,
args: &[OpTy<'tcx, M::PointerTag>],
ret: Option<(&PlaceTy<'tcx, M::PointerTag>, BasicBlock)>,
unwind: StackPopUnwind
) -> InterpResult<'tcx>
Call this function – pushing the stack frame and initializing the arguments.
fn drop_in_place(
&mut self,
place: &PlaceTy<'tcx, M::PointerTag>,
instance: Instance<'tcx>,
target: BasicBlock,
unwind: Option<BasicBlock>
) -> InterpResult<'tcx>
pub fn get_vtable(
&mut self,
ty: Ty<'tcx>,
poly_trait_ref: Option<PolyExistentialTraitRef<'tcx>>
) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>>
pub fn get_vtable(
&mut self,
ty: Ty<'tcx>,
poly_trait_ref: Option<PolyExistentialTraitRef<'tcx>>
) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>>
Creates a dynamic vtable for the given type and vtable origin. This is used only for objects.
The trait_ref
encodes the erased self type. Hence, if we are
making an object Foo<Trait>
from a value of type Foo<T>
, then
trait_ref
would map T: Trait
.
pub fn get_vtable_slot(
&self,
vtable: Pointer<Option<M::PointerTag>>,
idx: u64
) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>>
pub fn get_vtable_slot(
&self,
vtable: Pointer<Option<M::PointerTag>>,
idx: u64
) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>>
Resolves the function at the specified slot in the provided
vtable. Currently an index of ‘3’ (COMMON_VTABLE_ENTRIES.len()
)
corresponds to the first method declared in the trait of the provided vtable.
pub fn read_drop_type_from_vtable(
&self,
vtable: Pointer<Option<M::PointerTag>>
) -> InterpResult<'tcx, (Instance<'tcx>, Ty<'tcx>)>
pub fn read_drop_type_from_vtable(
&self,
vtable: Pointer<Option<M::PointerTag>>
) -> InterpResult<'tcx, (Instance<'tcx>, Ty<'tcx>)>
Returns the drop fn instance as well as the actual dynamic type.
pub fn read_size_and_align_from_vtable(
&self,
vtable: Pointer<Option<M::PointerTag>>
) -> InterpResult<'tcx, (Size, Align)>
pub fn read_new_vtable_after_trait_upcasting_from_vtable(
&self,
vtable: Pointer<Option<M::PointerTag>>,
idx: u64
) -> InterpResult<'tcx, Pointer<Option<M::PointerTag>>>
fn validate_operand_internal(
&self,
op: &OpTy<'tcx, M::PointerTag>,
path: Vec<PathElem>,
ref_tracking: Option<&mut RefTracking<MPlaceTy<'tcx, M::PointerTag>, Vec<PathElem>>>,
ctfe_mode: Option<CtfeValidationMode>
) -> InterpResult<'tcx>
pub fn const_validate_operand(
&self,
op: &OpTy<'tcx, M::PointerTag>,
path: Vec<PathElem>,
ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::PointerTag>, Vec<PathElem>>,
ctfe_mode: CtfeValidationMode
) -> InterpResult<'tcx>
pub fn const_validate_operand(
&self,
op: &OpTy<'tcx, M::PointerTag>,
path: Vec<PathElem>,
ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::PointerTag>, Vec<PathElem>>,
ctfe_mode: CtfeValidationMode
) -> InterpResult<'tcx>
This function checks the data at op
to be const-valid.
op
is assumed to cover valid memory if it is an indirect operand.
It will error if the bits at the destination do not match the ones described by the layout.
ref_tracking
is used to record references that we encounter so that they
can be checked recursively by an outside driving loop.
constant
controls whether this must satisfy the rules for constants:
- no pointers to statics.
- no
UnsafeCell
or non-ZST&mut
.
This function checks the data at op
to be runtime-valid.
op
is assumed to cover valid memory if it is an indirect operand.
It will error if the bits at the destination do not match the ones described by the layout.
Trait Implementations
impl<'mir, 'tcx, M> HasParamEnv<'tcx> for InterpCx<'mir, 'tcx, M> where
M: Machine<'mir, 'tcx>,
impl<'mir, 'tcx, M> HasParamEnv<'tcx> for InterpCx<'mir, 'tcx, M> where
M: Machine<'mir, 'tcx>,
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> LayoutOfHelpers<'tcx> for InterpCx<'mir, 'tcx, M>
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> LayoutOfHelpers<'tcx> for InterpCx<'mir, 'tcx, M>
type LayoutOfResult = InterpResult<'tcx, TyAndLayout<'tcx>>
type LayoutOfResult = InterpResult<'tcx, TyAndLayout<'tcx>>
The TyAndLayout
-wrapping type (or TyAndLayout
itself), which will be
returned from layout_of
(see also handle_layout_err
). Read more
Span
to use for tcx.at(span)
, from layout_of
.
fn handle_layout_err(
&self,
err: LayoutError<'tcx>,
_: Span,
_: Ty<'tcx>
) -> InterpErrorInfo<'tcx>
fn handle_layout_err(
&self,
err: LayoutError<'tcx>,
_: Span,
_: Ty<'tcx>
) -> InterpErrorInfo<'tcx>
Helper used for layout_of
, to adapt tcx.layout_of(...)
into a
Self::LayoutOfResult
(which does not need to be a Result<...>
). Read more
Auto Trait Implementations
impl<'mir, 'tcx, M> !RefUnwindSafe for InterpCx<'mir, 'tcx, M>
impl<'mir, 'tcx, M> Unpin for InterpCx<'mir, 'tcx, M> where
M: Unpin,
<M as Machine<'mir, 'tcx>>::ExtraFnVal: Unpin,
<M as Machine<'mir, 'tcx>>::MemoryExtra: Unpin,
<M as Machine<'mir, 'tcx>>::MemoryMap: Unpin,
impl<'mir, 'tcx, M> !UnwindSafe for InterpCx<'mir, 'tcx, M>
Blanket Implementations
Mutably borrows from an owned value. Read more
Helper function: truncate given value-“overflowed flag” pair to pointer size and update “overflowed flag” if there was an overflow. This should be called by all the other methods before returning! Read more
Layout
Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.