1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
//! Lowers the AST to the HIR.
//!
//! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
//! much like a fold. Where lowering involves a bit more work things get more
//! interesting and there are some invariants you should know about. These mostly
//! concern spans and IDs.
//!
//! Spans are assigned to AST nodes during parsing and then are modified during
//! expansion to indicate the origin of a node and the process it went through
//! being expanded. IDs are assigned to AST nodes just before lowering.
//!
//! For the simpler lowering steps, IDs and spans should be preserved. Unlike
//! expansion we do not preserve the process of lowering in the spans, so spans
//! should not be modified here. When creating a new node (as opposed to
//! "folding" an existing one), create a new ID using `next_id()`.
//!
//! You must ensure that IDs are unique. That means that you should only use the
//! ID from an AST node in a single HIR node (you can assume that AST node-IDs
//! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
//! If you do, you must then set the new node's ID to a fresh one.
//!
//! Spans are used for error messages and for tools to map semantics back to
//! source code. It is therefore not as important with spans as IDs to be strict
//! about use (you can't break the compiler by screwing up a span). Obviously, a
//! HIR node can only have a single span. But multiple nodes can have the same
//! span and spans don't need to be kept in order, etc. Where code is preserved
//! by lowering, it should have the same span as in the AST. Where HIR nodes are
//! new it is probably best to give a span for the whole AST node being lowered.
//! All nodes should have real spans; don't use dummy spans. Tools are likely to
//! get confused if the spans from leaf AST nodes occur in multiple places
//! in the HIR, especially for multiple identifiers.

#![feature(crate_visibility_modifier)]
#![feature(box_patterns)]
#![feature(iter_zip)]
#![feature(never_type)]
#![recursion_limit = "256"]

use rustc_ast::token::{self, Token};
use rustc_ast::tokenstream::{CanSynthesizeMissingTokens, TokenStream, TokenTree};
use rustc_ast::visit;
use rustc_ast::{self as ast, *};
use rustc_ast_pretty::pprust;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_errors::{struct_span_err, Applicability};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Namespace, PartialRes, PerNS, Res};
use rustc_hir::def_id::{DefId, DefPathHash, LocalDefId, CRATE_DEF_ID};
use rustc_hir::definitions::{DefKey, DefPathData, Definitions};
use rustc_hir::intravisit;
use rustc_hir::{ConstArg, GenericArg, InferKind, ParamName};
use rustc_index::vec::{Idx, IndexVec};
use rustc_query_system::ich::StableHashingContext;
use rustc_session::lint::builtin::BARE_TRAIT_OBJECTS;
use rustc_session::lint::{BuiltinLintDiagnostics, LintBuffer};
use rustc_session::utils::{FlattenNonterminals, NtToTokenstream};
use rustc_session::Session;
use rustc_span::edition::Edition;
use rustc_span::hygiene::ExpnId;
use rustc_span::source_map::{respan, DesugaringKind};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};

use smallvec::SmallVec;
use std::collections::BTreeMap;
use tracing::{debug, trace};

macro_rules! arena_vec {
    ($this:expr; $($x:expr),*) => ({
        let a = [$($x),*];
        $this.arena.alloc_from_iter(std::array::IntoIter::new(a))
    });
}

mod asm;
mod block;
mod expr;
mod index;
mod item;
mod pat;
mod path;

rustc_hir::arena_types!(rustc_arena::declare_arena, 'tcx);

struct LoweringContext<'a, 'hir: 'a> {
    /// Used to assign IDs to HIR nodes that do not directly correspond to AST nodes.
    sess: &'a Session,

    resolver: &'a mut dyn ResolverAstLowering,

    /// HACK(Centril): there is a cyclic dependency between the parser and lowering
    /// if we don't have this function pointer. To avoid that dependency so that
    /// `rustc_middle` is independent of the parser, we use dynamic dispatch here.
    nt_to_tokenstream: NtToTokenstream,

    /// Used to allocate HIR nodes.
    arena: &'hir Arena<'hir>,

    /// The items being lowered are collected here.
    owners: IndexVec<LocalDefId, Option<hir::OwnerInfo<'hir>>>,
    /// Bodies inside the owner being lowered.
    bodies: IndexVec<hir::ItemLocalId, Option<&'hir hir::Body<'hir>>>,
    /// Attributes inside the owner being lowered.
    attrs: BTreeMap<hir::ItemLocalId, &'hir [Attribute]>,

    generator_kind: Option<hir::GeneratorKind>,

    /// When inside an `async` context, this is the `HirId` of the
    /// `task_context` local bound to the resume argument of the generator.
    task_context: Option<hir::HirId>,

    /// Used to get the current `fn`'s def span to point to when using `await`
    /// outside of an `async fn`.
    current_item: Option<Span>,

    catch_scope: Option<NodeId>,
    loop_scope: Option<NodeId>,
    is_in_loop_condition: bool,
    is_in_trait_impl: bool,
    is_in_dyn_type: bool,

    /// What to do when we encounter an "anonymous lifetime
    /// reference". The term "anonymous" is meant to encompass both
    /// `'_` lifetimes as well as fully elided cases where nothing is
    /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
    anonymous_lifetime_mode: AnonymousLifetimeMode,

    /// Used to create lifetime definitions from in-band lifetime usages.
    /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
    /// When a named lifetime is encountered in a function or impl header and
    /// has not been defined
    /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
    /// to this list. The results of this list are then added to the list of
    /// lifetime definitions in the corresponding impl or function generics.
    lifetimes_to_define: Vec<(Span, ParamName)>,

    /// `true` if in-band lifetimes are being collected. This is used to
    /// indicate whether or not we're in a place where new lifetimes will result
    /// in in-band lifetime definitions, such a function or an impl header,
    /// including implicit lifetimes from `impl_header_lifetime_elision`.
    is_collecting_in_band_lifetimes: bool,

    /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
    /// When `is_collecting_in_band_lifetimes` is true, each lifetime is checked
    /// against this list to see if it is already in-scope, or if a definition
    /// needs to be created for it.
    ///
    /// We always store a `normalize_to_macros_2_0()` version of the param-name in this
    /// vector.
    in_scope_lifetimes: Vec<ParamName>,

    current_hir_id_owner: LocalDefId,
    item_local_id_counter: hir::ItemLocalId,
    node_id_to_hir_id: IndexVec<NodeId, Option<hir::HirId>>,

    /// NodeIds that are lowered inside the current HIR owner.
    local_node_ids: Vec<NodeId>,

    allow_try_trait: Option<Lrc<[Symbol]>>,
    allow_gen_future: Option<Lrc<[Symbol]>>,
}

pub trait ResolverAstLowering {
    fn def_key(&mut self, id: DefId) -> DefKey;

    fn def_span(&self, id: LocalDefId) -> Span;

    fn item_generics_num_lifetimes(&self, def: DefId) -> usize;

    fn legacy_const_generic_args(&mut self, expr: &Expr) -> Option<Vec<usize>>;

    /// Obtains resolution for a `NodeId` with a single resolution.
    fn get_partial_res(&self, id: NodeId) -> Option<PartialRes>;

    /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
    fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;

    /// Obtains resolution for a label with the given `NodeId`.
    fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;

    /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
    /// This should only return `None` during testing.
    fn definitions(&mut self) -> &mut Definitions;

    fn create_stable_hashing_context(&self) -> StableHashingContext<'_>;

    fn lint_buffer(&mut self) -> &mut LintBuffer;

    fn next_node_id(&mut self) -> NodeId;

    fn take_trait_map(&mut self, node: NodeId) -> Option<Vec<hir::TraitCandidate>>;

    fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId>;

    fn local_def_id(&self, node: NodeId) -> LocalDefId;

    fn def_path_hash(&self, def_id: DefId) -> DefPathHash;

    fn create_def(
        &mut self,
        parent: LocalDefId,
        node_id: ast::NodeId,
        data: DefPathData,
        expn_id: ExpnId,
        span: Span,
    ) -> LocalDefId;
}

/// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
/// and if so, what meaning it has.
#[derive(Debug)]
enum ImplTraitContext<'b, 'a> {
    /// Treat `impl Trait` as shorthand for a new universal generic parameter.
    /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
    /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
    ///
    /// Newly generated parameters should be inserted into the given `Vec`.
    Universal(&'b mut Vec<hir::GenericParam<'a>>, LocalDefId),

    /// Treat `impl Trait` as shorthand for a new opaque type.
    /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
    /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
    ///
    ReturnPositionOpaqueTy {
        /// `DefId` for the parent function, used to look up necessary
        /// information later.
        fn_def_id: DefId,
        /// Origin: Either OpaqueTyOrigin::FnReturn or OpaqueTyOrigin::AsyncFn,
        origin: hir::OpaqueTyOrigin,
    },
    /// Impl trait in type aliases.
    TypeAliasesOpaqueTy {
        /// Set of lifetimes that this opaque type can capture, if it uses
        /// them. This includes lifetimes bound since we entered this context.
        /// For example:
        ///
        /// ```
        /// type A<'b> = impl for<'a> Trait<'a, Out = impl Sized + 'a>;
        /// ```
        ///
        /// Here the inner opaque type captures `'a` because it uses it. It doesn't
        /// need to capture `'b` because it already inherits the lifetime
        /// parameter from `A`.
        // FIXME(impl_trait): but `required_region_bounds` will ICE later
        // anyway.
        capturable_lifetimes: &'b mut FxHashSet<hir::LifetimeName>,
    },
    /// `impl Trait` is not accepted in this position.
    Disallowed(ImplTraitPosition),
}

/// Position in which `impl Trait` is disallowed.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ImplTraitPosition {
    /// Disallowed in `let` / `const` / `static` bindings.
    Binding,

    /// All other positions.
    Other,
}

impl<'a> ImplTraitContext<'_, 'a> {
    #[inline]
    fn disallowed() -> Self {
        ImplTraitContext::Disallowed(ImplTraitPosition::Other)
    }

    fn reborrow<'this>(&'this mut self) -> ImplTraitContext<'this, 'a> {
        use self::ImplTraitContext::*;
        match self {
            Universal(params, parent) => Universal(params, *parent),
            ReturnPositionOpaqueTy { fn_def_id, origin } => {
                ReturnPositionOpaqueTy { fn_def_id: *fn_def_id, origin: *origin }
            }
            TypeAliasesOpaqueTy { capturable_lifetimes } => {
                TypeAliasesOpaqueTy { capturable_lifetimes }
            }
            Disallowed(pos) => Disallowed(*pos),
        }
    }
}

pub fn lower_crate<'a, 'hir>(
    sess: &'a Session,
    krate: &'a Crate,
    resolver: &'a mut dyn ResolverAstLowering,
    nt_to_tokenstream: NtToTokenstream,
    arena: &'hir Arena<'hir>,
) -> &'hir hir::Crate<'hir> {
    let _prof_timer = sess.prof.verbose_generic_activity("hir_lowering");

    let owners = IndexVec::from_fn_n(|_| None, resolver.definitions().def_index_count());
    LoweringContext {
        sess,
        resolver,
        nt_to_tokenstream,
        arena,
        owners,
        bodies: IndexVec::new(),
        attrs: BTreeMap::default(),
        catch_scope: None,
        loop_scope: None,
        is_in_loop_condition: false,
        is_in_trait_impl: false,
        is_in_dyn_type: false,
        anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
        current_hir_id_owner: CRATE_DEF_ID,
        item_local_id_counter: hir::ItemLocalId::new(0),
        node_id_to_hir_id: IndexVec::new(),
        local_node_ids: Vec::new(),
        generator_kind: None,
        task_context: None,
        current_item: None,
        lifetimes_to_define: Vec::new(),
        is_collecting_in_band_lifetimes: false,
        in_scope_lifetimes: Vec::new(),
        allow_try_trait: Some([sym::try_trait_v2][..].into()),
        allow_gen_future: Some([sym::gen_future][..].into()),
    }
    .lower_crate(krate)
}

