1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
//! This is an NFA-based parser, which calls out to the main Rust parser for named non-terminals
//! (which it commits to fully when it hits one in a grammar). There's a set of current NFA threads
//! and a set of next ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
//! pathological cases, is worse than traditional use of NFA or Earley parsing, but it's an easier
//! fit for Macro-by-Example-style rules.
//!
//! (In order to prevent the pathological case, we'd need to lazily construct the resulting
//! `NamedMatch`es at the very end. It'd be a pain, and require more memory to keep around old
//! items, but it would also save overhead)
//!
//! We don't say this parser uses the Earley algorithm, because it's unnecessarily inaccurate.
//! The macro parser restricts itself to the features of finite state automata. Earley parsers
//! can be described as an extension of NFAs with completion rules, prediction rules, and recursion.
//!
//! Quick intro to how the parser works:
//!
//! A 'position' is a dot in the middle of a matcher, usually represented as a
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of threads consistent with the current position in the input string: `cur_items`.
//!
//! As it processes them, it fills up `eof_items` with threads that would be valid if
//! the macro invocation is now over, `bb_items` with threads that are waiting on
//! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. The rules for