#[derive(Copy, Clone, PartialEq)]
enum ParamMode {
    /// Any path in a type context.
    Explicit,
    /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
    ExplicitNamed,
    /// The `module::Type` in `module::Type::method` in an expression.
    Optional,
}

enum ParenthesizedGenericArgs {
    Ok,
    Err,
}

/// What to do when we encounter an **anonymous** lifetime
/// reference. Anonymous lifetime references come in two flavors. You
/// have implicit, or fully elided, references to lifetimes, like the
/// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
/// or `Ref<'_, T>`. These often behave the same, but not always:
///
/// - certain usages of implicit references are deprecated, like
///   `Ref<T>`, and we sometimes just give hard errors in those cases
///   as well.
/// - for object bounds there is a difference: `Box<dyn Foo>` is not
///   the same as `Box<dyn Foo + '_>`.
///
/// We describe the effects of the various modes in terms of three cases:
///
/// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
///   of a `&` (e.g., the missing lifetime in something like `&T`)
/// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
///   elided bounds follow special rules. Note that this only covers
///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
///   '_>` is a case of "modern" elision.
/// - **Deprecated** -- this covers cases like `Ref<T>`, where the lifetime
///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
///   non-deprecated equivalent.
///
/// Currently, the handling of lifetime elision is somewhat spread out
/// between HIR lowering and -- as described below -- the
/// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
/// an "elided" or "underscore" lifetime name. In the future, we probably want to move
/// everything into HIR lowering.
#[derive(Copy, Clone, Debug)]
enum AnonymousLifetimeMode {
    /// For **Modern** cases, create a new anonymous region parameter
    /// and reference that.
    ///
    /// For **Dyn Bound** cases, pass responsibility to
    /// `resolve_lifetime` code.
    ///
    /// For **Deprecated** cases, report an error.
    CreateParameter,

    /// Give a hard error when either `&` or `'_` is written. Used to
    /// rule out things like `where T: Foo<'_>`. Does not imply an
    /// error on default object bounds (e.g., `Box<dyn Foo>`).
    ReportError,

    /// Pass responsibility to `resolve_lifetime` code for all cases.
    PassThrough,
}

impl<'a, 'hir> LoweringContext<'a, 'hir> {
    fn lower_crate(mut self, c: &Crate) -> &'hir hir::Crate<'hir> {
        debug_assert_eq!(self.resolver.local_def_id(CRATE_NODE_ID), CRATE_DEF_ID);

        visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);

        self.with_hir_id_owner(CRATE_NODE_ID, |lctx| {
            let module = lctx.lower_mod(&c.items, c.span);
            lctx.lower_attrs(hir::CRATE_HIR_ID, &c.attrs);
            hir::OwnerNode::Crate(lctx.arena.alloc(module))
        });

        let hir_hash = self.compute_hir_hash();

        let mut def_id_to_hir_id = IndexVec::default();

        for (node_id, hir_id) in self.node_id_to_hir_id.into_iter_enumerated() {
            if let Some(def_id) = self.resolver.opt_local_def_id(node_id) {
                if def_id_to_hir_id.len() <= def_id.index() {
                    def_id_to_hir_id.resize(def_id.index() + 1, None);
                }
                def_id_to_hir_id[def_id] = hir_id;
            }
        }

        self.resolver.definitions().init_def_id_to_hir_id_mapping(def_id_to_hir_id);

        let krate = hir::Crate { owners: self.owners, hir_hash };
        self.arena.alloc(krate)
    }

    /// Compute the hash for the HIR of the full crate.
    /// This hash will then be part of the crate_hash which is stored in the metadata.
    fn compute_hir_hash(&mut self) -> Fingerprint {
        let definitions = self.resolver.definitions();
        let mut hir_body_nodes: Vec<_> = self
            .owners
            .iter_enumerated()
            .filter_map(|(def_id, info)| {
                let info = info.as_ref()?;
                let def_path_hash = definitions.def_path_hash(def_id);
                Some((def_path_hash, info))
            })
            .collect();
        hir_body_nodes.sort_unstable_by_key(|bn| bn.0);

        let mut stable_hasher = StableHasher::new();
        let mut hcx = self.resolver.create_stable_hashing_context();
        hir_body_nodes.hash_stable(&mut hcx, &mut stable_hasher);
        stable_hasher.finish()
    }

    fn with_hir_id_owner(
        &mut self,
        owner: NodeId,
        f: impl FnOnce(&mut Self) -> hir::OwnerNode<'hir>,
    ) -> LocalDefId {
        let def_id = self.resolver.local_def_id(owner);

        let current_attrs = std::mem::take(&mut self.attrs);
        let current_bodies = std::mem::take(&mut self.bodies);
        let current_node_ids = std::mem::take(&mut self.local_node_ids);
        let current_owner = std::mem::replace(&mut self.current_hir_id_owner, def_id);
        let current_local_counter =
            std::mem::replace(&mut self.item_local_id_counter, hir::ItemLocalId::new(1));

        // Always allocate the first `HirId` for the owner itself.
        let _old = self.node_id_to_hir_id.insert(owner, hir::HirId::make_owner(def_id));
        debug_assert_eq!(_old, None);
        self.local_node_ids.push(owner);

        let item = f(self);
        debug_assert_eq!(def_id, item.def_id());
        let info = self.make_owner_info(item);

        self.attrs = current_attrs;
        self.bodies = current_bodies;
        self.local_node_ids = current_node_ids;
        self.current_hir_id_owner = current_owner;
        self.item_local_id_counter = current_local_counter;

        let _old = self.owners.insert(def_id, info);
        debug_assert!(_old.is_none());

        def_id
    }

    fn make_owner_info(&mut self, node: hir::OwnerNode<'hir>) -> hir::OwnerInfo<'hir> {
        let attrs = std::mem::take(&mut self.attrs);
        let bodies = std::mem::take(&mut self.bodies);
        let local_node_ids = std::mem::take(&mut self.local_node_ids);
        let trait_map = local_node_ids
            .into_iter()
            .filter_map(|node_id| {
                let hir_id = self.node_id_to_hir_id[node_id]?;
                let traits = self.resolver.take_trait_map(node_id)?;
                Some((hir_id.local_id, traits.into_boxed_slice()))
            })
            .collect();

        #[cfg(debug_assertions)]
        for (&id, attrs) in attrs.iter() {
            // Verify that we do not store empty slices in the map.
            if attrs.is_empty() {
                panic!("Stored empty attributes for {:?}", id);
            }
        }

        let (hash_including_bodies, hash_without_bodies) = self.hash_owner(node, &bodies);
        let (nodes, parenting) =
            index::index_hir(self.sess, self.resolver.definitions(), node, &bodies);
        let nodes = hir::OwnerNodes { hash_including_bodies, hash_without_bodies, nodes, bodies };
        let attrs = {
            let mut hcx = self.resolver.create_stable_hashing_context();
            let mut stable_hasher = StableHasher::new();
            attrs.hash_stable(&mut hcx, &mut stable_hasher);
            let hash = stable_hasher.finish();
            hir::AttributeMap { map: attrs, hash }
        };

        hir::OwnerInfo { nodes, parenting, attrs, trait_map }
    }

    /// Hash the HIR node twice, one deep and one shallow hash.  This allows to differentiate
    /// queries which depend on the full HIR tree and those which only depend on the item signature.
    fn hash_owner(
        &mut self,
        node: hir::OwnerNode<'hir>,
        bodies: &IndexVec<hir::ItemLocalId, Option<&'hir hir::Body<'hir>>>,
    ) -> (Fingerprint, Fingerprint) {
        let mut hcx = self.resolver.create_stable_hashing_context();
        let mut stable_hasher = StableHasher::new();
        hcx.with_hir_bodies(true, node.def_id(), bodies, |hcx| {
            node.hash_stable(hcx, &mut stable_hasher)
        });
        let hash_including_bodies = stable_hasher.finish();
        let mut stable_hasher = StableHasher::new();
        hcx.with_hir_bodies(false, node.def_id(), bodies, |hcx| {
            node.hash_stable(hcx, &mut stable_hasher)
        });
        let hash_without_bodies = stable_hasher.finish();
        (hash_including_bodies, hash_without_bodies)
    }

    /// This method allocates a new `HirId` for the given `NodeId` and stores it in
    /// the `LoweringContext`'s `NodeId => HirId` map.
    /// Take care not to call this method if the resulting `HirId` is then not
    /// actually used in the HIR, as that would trigger an assertion in the
    /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
    /// properly. Calling the method twice with the same `NodeId` is fine though.
    fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
        assert_ne!(ast_node_id, DUMMY_NODE_ID);

        *self.node_id_to_hir_id.get_or_insert_with(ast_node_id, || {
            // Generate a new `HirId`.
            let owner = self.current_hir_id_owner;
            let local_id = self.item_local_id_counter;
            self.item_local_id_counter.increment_by(1);
            self.local_node_ids.push(ast_node_id);
            hir::HirId { owner, local_id }
        })
    }

    fn next_id(&mut self) -> hir::HirId {
        let node_id = self.resolver.next_node_id();
        self.lower_node_id(node_id)
    }

    fn lower_res(&mut self, res: Res<NodeId>) -> Res {
        res.map_id(|id| {
            self.node_id_to_hir_id.get(id).copied().flatten().unwrap_or_else(|| {
                panic!("expected `NodeId` to be lowered already for res {:#?}", res);
            })
        })
    }

    fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
        self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
            if pr.unresolved_segments() != 0 {
                panic!("path not fully resolved: {:?}", pr);
            }
            pr.base_res()
        })
    }

    fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
        self.resolver.get_import_res(id).present_items()
    }

    fn diagnostic(&self) -> &rustc_errors::Handler {
        self.sess.diagnostic()
    }

    /// Reuses the span but adds information like the kind of the desugaring and features that are
    /// allowed inside this span.
    fn mark_span_with_reason(
        &self,
        reason: DesugaringKind,
        span: Span,
        allow_internal_unstable: Option<Lrc<[Symbol]>>,
    ) -> Span {
        span.mark_with_reason(
            allow_internal_unstable,
            reason,
            self.sess.edition(),
            self.resolver.create_stable_hashing_context(),
        )
    }

    fn with_anonymous_lifetime_mode<R>(
        &mut self,
        anonymous_lifetime_mode: AnonymousLifetimeMode,
        op: impl FnOnce(&mut Self) -> R,
    ) -> R {
        debug!(
            "with_anonymous_lifetime_mode(anonymous_lifetime_mode={:?})",
            anonymous_lifetime_mode,
        );
        let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
        self.anonymous_lifetime_mode = anonymous_lifetime_mode;
        let result = op(self);
        self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
        debug!(
            "with_anonymous_lifetime_mode: restoring anonymous_lifetime_mode={:?}",
            old_anonymous_lifetime_mode
        );
        result
    }

    /// Intercept all spans entering HIR.
    /// Mark a span as relative to the current owning item.
    fn lower_span(&self, span: Span) -> Span {
        if self.sess.opts.debugging_opts.incremental_relative_spans {
            span.with_parent(Some(self.current_hir_id_owner))
        } else {
            // Do not make spans relative when not using incremental compilation.
            span
        }
    }

    fn lower_ident(&self, ident: Ident) -> Ident {
        Ident::new(ident.name, self.lower_span(ident.span))
    }

    /// Creates a new `hir::GenericParam` for every new lifetime and
    /// type parameter encountered while evaluating `f`. Definitions
    /// are created with the parent provided. If no `parent_id` is
    /// provided, no definitions will be returned.
    ///
    /// Presuming that in-band lifetimes are enabled, then
    /// `self.anonymous_lifetime_mode` will be updated to match the
    /// parameter while `f` is running (and restored afterwards).
    fn collect_in_band_defs<T>(
        &mut self,
        parent_def_id: LocalDefId,
        anonymous_lifetime_mode: AnonymousLifetimeMode,
        f: impl FnOnce(&mut Self) -> (Vec<hir::GenericParam<'hir>>, T),
    ) -> (Vec<hir::GenericParam<'hir>>, T) {
        assert!(!self.is_collecting_in_band_lifetimes);
        assert!(self.lifetimes_to_define.is_empty());
        let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;

        self.anonymous_lifetime_mode = anonymous_lifetime_mode;
        self.is_collecting_in_band_lifetimes = true;

        let (in_band_ty_params, res) = f(self);

        self.is_collecting_in_band_lifetimes = false;
        self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;

        let lifetimes_to_define = self.lifetimes_to_define.split_off(0);

        let params = lifetimes_to_define
            .into_iter()
            .map(|(span, hir_name)| self.lifetime_to_generic_param(span, hir_name, parent_def_id))
            .chain(in_band_ty_params.into_iter())
            .collect();

        (params, res)
    }

    /// Converts a lifetime into a new generic parameter.
    fn lifetime_to_generic_param(
        &mut self,
        span: Span,
        hir_name: ParamName,
        parent_def_id: LocalDefId,
    ) -> hir::GenericParam<'hir> {
        let node_id = self.resolver.next_node_id();

        // Get the name we'll use to make the def-path. Note
        // that collisions are ok here and this shouldn't
        // really show up for end-user.
        let (str_name, kind) = match hir_name {
            ParamName::Plain(ident) => (ident.name, hir::LifetimeParamKind::InBand),
            ParamName::Fresh(_) => (kw::UnderscoreLifetime, hir::LifetimeParamKind::Elided),
            ParamName::Error => (kw::UnderscoreLifetime, hir::LifetimeParamKind::Error),
        };

        // Add a definition for the in-band lifetime def.
        self.resolver.create_def(
            parent_def_id,
            node_id,
            DefPathData::LifetimeNs(str_name),
            ExpnId::root(),
            span.with_parent(None),
        );

        hir::GenericParam {
            hir_id: self.lower_node_id(node_id),
            name: hir_name,
            bounds: &[],
            span: self.lower_span(span),
            pure_wrt_drop: false,
            kind: hir::GenericParamKind::Lifetime { kind },
        }
    }

    /// When there is a reference to some lifetime `'a`, and in-band
    /// lifetimes are enabled, then we want to push that lifetime into
    /// the vector of names to define later. In that case, it will get
    /// added to the appropriate generics.
    fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
        if !self.is_collecting_in_band_lifetimes {
            return;
        }

        if !self.sess.features_untracked().in_band_lifetimes {
            return;
        }

        if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.normalize_to_macros_2_0())) {
            return;
        }

        let hir_name = ParamName::Plain(ident);

        if self.lifetimes_to_define.iter().any(|(_, lt_name)| {
            lt_name.normalize_to_macros_2_0() == hir_name.normalize_to_macros_2_0()
        }) {
            return;
        }

        self.lifetimes_to_define.push((ident.span, hir_name));
    }

    /// When we have either an elided or `'_` lifetime in an impl
    /// header, we convert it to an in-band lifetime.
    fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
        assert!(self.is_collecting_in_band_lifetimes);
        let index = self.lifetimes_to_define.len() + self.in_scope_lifetimes.len();
        let hir_name = ParamName::Fresh(index);
        self.lifetimes_to_define.push((span, hir_name));
        hir_name
    }

    // Evaluates `f` with the lifetimes in `params` in-scope.
    // This is used to track which lifetimes have already been defined, and
    // which are new in-band lifetimes that need to have a definition created
    // for them.
    fn with_in_scope_lifetime_defs<T>(
        &mut self,
        params: &[GenericParam],
        f: impl FnOnce(&mut Self) -> T,
    ) -> T {
        let old_len = self.in_scope_lifetimes.len();
        let lt_def_names = params.iter().filter_map(|param| match param.kind {
            GenericParamKind::Lifetime { .. } => {
                Some(ParamName::Plain(param.ident.normalize_to_macros_2_0()))
            }
            _ => None,
        });
        self.in_scope_lifetimes.extend(lt_def_names);

        let res = f(self);

        self.in_scope_lifetimes.truncate(old_len);
        res
    }

    /// Appends in-band lifetime defs and argument-position `impl
    /// Trait` defs to the existing set of generics.
    ///
    /// Presuming that in-band lifetimes are enabled, then
    /// `self.anonymous_lifetime_mode` will be updated to match the
    /// parameter while `f` is running (and restored afterwards).
    fn add_in_band_defs<T>(
        &mut self,
        generics: &Generics,
        parent_def_id: LocalDefId,
        anonymous_lifetime_mode: AnonymousLifetimeMode,
        f: impl FnOnce(&mut Self, &mut Vec<hir::GenericParam<'hir>>) -> T,
    ) -> (hir::Generics<'hir>, T) {
        let (in_band_defs, (mut lowered_generics, res)) =
            self.with_in_scope_lifetime_defs(&generics.params, |this| {
                this.collect_in_band_defs(parent_def_id, anonymous_lifetime_mode, |this| {
                    let mut params = Vec::new();
                    // Note: it is necessary to lower generics *before* calling `f`.
                    // When lowering `async fn`, there's a final step when lowering
                    // the return type that assumes that all in-scope lifetimes have
                    // already been added to either `in_scope_lifetimes` or
                    // `lifetimes_to_define`. If we swapped the order of these two,
                    // in-band-lifetimes introduced by generics or where-clauses
                    // wouldn't have been added yet.
                    let generics = this.lower_generics_mut(
                        generics,
                        ImplTraitContext::Universal(&mut params, this.current_hir_id_owner),
                    );
                    let res = f(this, &mut params);
                    (params, (generics, res))
                })
            });

        lowered_generics.params.extend(in_band_defs);

        let lowered_generics = lowered_generics.into_generics(self.arena);
        (lowered_generics, res)
    }

    fn with_dyn_type_scope<T>(&mut self, in_scope: bool, f: impl FnOnce(&mut Self) -> T) -> T {
        let was_in_dyn_type = self.is_in_dyn_type;
        self.is_in_dyn_type = in_scope;

        let result = f(self);

        self.is_in_dyn_type = was_in_dyn_type;

        result
    }

    fn with_new_scopes<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
        let was_in_loop_condition = self.is_in_loop_condition;
        self.is_in_loop_condition = false;

        let catch_scope = self.catch_scope.take();
        let loop_scope = self.loop_scope.take();
        let ret = f(self);
        self.catch_scope = catch_scope;
        self.loop_scope = loop_scope;

        self.is_in_loop_condition = was_in_loop_condition;

        ret
    }

    fn lower_attrs(&mut self, id: hir::HirId, attrs: &[Attribute]) -> Option<&'hir [Attribute]> {
        if attrs.is_empty() {
            None
        } else {
            debug_assert_eq!(id.owner, self.current_hir_id_owner);
            let ret = self.arena.alloc_from_iter(attrs.iter().map(|a| self.lower_attr(a)));
            debug_assert!(!ret.is_empty());
            self.attrs.insert(id.local_id, ret);
            Some(ret)
        }
    }

    fn lower_attr(&self, attr: &Attribute) -> Attribute {
        // Note that we explicitly do not walk the path. Since we don't really
        // lower attributes (we use the AST version) there is nowhere to keep
        // the `HirId`s. We don't actually need HIR version of attributes anyway.
        // Tokens are also not needed after macro expansion and parsing.
        let kind = match attr.kind {
            AttrKind::Normal(ref item, _) => AttrKind::Normal(
                AttrItem {
                    path: item.path.clone(),
                    args: self.lower_mac_args(&item.args),
                    tokens: None,
                },
                None,
            ),
            AttrKind::DocComment(comment_kind, data) => AttrKind::DocComment(comment_kind, data),
        };

        Attribute { kind, id: attr.id, style: attr.style, span: self.lower_span(attr.span) }
    }

    fn alias_attrs(&mut self, id: hir::HirId, target_id: hir::HirId) {
        debug_assert_eq!(id.owner, self.current_hir_id_owner);
        debug_assert_eq!(target_id.owner, self.current_hir_id_owner);
        if let Some(&a) = self.attrs.get(&target_id.local_id) {
            debug_assert!(!a.is_empty());
            self.attrs.insert(id.local_id, a);
        }
    }

    fn lower_mac_args(&self, args: &MacArgs) -> MacArgs {
        match *args {
            MacArgs::Empty => MacArgs::Empty,
            MacArgs::Delimited(dspan, delim, ref tokens) => {
                // This is either a non-key-value attribute, or a `macro_rules!` body.
                // We either not have any nonterminals present (in the case of an attribute),
                // or have tokens available for all nonterminals in the case of a nested
                // `macro_rules`: e.g:
                //
                // ```rust
                // macro_rules! outer {
                //     ($e:expr) => {
                //         macro_rules! inner {
                //             () => { $e }
                //         }
                //     }
                // }
                // ```
                //
                // In both cases, we don't want to synthesize any tokens
                MacArgs::Delimited(
                    dspan,
                    delim,
                    self.lower_token_stream(tokens.clone(), CanSynthesizeMissingTokens::No),
                )
            }
            // This is an inert key-value attribute - it will never be visible to macros
            // after it gets lowered to HIR. Therefore, we can synthesize tokens with fake
            // spans to handle nonterminals in `#[doc]` (e.g. `#[doc = $e]`).
            MacArgs::Eq(eq_span, ref token) => {
                // In valid code the value is always representable as a single literal token.
                fn unwrap_single_token(sess: &Session, tokens: TokenStream, span: Span) -> Token {
                    if tokens.len() != 1 {
                        sess.diagnostic()
                            .delay_span_bug(span, "multiple tokens in key-value attribute's value");
                    }
                    match tokens.into_trees().next() {
                        Some(TokenTree::Token(token)) => token,
                        Some(TokenTree::Delimited(_, delim, tokens)) => {
                            if delim != token::NoDelim {
                                sess.diagnostic().delay_span_bug(
                                    span,
                                    "unexpected delimiter in key-value attribute's value",
                                )
                            }
                            unwrap_single_token(sess, tokens, span)
                        }
                        None => Token::dummy(),
                    }
                }

                let tokens = FlattenNonterminals {
                    parse_sess: &self.sess.parse_sess,
                    synthesize_tokens: CanSynthesizeMissingTokens::Yes,
                    nt_to_tokenstream: self.nt_to_tokenstream,
                }
                .process_token(token.clone());
                MacArgs::Eq(eq_span, unwrap_single_token(self.sess, tokens, token.span))
            }
        }
    }

    fn lower_token_stream(
        &self,
        tokens: TokenStream,
        synthesize_tokens: CanSynthesizeMissingTokens,
    ) -> TokenStream {
        FlattenNonterminals {
            parse_sess: &self.sess.parse_sess,
            synthesize_tokens,
            nt_to_tokenstream: self.nt_to_tokenstream,
        }
        .process_token_stream(tokens)
    }

    /// Given an associated type constraint like one of these:
    ///
    /// ```
    /// T: Iterator<Item: Debug>
    ///             ^^^^^^^^^^^
    /// T: Iterator<Item = Debug>
    ///             ^^^^^^^^^^^^
    /// ```
    ///
    /// returns a `hir::TypeBinding` representing `Item`.
    fn lower_assoc_ty_constraint(
        &mut self,
        constraint: &AssocTyConstraint,
        mut itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::TypeBinding<'hir> {
        debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);

        // lower generic arguments of identifier in constraint
        let gen_args = if let Some(ref gen_args) = constraint.gen_args {
            let gen_args_ctor = match gen_args {
                GenericArgs::AngleBracketed(ref data) => {
                    self.lower_angle_bracketed_parameter_data(
                        data,
                        ParamMode::Explicit,
                        itctx.reborrow(),
                    )
                    .0
                }
                GenericArgs::Parenthesized(ref data) => {
                    let mut err = self.sess.struct_span_err(
                        gen_args.span(),
                        "parenthesized generic arguments cannot be used in associated type constraints"
                    );
                    // FIXME: try to write a suggestion here
                    err.emit();
                    self.lower_angle_bracketed_parameter_data(
                        &data.as_angle_bracketed_args(),
                        ParamMode::Explicit,
                        itctx.reborrow(),
                    )
                    .0
                }
            };
            gen_args_ctor.into_generic_args(self)
        } else {
            self.arena.alloc(hir::GenericArgs::none())
        };

        let kind = match constraint.kind {
            AssocTyConstraintKind::Equality { ref ty } => {
                hir::TypeBindingKind::Equality { ty: self.lower_ty(ty, itctx) }
            }
            AssocTyConstraintKind::Bound { ref bounds } => {
                let mut capturable_lifetimes;
                let mut parent_def_id = self.current_hir_id_owner;
                // Piggy-back on the `impl Trait` context to figure out the correct behavior.
                let (desugar_to_impl_trait, itctx) = match itctx {
                    // We are in the return position:
                    //
                    //     fn foo() -> impl Iterator<Item: Debug>
                    //
                    // so desugar to
                    //
                    //     fn foo() -> impl Iterator<Item = impl Debug>
                    ImplTraitContext::ReturnPositionOpaqueTy { .. }
                    | ImplTraitContext::TypeAliasesOpaqueTy { .. } => (true, itctx),

                    // We are in the argument position, but within a dyn type:
                    //
                    //     fn foo(x: dyn Iterator<Item: Debug>)
                    //
                    // so desugar to
                    //
                    //     fn foo(x: dyn Iterator<Item = impl Debug>)
                    ImplTraitContext::Universal(_, parent) if self.is_in_dyn_type => {
                        parent_def_id = parent;
                        (true, itctx)
                    }

                    // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
                    // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
                    // "impl trait context" to permit `impl Debug` in this position (it desugars
                    // then to an opaque type).
                    //
                    // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
                    ImplTraitContext::Disallowed(_) if self.is_in_dyn_type => {
                        capturable_lifetimes = FxHashSet::default();
                        (
                            true,
                            ImplTraitContext::TypeAliasesOpaqueTy {
                                capturable_lifetimes: &mut capturable_lifetimes,
                            },
                        )
                    }

                    // We are in the parameter position, but not within a dyn type:
                    //
                    //     fn foo(x: impl Iterator<Item: Debug>)
                    //
                    // so we leave it as is and this gets expanded in astconv to a bound like
                    // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
                    // `impl Iterator`.
                    _ => (false, itctx),
                };

                if desugar_to_impl_trait {
                    // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
                    // constructing the HIR for `impl bounds...` and then lowering that.

                    let impl_trait_node_id = self.resolver.next_node_id();
                    self.resolver.create_def(
                        parent_def_id,
                        impl_trait_node_id,
                        DefPathData::ImplTrait,
                        ExpnId::root(),
                        constraint.span,
                    );

                    self.with_dyn_type_scope(false, |this| {
                        let node_id = this.resolver.next_node_id();
                        let ty = this.lower_ty(
                            &Ty {
                                id: node_id,
                                kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
                                span: this.lower_span(constraint.span),
                                tokens: None,
                            },
                            itctx,
                        );

                        hir::TypeBindingKind::Equality { ty }
                    })
                } else {
                    // Desugar `AssocTy: Bounds` into a type binding where the
                    // later desugars into a trait predicate.
                    let bounds = self.lower_param_bounds(bounds, itctx);

                    hir::TypeBindingKind::Constraint { bounds }
                }
            }
        };

        hir::TypeBinding {
            hir_id: self.lower_node_id(constraint.id),
            ident: self.lower_ident(constraint.ident),
            gen_args,
            kind,
            span: self.lower_span(constraint.span),
        }
    }

    fn lower_generic_arg(
        &mut self,
        arg: &ast::GenericArg,
        itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::GenericArg<'hir> {
        match arg {
            ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
            ast::GenericArg::Type(ty) => {
                match ty.kind {
                    TyKind::Infer if self.sess.features_untracked().generic_arg_infer => {
                        return GenericArg::Infer(hir::InferArg {
                            hir_id: self.lower_node_id(ty.id),
                            span: self.lower_span(ty.span),
                            kind: InferKind::Type,
                        });
                    }
                    // We parse const arguments as path types as we cannot distinguish them during
                    // parsing. We try to resolve that ambiguity by attempting resolution in both the
                    // type and value namespaces. If we resolved the path in the value namespace, we
                    // transform it into a generic const argument.
                    TyKind::Path(ref qself, ref path) => {
                        if let Some(partial_res) = self.resolver.get_partial_res(ty.id) {
                            let res = partial_res.base_res();
                            if !res.matches_ns(Namespace::TypeNS) {
                                debug!(
                                    "lower_generic_arg: Lowering type argument as const argument: {:?}",
                                    ty,
                                );

                                // Construct an AnonConst where the expr is the "ty"'s path.

                                let parent_def_id = self.current_hir_id_owner;
                                let node_id = self.resolver.next_node_id();

                                // Add a definition for the in-band const def.
                                self.resolver.create_def(
                                    parent_def_id,
                                    node_id,
                                    DefPathData::AnonConst,
                                    ExpnId::root(),
                                    ty.span,
                                );

                                let span = self.lower_span(ty.span);
                                let path_expr = Expr {
                                    id: ty.id,
                                    kind: ExprKind::Path(qself.clone(), path.clone()),
                                    span,
                                    attrs: AttrVec::new(),
                                    tokens: None,
                                };

                                let ct = self.with_new_scopes(|this| hir::AnonConst {
                                    hir_id: this.lower_node_id(node_id),
                                    body: this.lower_const_body(path_expr.span, Some(&path_expr)),
                                });
                                return GenericArg::Const(ConstArg { value: ct, span });
                            }
                        }
                    }
                    _ => {}
                }
                GenericArg::Type(self.lower_ty_direct(&ty, itctx))
            }
            ast::GenericArg::Const(ct) => GenericArg::Const(ConstArg {
                value: self.lower_anon_const(&ct),
                span: self.lower_span(ct.value.span),
            }),
        }
    }

    fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_, 'hir>) -> &'hir hir::Ty<'hir> {
        self.arena.alloc(self.lower_ty_direct(t, itctx))
    }

    fn lower_path_ty(
        &mut self,
        t: &Ty,
        qself: &Option<QSelf>,
        path: &Path,
        param_mode: ParamMode,
        itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::Ty<'hir> {
        let id = self.lower_node_id(t.id);
        let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
        let ty = self.ty_path(id, t.span, qpath);
        if let hir::TyKind::TraitObject(..) = ty.kind {
            self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
        }
        ty
    }

    fn ty(&mut self, span: Span, kind: hir::TyKind<'hir>) -> hir::Ty<'hir> {
        hir::Ty { hir_id: self.next_id(), kind, span: self.lower_span(span) }
    }

    fn ty_tup(&mut self, span: Span, tys: &'hir [hir::Ty<'hir>]) -> hir::Ty<'hir> {
        self.ty(span, hir::TyKind::Tup(tys))
    }

    fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_, 'hir>) -> hir::Ty<'hir> {
        let kind = match t.kind {
            TyKind::Infer => hir::TyKind::Infer,
            TyKind::Err => hir::TyKind::Err,
            TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
            TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
            TyKind::Rptr(ref region, ref mt) => {
                let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
                let lifetime = match *region {
                    Some(ref lt) => self.lower_lifetime(lt),
                    None => self.elided_ref_lifetime(span),
                };
                hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
            }
            TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(&f.generic_params, |this| {
                this.with_anonymous_lifetime_mode(AnonymousLifetimeMode::PassThrough, |this| {
                    hir::TyKind::BareFn(this.arena.alloc(hir::BareFnTy {
                        generic_params: this.lower_generic_params(
                            &f.generic_params,
                            ImplTraitContext::disallowed(),
                        ),
                        unsafety: this.lower_unsafety(f.unsafety),
                        abi: this.lower_extern(f.ext),
                        decl: this.lower_fn_decl(&f.decl, None, false, None),
                        param_names: this.lower_fn_params_to_names(&f.decl),
                    }))
                })
            }),
            TyKind::Never => hir::TyKind::Never,
            TyKind::Tup(ref tys) => {
                hir::TyKind::Tup(self.arena.alloc_from_iter(
                    tys.iter().map(|ty| self.lower_ty_direct(ty, itctx.reborrow())),
                ))
            }
            TyKind::Paren(ref ty) => {
                return self.lower_ty_direct(ty, itctx);
            }
            TyKind::Path(ref qself, ref path) => {
                return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
            }
            TyKind::ImplicitSelf => {
                let res = self.expect_full_res(t.id);
                let res = self.lower_res(res);
                hir::TyKind::Path(hir::QPath::Resolved(
                    None,
                    self.arena.alloc(hir::Path {
                        res,
                        segments: arena_vec![self; hir::PathSegment::from_ident(
                            Ident::with_dummy_span(kw::SelfUpper)
                        )],
                        span: self.lower_span(t.span),
                    }),
                ))
            }
            TyKind::Array(ref ty, ref length) => {
                hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
            }
            TyKind::Typeof(ref expr) => hir::TyKind::Typeof(self.lower_anon_const(expr)),
            TyKind::TraitObject(ref bounds, kind) => {
                let mut lifetime_bound = None;
                let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
                    let bounds =
                        this.arena.alloc_from_iter(bounds.iter().filter_map(
                            |bound| match *bound {
                                GenericBound::Trait(
                                    ref ty,
                                    TraitBoundModifier::None | TraitBoundModifier::MaybeConst,
                                ) => Some(this.lower_poly_trait_ref(ty, itctx.reborrow())),
                                // `~const ?Bound` will cause an error during AST validation
                                // anyways, so treat it like `?Bound` as compilation proceeds.
                                GenericBound::Trait(
                                    _,
                                    TraitBoundModifier::Maybe | TraitBoundModifier::MaybeConstMaybe,
                                ) => None,
                                GenericBound::Outlives(ref lifetime) => {
                                    if lifetime_bound.is_none() {
                                        lifetime_bound = Some(this.lower_lifetime(lifetime));
                                    }
                                    None
                                }
                            },
                        ));
                    let lifetime_bound =
                        lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
                    (bounds, lifetime_bound)
                });
                if kind != TraitObjectSyntax::Dyn {
                    self.maybe_lint_bare_trait(t.span, t.id, false);
                }
                hir::TyKind::TraitObject(bounds, lifetime_bound, kind)
            }
            TyKind::ImplTrait(def_node_id, ref bounds) => {
                let span = t.span;
                match itctx {
                    ImplTraitContext::ReturnPositionOpaqueTy { fn_def_id, origin } => self
                        .lower_opaque_impl_trait(
                            span,
                            Some(fn_def_id),
                            origin,
                            def_node_id,
                            None,
                            |this| this.lower_param_bounds(bounds, itctx),
                        ),
                    ImplTraitContext::TypeAliasesOpaqueTy { ref capturable_lifetimes } => {
                        // Reset capturable lifetimes, any nested impl trait
                        // types will inherit lifetimes from this opaque type,
                        // so don't need to capture them again.
                        let nested_itctx = ImplTraitContext::TypeAliasesOpaqueTy {
                            capturable_lifetimes: &mut FxHashSet::default(),
                        };
                        self.lower_opaque_impl_trait(
                            span,
                            None,
                            hir::OpaqueTyOrigin::TyAlias,
                            def_node_id,
                            Some(capturable_lifetimes),
                            |this| this.lower_param_bounds(bounds, nested_itctx),
                        )
                    }
                    ImplTraitContext::Universal(in_band_ty_params, parent_def_id) => {
                        // Add a definition for the in-band `Param`.
                        let def_id = self.resolver.local_def_id(def_node_id);

                        let hir_bounds = self.lower_param_bounds(
                            bounds,
                            ImplTraitContext::Universal(in_band_ty_params, parent_def_id),
                        );
                        // Set the name to `impl Bound1 + Bound2`.
                        let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
                        in_band_ty_params.push(hir::GenericParam {
                            hir_id: self.lower_node_id(def_node_id),
                            name: ParamName::Plain(self.lower_ident(ident)),
                            pure_wrt_drop: false,
                            bounds: hir_bounds,
                            span: self.lower_span(span),
                            kind: hir::GenericParamKind::Type {
                                default: None,
                                synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
                            },
                        });

                        hir::TyKind::Path(hir::QPath::Resolved(
                            None,
                            self.arena.alloc(hir::Path {
                                span: self.lower_span(span),
                                res: Res::Def(DefKind::TyParam, def_id.to_def_id()),
                                segments: arena_vec![self; hir::PathSegment::from_ident(self.lower_ident(ident))],
                            }),
                        ))
                    }
                    ImplTraitContext::Disallowed(_) => {
                        let mut err = struct_span_err!(
                            self.sess,
                            t.span,
                            E0562,
                            "`impl Trait` not allowed outside of {}",
                            "function and method return types",
                        );
                        err.emit();
                        hir::TyKind::Err
                    }
                }
            }
            TyKind::MacCall(_) => panic!("`TyKind::MacCall` should have been expanded by now"),
            TyKind::CVarArgs => {
                self.sess.delay_span_bug(
                    t.span,
                    "`TyKind::CVarArgs` should have been handled elsewhere",
                );
                hir::TyKind::Err
            }
        };

        hir::Ty { kind, span: self.lower_span(t.span), hir_id: self.lower_node_id(t.id) }
    }

    fn lower_opaque_impl_trait(
        &mut self,
        span: Span,
        fn_def_id: Option<DefId>,
        origin: hir::OpaqueTyOrigin,
        opaque_ty_node_id: NodeId,
        capturable_lifetimes: Option<&FxHashSet<hir::LifetimeName>>,
        lower_bounds: impl FnOnce(&mut Self) -> hir::GenericBounds<'hir>,
    ) -> hir::TyKind<'hir> {
        debug!(
            "lower_opaque_impl_trait(fn_def_id={:?}, opaque_ty_node_id={:?}, span={:?})",
            fn_def_id, opaque_ty_node_id, span,
        );

        // Make sure we know that some funky desugaring has been going on here.
        // This is a first: there is code in other places like for loop
        // desugaring that explicitly states that we don't want to track that.
        // Not tracking it makes lints in rustc and clippy very fragile, as
        // frequently opened issues show.
        let opaque_ty_span = self.mark_span_with_reason(DesugaringKind::OpaqueTy, span, None);

        let opaque_ty_def_id = self.resolver.local_def_id(opaque_ty_node_id);

        let mut collected_lifetimes = Vec::new();
        self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
            let hir_bounds = lower_bounds(lctx);

            collected_lifetimes = lifetimes_from_impl_trait_bounds(
                opaque_ty_node_id,
                &hir_bounds,
                capturable_lifetimes,
            );

            let lifetime_defs =
                lctx.arena.alloc_from_iter(collected_lifetimes.iter().map(|&(name, span)| {
                    let def_node_id = lctx.resolver.next_node_id();
                    let hir_id = lctx.lower_node_id(def_node_id);
                    lctx.resolver.create_def(
                        opaque_ty_def_id,
                        def_node_id,
                        DefPathData::LifetimeNs(name.ident().name),
                        ExpnId::root(),
                        span.with_parent(None),
                    );

                    let (name, kind) = match name {
                        hir::LifetimeName::Underscore => (
                            hir::ParamName::Plain(Ident::with_dummy_span(kw::UnderscoreLifetime)),
                            hir::LifetimeParamKind::Elided,
                        ),
                        hir::LifetimeName::Param(param_name) => {
                            (param_name, hir::LifetimeParamKind::Explicit)
                        }
                        _ => panic!("expected `LifetimeName::Param` or `ParamName::Plain`"),
                    };

                    hir::GenericParam {
                        hir_id,
                        name,
                        span,
                        pure_wrt_drop: false,
                        bounds: &[],
                        kind: hir::GenericParamKind::Lifetime { kind },
                    }
                }));

            debug!("lower_opaque_impl_trait: lifetime_defs={:#?}", lifetime_defs);

            let opaque_ty_item = hir::OpaqueTy {
                generics: hir::Generics {
                    params: lifetime_defs,
                    where_clause: hir::WhereClause { predicates: &[], span: lctx.lower_span(span) },
                    span: lctx.lower_span(span),
                },
                bounds: hir_bounds,
                impl_trait_fn: fn_def_id,
                origin,
            };

            trace!("lower_opaque_impl_trait: {:#?}", opaque_ty_def_id);
            lctx.generate_opaque_type(opaque_ty_def_id, opaque_ty_item, span, opaque_ty_span)
        });

        let lifetimes =
            self.arena.alloc_from_iter(collected_lifetimes.into_iter().map(|(name, span)| {
                hir::GenericArg::Lifetime(hir::Lifetime { hir_id: self.next_id(), span, name })
            }));

        debug!("lower_opaque_impl_trait: lifetimes={:#?}", lifetimes);

        // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
        hir::TyKind::OpaqueDef(hir::ItemId { def_id: opaque_ty_def_id }, lifetimes)
    }

    /// Registers a new opaque type with the proper `NodeId`s and
    /// returns the lowered node-ID for the opaque type.
    fn generate_opaque_type(
        &mut self,
        opaque_ty_id: LocalDefId,
        opaque_ty_item: hir::OpaqueTy<'hir>,
        span: Span,
        opaque_ty_span: Span,
    ) -> hir::OwnerNode<'hir> {
        let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
        // Generate an `type Foo = impl Trait;` declaration.
        trace!("registering opaque type with id {:#?}", opaque_ty_id);
        let opaque_ty_item = hir::Item {
            def_id: opaque_ty_id,
            ident: Ident::empty(),
            kind: opaque_ty_item_kind,
            vis: respan(self.lower_span(span.shrink_to_lo()), hir::VisibilityKind::Inherited),
            span: self.lower_span(opaque_ty_span),
        };
        hir::OwnerNode::Item(self.arena.alloc(opaque_ty_item))
    }

    fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> &'hir [Ident] {
        // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
        // as they are not explicit in HIR/Ty function signatures.
        // (instead, the `c_variadic` flag is set to `true`)
        let mut inputs = &decl.inputs[..];
        if decl.c_variadic() {
            inputs = &inputs[..inputs.len() - 1];
        }
        self.arena.alloc_from_iter(inputs.iter().map(|param| match param.pat.kind {
            PatKind::Ident(_, ident, _) => self.lower_ident(ident),
            _ => Ident::new(kw::Empty, self.lower_span(param.pat.span)),
        }))
    }

    // Lowers a function declaration.
    //
    // `decl`: the unlowered (AST) function declaration.
    // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
    //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
    //      `make_ret_async` is also `Some`.
    // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
    //      This guards against trait declarations and implementations where `impl Trait` is
    //      disallowed.
    // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
    //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
    //      return type `impl Trait` item.
    fn lower_fn_decl(
        &mut self,
        decl: &FnDecl,
        mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam<'hir>>)>,
        impl_trait_return_allow: bool,
        make_ret_async: Option<NodeId>,
    ) -> &'hir hir::FnDecl<'hir> {
        debug!(
            "lower_fn_decl(\
            fn_decl: {:?}, \
            in_band_ty_params: {:?}, \
            impl_trait_return_allow: {}, \
            make_ret_async: {:?})",
            decl, in_band_ty_params, impl_trait_return_allow, make_ret_async,
        );
        let lt_mode = if make_ret_async.is_some() {
            // In `async fn`, argument-position elided lifetimes
            // must be transformed into fresh generic parameters so that
            // they can be applied to the opaque `impl Trait` return type.
            AnonymousLifetimeMode::CreateParameter
        } else {
            self.anonymous_lifetime_mode
        };

        let c_variadic = decl.c_variadic();

        // Remember how many lifetimes were already around so that we can
        // only look at the lifetime parameters introduced by the arguments.
        let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
            // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
            // as they are not explicit in HIR/Ty function signatures.
            // (instead, the `c_variadic` flag is set to `true`)
            let mut inputs = &decl.inputs[..];
            if c_variadic {
                inputs = &inputs[..inputs.len() - 1];
            }
            this.arena.alloc_from_iter(inputs.iter().map(|param| {
                if let Some((_, ibty)) = &mut in_band_ty_params {
                    this.lower_ty_direct(
                        &param.ty,
                        ImplTraitContext::Universal(ibty, this.current_hir_id_owner),
                    )
                } else {
                    this.lower_ty_direct(&param.ty, ImplTraitContext::disallowed())
                }
            }))
        });

        let output = if let Some(ret_id) = make_ret_async {
            self.lower_async_fn_ret_ty(
                &decl.output,
                in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
                ret_id,
            )
        } else {
            match decl.output {
                FnRetTy::Ty(ref ty) => {
                    let context = match in_band_ty_params {
                        Some((def_id, _)) if impl_trait_return_allow => {
                            ImplTraitContext::ReturnPositionOpaqueTy {
                                fn_def_id: def_id,
                                origin: hir::OpaqueTyOrigin::FnReturn,
                            }
                        }
                        _ => ImplTraitContext::disallowed(),
                    };
                    hir::FnRetTy::Return(self.lower_ty(ty, context))
                }
                FnRetTy::Default(span) => hir::FnRetTy::DefaultReturn(self.lower_span(span)),
            }
        };

        self.arena.alloc(hir::FnDecl {
            inputs,
            output,
            c_variadic,
            implicit_self: decl.inputs.get(0).map_or(hir::ImplicitSelfKind::None, |arg| {
                use BindingMode::{ByRef, ByValue};
                let is_mutable_pat = matches!(
                    arg.pat.kind,
                    PatKind::Ident(ByValue(Mutability::Mut) | ByRef(Mutability::Mut), ..)
                );

                match arg.ty.kind {
                    TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
                    TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
                    // Given we are only considering `ImplicitSelf` types, we needn't consider
                    // the case where we have a mutable pattern to a reference as that would
                    // no longer be an `ImplicitSelf`.
                    TyKind::Rptr(_, ref mt)
                        if mt.ty.kind.is_implicit_self() && mt.mutbl == ast::Mutability::Mut =>
                    {
                        hir::ImplicitSelfKind::MutRef
                    }
                    TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() => {
                        hir::ImplicitSelfKind::ImmRef
                    }
                    _ => hir::ImplicitSelfKind::None,
                }
            }),
        })
    }

    // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
    // combined with the following definition of `OpaqueTy`:
    //
    //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
    //
    // `inputs`: lowered types of parameters to the function (used to collect lifetimes)
    // `output`: unlowered output type (`T` in `-> T`)
    // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
    // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
    // `elided_lt_replacement`: replacement for elided lifetimes in the return type
    fn lower_async_fn_ret_ty(
        &mut self,
        output: &FnRetTy,
        fn_def_id: DefId,
        opaque_ty_node_id: NodeId,
    ) -> hir::FnRetTy<'hir> {
        debug!(
            "lower_async_fn_ret_ty(\
             output={:?}, \
             fn_def_id={:?}, \
             opaque_ty_node_id={:?})",
            output, fn_def_id, opaque_ty_node_id,
        );

        let span = output.span();

        let opaque_ty_span = self.mark_span_with_reason(DesugaringKind::Async, span, None);

        let opaque_ty_def_id = self.resolver.local_def_id(opaque_ty_node_id);

        // When we create the opaque type for this async fn, it is going to have
        // to capture all the lifetimes involved in the signature (including in the
        // return type). This is done by introducing lifetime parameters for:
        //
        // - all the explicitly declared lifetimes from the impl and function itself;
        // - all the elided lifetimes in the fn arguments;
        // - all the elided lifetimes in the return type.
        //
        // So for example in this snippet:
        //
        // ```rust
        // impl<'a> Foo<'a> {
        //   async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
        //   //               ^ '0                       ^ '1     ^ '2
        //   // elided lifetimes used below
        //   }
        // }
        // ```
        //
        // we would create an opaque type like:
        //
        // ```
        // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
        // ```
        //
        // and we would then desugar `bar` to the equivalent of:
        //
        // ```rust
        // impl<'a> Foo<'a> {
        //   fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
        // }
        // ```
        //
        // Note that the final parameter to `Bar` is `'_`, not `'2` --
        // this is because the elided lifetimes from the return type
        // should be figured out using the ordinary elision rules, and
        // this desugaring achieves that.
        //
        // The variable `input_lifetimes_count` tracks the number of
        // lifetime parameters to the opaque type *not counting* those
        // lifetimes elided in the return type. This includes those
        // that are explicitly declared (`in_scope_lifetimes`) and
        // those elided lifetimes we found in the arguments (current
        // content of `lifetimes_to_define`). Next, we will process
        // the return type, which will cause `lifetimes_to_define` to
        // grow.
        let input_lifetimes_count = self.in_scope_lifetimes.len() + self.lifetimes_to_define.len();

        let mut lifetime_params = Vec::new();
        self.with_hir_id_owner(opaque_ty_node_id, |this| {
            // We have to be careful to get elision right here. The
            // idea is that we create a lifetime parameter for each
            // lifetime in the return type.  So, given a return type
            // like `async fn foo(..) -> &[&u32]`, we lower to `impl
            // Future<Output = &'1 [ &'2 u32 ]>`.
            //
            // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
            // hence the elision takes place at the fn site.
            let future_bound = this
                .with_anonymous_lifetime_mode(AnonymousLifetimeMode::CreateParameter, |this| {
                    this.lower_async_fn_output_type_to_future_bound(output, fn_def_id, span)
                });

            debug!("lower_async_fn_ret_ty: future_bound={:#?}", future_bound);

            // Calculate all the lifetimes that should be captured
            // by the opaque type. This should include all in-scope
            // lifetime parameters, including those defined in-band.
            //
            // Note: this must be done after lowering the output type,
            // as the output type may introduce new in-band lifetimes.
            lifetime_params = this
                .in_scope_lifetimes
                .iter()
                .cloned()
                .map(|name| (name.ident().span, name))
                .chain(this.lifetimes_to_define.iter().cloned())
                .collect();

            debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
            debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
            debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);

            let generic_params =
                this.arena.alloc_from_iter(lifetime_params.iter().map(|(span, hir_name)| {
                    this.lifetime_to_generic_param(*span, *hir_name, opaque_ty_def_id)
                }));

            let opaque_ty_item = hir::OpaqueTy {
                generics: hir::Generics {
                    params: generic_params,
                    where_clause: hir::WhereClause { predicates: &[], span: this.lower_span(span) },
                    span: this.lower_span(span),
                },
                bounds: arena_vec![this; future_bound],
                impl_trait_fn: Some(fn_def_id),
                origin: hir::OpaqueTyOrigin::AsyncFn,
            };

            trace!("exist ty from async fn def id: {:#?}", opaque_ty_def_id);
            this.generate_opaque_type(opaque_ty_def_id, opaque_ty_item, span, opaque_ty_span)
        });

        // As documented above on the variable
        // `input_lifetimes_count`, we need to create the lifetime
        // arguments to our opaque type. Continuing with our example,
        // we're creating the type arguments for the return type:
        //
        // ```
        // Bar<'a, 'b, '0, '1, '_>
        // ```
        //
        // For the "input" lifetime parameters, we wish to create
        // references to the parameters themselves, including the
        // "implicit" ones created from parameter types (`'a`, `'b`,
        // '`0`, `'1`).
        //
        // For the "output" lifetime parameters, we just want to
        // generate `'_`.
        let mut generic_args = Vec::with_capacity(lifetime_params.len());
        generic_args.extend(lifetime_params[..input_lifetimes_count].iter().map(
            |&(span, hir_name)| {
                // Input lifetime like `'a` or `'1`:
                GenericArg::Lifetime(hir::Lifetime {
                    hir_id: self.next_id(),
                    span: self.lower_span(span),
                    name: hir::LifetimeName::Param(hir_name),
                })
            },
        ));
        generic_args.extend(lifetime_params[input_lifetimes_count..].iter().map(|&(span, _)|
            // Output lifetime like `'_`.
            GenericArg::Lifetime(hir::Lifetime {
                hir_id: self.next_id(),
                span: self.lower_span(span),
                name: hir::LifetimeName::Implicit,
            })));
        let generic_args = self.arena.alloc_from_iter(generic_args);

        // Create the `Foo<...>` reference itself. Note that the `type
        // Foo = impl Trait` is, internally, created as a child of the
        // async fn, so the *type parameters* are inherited.  It's
        // only the lifetime parameters that we must supply.
        let opaque_ty_ref =
            hir::TyKind::OpaqueDef(hir::ItemId { def_id: opaque_ty_def_id }, generic_args);
        let opaque_ty = self.ty(opaque_ty_span, opaque_ty_ref);
        hir::FnRetTy::Return(self.arena.alloc(opaque_ty))
    }

    /// Transforms `-> T` into `Future<Output = T>`.
    fn lower_async_fn_output_type_to_future_bound(
        &mut self,
        output: &FnRetTy,
        fn_def_id: DefId,
        span: Span,
    ) -> hir::GenericBound<'hir> {
        // Compute the `T` in `Future<Output = T>` from the return type.
        let output_ty = match output {
            FnRetTy::Ty(ty) => {
                // Not `OpaqueTyOrigin::AsyncFn`: that's only used for the
                // `impl Future` opaque type that `async fn` implicitly
                // generates.
                let context = ImplTraitContext::ReturnPositionOpaqueTy {
                    fn_def_id,
                    origin: hir::OpaqueTyOrigin::FnReturn,
                };
                self.lower_ty(ty, context)
            }
            FnRetTy::Default(ret_ty_span) => self.arena.alloc(self.ty_tup(*ret_ty_span, &[])),
        };

        // "<Output = T>"
        let future_args = self.arena.alloc(hir::GenericArgs {
            args: &[],
            bindings: arena_vec![self; self.output_ty_binding(span, output_ty)],
            parenthesized: false,
            span_ext: DUMMY_SP,
        });

        hir::GenericBound::LangItemTrait(
            // ::std::future::Future<future_params>
            hir::LangItem::Future,
            self.lower_span(span),
            self.next_id(),
            future_args,
        )
    }

    fn lower_param_bound(
        &mut self,
        tpb: &GenericBound,
        itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::GenericBound<'hir> {
        match tpb {
            GenericBound::Trait(p, modifier) => hir::GenericBound::Trait(
                self.lower_poly_trait_ref(p, itctx),
                self.lower_trait_bound_modifier(*modifier),
            ),
            GenericBound::Outlives(lifetime) => {
                hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
            }
        }
    }

    fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
        let span = self.lower_span(l.ident.span);
        match l.ident {
            ident if ident.name == kw::StaticLifetime => {
                self.new_named_lifetime(l.id, span, hir::LifetimeName::Static)
            }
            ident if ident.name == kw::UnderscoreLifetime => match self.anonymous_lifetime_mode {
                AnonymousLifetimeMode::CreateParameter => {
                    let fresh_name = self.collect_fresh_in_band_lifetime(span);
                    self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
                }

                AnonymousLifetimeMode::PassThrough => {
                    self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
                }

                AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
            },
            ident => {
                self.maybe_collect_in_band_lifetime(ident);
                let param_name = ParamName::Plain(self.lower_ident(ident));
                self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
            }
        }
    }

    fn new_named_lifetime(
        &mut self,
        id: NodeId,
        span: Span,
        name: hir::LifetimeName,
    ) -> hir::Lifetime {
        hir::Lifetime { hir_id: self.lower_node_id(id), span: self.lower_span(span), name }
    }

    fn lower_generic_params_mut<'s>(
        &'s mut self,
        params: &'s [GenericParam],
        mut itctx: ImplTraitContext<'s, 'hir>,
    ) -> impl Iterator<Item = hir::GenericParam<'hir>> + Captures<'a> + Captures<'s> {
        params.iter().map(move |param| self.lower_generic_param(param, itctx.reborrow()))
    }

    fn lower_generic_params(
        &mut self,
        params: &[GenericParam],
        itctx: ImplTraitContext<'_, 'hir>,
    ) -> &'hir [hir::GenericParam<'hir>] {
        self.arena.alloc_from_iter(self.lower_generic_params_mut(params, itctx))
    }

    fn lower_generic_param(
        &mut self,
        param: &GenericParam,
        mut itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::GenericParam<'hir> {
        let bounds: Vec<_> = self
            .with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| {
                this.lower_param_bounds_mut(&param.bounds, itctx.reborrow()).collect()
            });

        let (name, kind) = match param.kind {
            GenericParamKind::Lifetime => {
                let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
                self.is_collecting_in_band_lifetimes = false;

                let lt = self
                    .with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| {
                        this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident })
                    });
                let param_name = match lt.name {
                    hir::LifetimeName::Param(param_name) => param_name,
                    hir::LifetimeName::Implicit
                    | hir::LifetimeName::Underscore
                    | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
                    hir::LifetimeName::ImplicitObjectLifetimeDefault => {
                        self.sess.diagnostic().span_bug(
                            param.ident.span,
                            "object-lifetime-default should not occur here",
                        );
                    }
                    hir::LifetimeName::Error => ParamName::Error,
                };

                let kind =
                    hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit };

                self.is_collecting_in_band_lifetimes = was_collecting_in_band;

                (param_name, kind)
            }
            GenericParamKind::Type { ref default, .. } => {
                let kind = hir::GenericParamKind::Type {
                    default: default.as_ref().map(|x| {
                        self.lower_ty(x, ImplTraitContext::Disallowed(ImplTraitPosition::Other))
                    }),
                    synthetic: param
                        .attrs
                        .iter()
                        .filter(|attr| attr.has_name(sym::rustc_synthetic))
                        .map(|_| hir::SyntheticTyParamKind::FromAttr)
                        .next(),
                };

                (hir::ParamName::Plain(self.lower_ident(param.ident)), kind)
            }
            GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
                let ty = self
                    .with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| {
                        this.lower_ty(&ty, ImplTraitContext::disallowed())
                    });
                let default = default.as_ref().map(|def| self.lower_anon_const(def));
                (
                    hir::ParamName::Plain(self.lower_ident(param.ident)),
                    hir::GenericParamKind::Const { ty, default },
                )
            }
        };
        let name = match name {
            hir::ParamName::Plain(ident) => hir::ParamName::Plain(self.lower_ident(ident)),
            name => name,
        };

        let hir_id = self.lower_node_id(param.id);
        self.lower_attrs(hir_id, &param.attrs);
        hir::GenericParam {
            hir_id,
            name,
            span: self.lower_span(param.ident.span),
            pure_wrt_drop: self.sess.contains_name(&param.attrs, sym::may_dangle),
            bounds: self.arena.alloc_from_iter(bounds),
            kind,
        }
    }

    fn lower_trait_ref(
        &mut self,
        p: &TraitRef,
        itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::TraitRef<'hir> {
        let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
            hir::QPath::Resolved(None, path) => path,
            qpath => panic!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
        };
        hir::TraitRef { path, hir_ref_id: self.lower_node_id(p.ref_id) }
    }

    fn lower_poly_trait_ref(
        &mut self,
        p: &PolyTraitRef,
        mut itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::PolyTraitRef<'hir> {
        let bound_generic_params =
            self.lower_generic_params(&p.bound_generic_params, itctx.reborrow());

        let trait_ref = self.with_in_scope_lifetime_defs(&p.bound_generic_params, |this| {
            // Any impl Trait types defined within this scope can capture
            // lifetimes bound on this predicate.
            let lt_def_names = p.bound_generic_params.iter().filter_map(|param| match param.kind {
                GenericParamKind::Lifetime { .. } => Some(hir::LifetimeName::Param(
                    ParamName::Plain(param.ident.normalize_to_macros_2_0()),
                )),
                _ => None,
            });
            if let ImplTraitContext::TypeAliasesOpaqueTy { ref mut capturable_lifetimes, .. } =
                itctx
            {
                capturable_lifetimes.extend(lt_def_names.clone());
            }

            let res = this.lower_trait_ref(&p.trait_ref, itctx.reborrow());

            if let ImplTraitContext::TypeAliasesOpaqueTy { ref mut capturable_lifetimes, .. } =
                itctx
            {
                for param in lt_def_names {
                    capturable_lifetimes.remove(&param);
                }
            }
            res
        });

        hir::PolyTraitRef { bound_generic_params, trait_ref, span: self.lower_span(p.span) }
    }

    fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_, 'hir>) -> hir::MutTy<'hir> {
        hir::MutTy { ty: self.lower_ty(&mt.ty, itctx), mutbl: mt.mutbl }
    }

    fn lower_param_bounds(
        &mut self,
        bounds: &[GenericBound],
        itctx: ImplTraitContext<'_, 'hir>,
    ) -> hir::GenericBounds<'hir> {
        self.arena.alloc_from_iter(self.lower_param_bounds_mut(bounds, itctx))
    }

    fn lower_param_bounds_mut<'s>(
        &'s mut self,
        bounds: &'s [GenericBound],
        mut itctx: ImplTraitContext<'s, 'hir>,
    ) -> impl Iterator<Item = hir::GenericBound<'hir>> + Captures<'s> + Captures<'a> {
        bounds.iter().map(move |bound| self.lower_param_bound(bound, itctx.reborrow()))
    }

    /// Lowers a block directly to an expression, presuming that it
    /// has no attributes and is not targeted by a `break`.
    fn lower_block_expr(&mut self, b: &Block) -> hir::Expr<'hir> {
        let block = self.lower_block(b, false);
        self.expr_block(block, AttrVec::new())
    }

    fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
        self.with_new_scopes(|this| hir::AnonConst {
            hir_id: this.lower_node_id(c.id),
            body: this.lower_const_body(c.value.span, Some(&c.value)),
        })
    }

    fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
        match u {
            CompilerGenerated => hir::UnsafeSource::CompilerGenerated,
            UserProvided => hir::UnsafeSource::UserProvided,
        }
    }

    fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
        match f {
            TraitBoundModifier::None => hir::TraitBoundModifier::None,
            TraitBoundModifier::MaybeConst => hir::TraitBoundModifier::MaybeConst,

            // `MaybeConstMaybe` will cause an error during AST validation, but we need to pick a
            // placeholder for compilation to proceed.
            TraitBoundModifier::MaybeConstMaybe | TraitBoundModifier::Maybe => {
                hir::TraitBoundModifier::Maybe
            }
        }
    }

    // Helper methods for building HIR.

    fn stmt(&mut self, span: Span, kind: hir::StmtKind<'hir>) -> hir::Stmt<'hir> {
        hir::Stmt { span: self.lower_span(span), kind, hir_id: self.next_id() }
    }

    fn stmt_expr(&mut self, span: Span, expr: hir::Expr<'hir>) -> hir::Stmt<'hir> {
        self.stmt(span, hir::StmtKind::Expr(self.arena.alloc(expr)))
    }

    fn stmt_let_pat(
        &mut self,
        attrs: Option<&'hir [Attribute]>,
        span: Span,
        init: Option<&'hir hir::Expr<'hir>>,
        pat: &'hir hir::Pat<'hir>,
        source: hir::LocalSource,
    ) -> hir::Stmt<'hir> {
        let hir_id = self.next_id();
        if let Some(a) = attrs {
            debug_assert!(!a.is_empty());
            self.attrs.insert(hir_id.local_id, a);
        }
        let local = hir::Local { hir_id, init, pat, source, span: self.lower_span(span), ty: None };
        self.stmt(span, hir::StmtKind::Local(self.arena.alloc(local)))
    }

    fn block_expr(&mut self, expr: &'hir hir::Expr<'hir>) -> &'hir hir::Block<'hir> {
        self.block_all(expr.span, &[], Some(expr))
    }

    fn block_all(
        &mut self,
        span: Span,
        stmts: &'hir [hir::Stmt<'hir>],
        expr: Option<&'hir hir::Expr<'hir>>,
    ) -> &'hir hir::Block<'hir> {
        let blk = hir::Block {
            stmts,
            expr,
            hir_id: self.next_id(),
            rules: hir::BlockCheckMode::DefaultBlock,
            span: self.lower_span(span),
            targeted_by_break: false,
        };
        self.arena.alloc(blk)
    }

    fn pat_cf_continue(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
        let field = self.single_pat_field(span, pat);
        self.pat_lang_item_variant(span, hir::LangItem::ControlFlowContinue, field)
    }

    fn pat_cf_break(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
        let field = self.single_pat_field(span, pat);
        self.pat_lang_item_variant(span, hir::LangItem::ControlFlowBreak, field)
    }

    fn pat_some(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
        let field = self.single_pat_field(span, pat);
        self.pat_lang_item_variant(span, hir::LangItem::OptionSome, field)
    }

    fn pat_none(&mut self, span: Span) -> &'hir hir::Pat<'hir> {
        self.pat_lang_item_variant(span, hir::LangItem::OptionNone, &[])
    }

    fn single_pat_field(
        &mut self,
        span: Span,
        pat: &'hir hir::Pat<'hir>,
    ) -> &'hir [hir::PatField<'hir>] {
        let field = hir::PatField {
            hir_id: self.next_id(),
            ident: Ident::new(sym::integer(0), self.lower_span(span)),
            is_shorthand: false,
            pat,
            span: self.lower_span(span),
        };
        arena_vec![self; field]
    }

    fn pat_lang_item_variant(
        &mut self,
        span: Span,
        lang_item: hir::LangItem,
        fields: &'hir [hir::PatField<'hir>],
    ) -> &'hir hir::Pat<'hir> {
        let qpath = hir::QPath::LangItem(lang_item, self.lower_span(span));
        self.pat(span, hir::PatKind::Struct(qpath, fields, false))
    }

    fn pat_ident(&mut self, span: Span, ident: Ident) -> (&'hir hir::Pat<'hir>, hir::HirId) {
        self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
    }

    fn pat_ident_mut(&mut self, span: Span, ident: Ident) -> (hir::Pat<'hir>, hir::HirId) {
        self.pat_ident_binding_mode_mut(span, ident, hir::BindingAnnotation::Unannotated)
    }

    fn pat_ident_binding_mode(
        &mut self,
        span: Span,
        ident: Ident,
        bm: hir::BindingAnnotation,
    ) -> (&'hir hir::Pat<'hir>, hir::HirId) {
        let (pat, hir_id) = self.pat_ident_binding_mode_mut(span, ident, bm);
        (self.arena.alloc(pat), hir_id)
    }

    fn pat_ident_binding_mode_mut(
        &mut self,
        span: Span,
        ident: Ident,
        bm: hir::BindingAnnotation,
    ) -> (hir::Pat<'hir>, hir::HirId) {
        let hir_id = self.next_id();

        (
            hir::Pat {
                hir_id,
                kind: hir::PatKind::Binding(bm, hir_id, self.lower_ident(ident), None),
                span: self.lower_span(span),
                default_binding_modes: true,
            },
            hir_id,
        )
    }

    fn pat(&mut self, span: Span, kind: hir::PatKind<'hir>) -> &'hir hir::Pat<'hir> {
        self.arena.alloc(hir::Pat {
            hir_id: self.next_id(),
            kind,
            span: self.lower_span(span),
            default_binding_modes: true,
        })
    }

    fn pat_without_dbm(&mut self, span: Span, kind: hir::PatKind<'hir>) -> hir::Pat<'hir> {
        hir::Pat {
            hir_id: self.next_id(),
            kind,
            span: self.lower_span(span),
            default_binding_modes: false,
        }
    }

    fn ty_path(
        &mut self,
        mut hir_id: hir::HirId,
        span: Span,
        qpath: hir::QPath<'hir>,
    ) -> hir::Ty<'hir> {
        let kind = match qpath {
            hir::QPath::Resolved(None, path) => {
                // Turn trait object paths into `TyKind::TraitObject` instead.
                match path.res {
                    Res::Def(DefKind::Trait | DefKind::TraitAlias, _) => {
                        let principal = hir::PolyTraitRef {
                            bound_generic_params: &[],
                            trait_ref: hir::TraitRef { path, hir_ref_id: hir_id },
                            span: self.lower_span(span),
                        };

                        // The original ID is taken by the `PolyTraitRef`,
                        // so the `Ty` itself needs a different one.
                        hir_id = self.next_id();
                        hir::TyKind::TraitObject(
                            arena_vec![self; principal],
                            self.elided_dyn_bound(span),
                            TraitObjectSyntax::None,
                        )
                    }
                    _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
                }
            }
            _ => hir::TyKind::Path(qpath),
        };

        hir::Ty { hir_id, kind, span: self.lower_span(span) }
    }

    /// Invoked to create the lifetime argument for a type `&T`
    /// with no explicit lifetime.
    fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
        match self.anonymous_lifetime_mode {
            // Intercept when we are in an impl header or async fn and introduce an in-band
            // lifetime.
            // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
            // `'f`.
            AnonymousLifetimeMode::CreateParameter => {
                let fresh_name = self.collect_fresh_in_band_lifetime(span);
                hir::Lifetime {
                    hir_id: self.next_id(),
                    span: self.lower_span(span),
                    name: hir::LifetimeName::Param(fresh_name),
                }
            }

            AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),

            AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
        }
    }

    /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
    /// return an "error lifetime".
    fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
        let (id, msg, label) = match id {
            Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),

            None => (
                self.resolver.next_node_id(),
                "`&` without an explicit lifetime name cannot be used here",
                "explicit lifetime name needed here",
            ),
        };

        let mut err = struct_span_err!(self.sess, span, E0637, "{}", msg,);
        err.span_label(span, label);
        err.emit();

        self.new_named_lifetime(id, span, hir::LifetimeName::Error)
    }

    /// Invoked to create the lifetime argument(s) for a path like
    /// `std::cell::Ref<T>`; note that implicit lifetimes in these
    /// sorts of cases are deprecated. This may therefore report a warning or an
    /// error, depending on the mode.
    fn elided_path_lifetimes<'s>(
        &'s mut self,
        span: Span,
        count: usize,
    ) -> impl Iterator<Item = hir::Lifetime> + Captures<'a> + Captures<'s> + Captures<'hir> {
        (0..count).map(move |_| self.elided_path_lifetime(span))
    }

    fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
        match self.anonymous_lifetime_mode {
            AnonymousLifetimeMode::CreateParameter => {
                // We should have emitted E0726 when processing this path above
                self.sess
                    .delay_span_bug(span, "expected 'implicit elided lifetime not allowed' error");
                let id = self.resolver.next_node_id();
                self.new_named_lifetime(id, span, hir::LifetimeName::Error)
            }
            // `PassThrough` is the normal case.
            // `new_error_lifetime`, which would usually be used in the case of `ReportError`,
            // is unsuitable here, as these can occur from missing lifetime parameters in a
            // `PathSegment`, for which there is no associated `'_` or `&T` with no explicit
            // lifetime. Instead, we simply create an implicit lifetime, which will be checked
            // later, at which point a suitable error will be emitted.
            AnonymousLifetimeMode::PassThrough | AnonymousLifetimeMode::ReportError => {
                self.new_implicit_lifetime(span)
            }
        }
    }

    /// Invoked to create the lifetime argument(s) for an elided trait object
    /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
    /// when the bound is written, even if it is written with `'_` like in
    /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
    fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
        match self.anonymous_lifetime_mode {
            // NB. We intentionally ignore the create-parameter mode here.
            // and instead "pass through" to resolve-lifetimes, which will apply
            // the object-lifetime-defaulting rules. Elided object lifetime defaults
            // do not act like other elided lifetimes. In other words, given this:
            //
            //     impl Foo for Box<dyn Debug>
            //
            // we do not introduce a fresh `'_` to serve as the bound, but instead
            // ultimately translate to the equivalent of:
            //
            //     impl Foo for Box<dyn Debug + 'static>
            //
            // `resolve_lifetime` has the code to make that happen.
            AnonymousLifetimeMode::CreateParameter => {}

            AnonymousLifetimeMode::ReportError => {
                // ReportError applies to explicit use of `'_`.
            }

            // This is the normal case.
            AnonymousLifetimeMode::PassThrough => {}
        }

        let r = hir::Lifetime {
            hir_id: self.next_id(),
            span: self.lower_span(span),
            name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
        };
        debug!("elided_dyn_bound: r={:?}", r);
        r
    }

    fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
        hir::Lifetime {
            hir_id: self.next_id(),
            span: self.lower_span(span),
            name: hir::LifetimeName::Implicit,
        }
    }

    fn maybe_lint_bare_trait(&mut self, span: Span, id: NodeId, is_global: bool) {
        // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
        // call site which do not have a macro backtrace. See #61963.
        let is_macro_callsite = self
            .sess
            .source_map()
            .span_to_snippet(span)
            .map(|snippet| snippet.starts_with("#["))
            .unwrap_or(true);
        if !is_macro_callsite {
            if span.edition() < Edition::Edition2021 {
                self.resolver.lint_buffer().buffer_lint_with_diagnostic(
                    BARE_TRAIT_OBJECTS,
                    id,
                    span,
                    "trait objects without an explicit `dyn` are deprecated",
                    BuiltinLintDiagnostics::BareTraitObject(span, is_global),
                )
            } else {
                let msg = "trait objects must include the `dyn` keyword";
                let label = "add `dyn` keyword before this trait";
                let mut err = struct_span_err!(self.sess, span, E0782, "{}", msg,);
                err.span_suggestion_verbose(
                    span.shrink_to_lo(),
                    label,
                    String::from("dyn "),
                    Applicability::MachineApplicable,
                );
                err.emit();
            }
        }
    }
}

/// Helper struct for delayed construction of GenericArgs.
struct GenericArgsCtor<'hir> {
    args: SmallVec<[hir::GenericArg<'hir>; 4]>,
    bindings: &'hir [hir::TypeBinding<'hir>],
    parenthesized: bool,
    span: Span,
}

impl<'hir> GenericArgsCtor<'hir> {
    fn is_empty(&self) -> bool {
        self.args.is_empty() && self.bindings.is_empty() && !self.parenthesized
    }

    fn into_generic_args(self, this: &LoweringContext<'_, 'hir>) -> &'hir hir::GenericArgs<'hir> {
        let ga = hir::GenericArgs {
            args: this.arena.alloc_from_iter(self.args),
            bindings: self.bindings,
            parenthesized: self.parenthesized,
            span_ext: this.lower_span(self.span),
        };
        this.arena.alloc(ga)
    }
}

fn lifetimes_from_impl_trait_bounds(
    opaque_ty_id: NodeId,
    bounds: hir::GenericBounds<'_>,
    lifetimes_to_include: Option<&FxHashSet<hir::LifetimeName>>,
) -> Vec<(hir::LifetimeName, Span)> {
    debug!(
        "lifetimes_from_impl_trait_bounds(opaque_ty_id={:?}, \
             bounds={:#?})",
        opaque_ty_id, bounds,
    );

    // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
    // appear in the bounds, excluding lifetimes that are created within the bounds.
    // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
    struct ImplTraitLifetimeCollector<'r> {
        collect_elided_lifetimes: bool,
        currently_bound_lifetimes: Vec<hir::LifetimeName>,
        already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
        lifetimes: Vec<(hir::LifetimeName, Span)>,
        lifetimes_to_include: Option<&'r FxHashSet<hir::LifetimeName>>,
    }

    impl<'r, 'v> intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r> {
        type Map = intravisit::ErasedMap<'v>;

        fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
            intravisit::NestedVisitorMap::None
        }

        fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs<'v>) {
            // Don't collect elided lifetimes used inside of `Fn()` syntax.
            if parameters.parenthesized {
                let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
                self.collect_elided_lifetimes = false;
                intravisit::walk_generic_args(self, span, parameters);
                self.collect_elided_lifetimes = old_collect_elided_lifetimes;
            } else {
                intravisit::walk_generic_args(self, span, parameters);
            }
        }

        fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
            // Don't collect elided lifetimes used inside of `fn()` syntax.
            if let hir::TyKind::BareFn(_) = t.kind {
                let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
                self.collect_elided_lifetimes = false;

                // Record the "stack height" of `for<'a>` lifetime bindings
                // to be able to later fully undo their introduction.
                let old_len = self.currently_bound_lifetimes.len();
                intravisit::walk_ty(self, t);
                self.currently_bound_lifetimes.truncate(old_len);

                self.collect_elided_lifetimes = old_collect_elided_lifetimes;
            } else {
                intravisit::walk_ty(self, t)
            }
        }

        fn visit_poly_trait_ref(
            &mut self,
            trait_ref: &'v hir::PolyTraitRef<'v>,
            modifier: hir::TraitBoundModifier,
        ) {
            // Record the "stack height" of `for<'a>` lifetime bindings
            // to be able to later fully undo their introduction.
            let old_len = self.currently_bound_lifetimes.len();
            intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
            self.currently_bound_lifetimes.truncate(old_len);
        }

        fn visit_generic_param(&mut self, param: &'v hir::GenericParam<'v>) {
            // Record the introduction of 'a in `for<'a> ...`.
            if let hir::GenericParamKind::Lifetime { .. } = param.kind {
                // Introduce lifetimes one at a time so that we can handle
                // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
                let lt_name = hir::LifetimeName::Param(param.name);
                self.currently_bound_lifetimes.push(lt_name);
            }

            intravisit::walk_generic_param(self, param);
        }

        fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
            let name = match lifetime.name {
                hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
                    if self.collect_elided_lifetimes {
                        // Use `'_` for both implicit and underscore lifetimes in
                        // `type Foo<'_> = impl SomeTrait<'_>;`.
                        hir::LifetimeName::Underscore
                    } else {
                        return;
                    }
                }
                hir::LifetimeName::Param(_) => lifetime.name,

                // Refers to some other lifetime that is "in
                // scope" within the type.
                hir::LifetimeName::ImplicitObjectLifetimeDefault => return,

                hir::LifetimeName::Error | hir::LifetimeName::Static => return,
            };

            if !self.currently_bound_lifetimes.contains(&name)
                && !self.already_defined_lifetimes.contains(&name)
                && self.lifetimes_to_include.map_or(true, |lifetimes| lifetimes.contains(&name))
            {
                self.already_defined_lifetimes.insert(name);

                self.lifetimes.push((name, lifetime.span));
            }
        }
    }

    let mut lifetime_collector = ImplTraitLifetimeCollector {
        collect_elided_lifetimes: true,
        currently_bound_lifetimes: Vec::new(),
        already_defined_lifetimes: FxHashSet::default(),
        lifetimes: Vec::new(),
        lifetimes_to_include,
    };

    for bound in bounds {
        intravisit::walk_param_bound(&mut lifetime_collector, &bound);
    }

    lifetime_collector.lifetimes
}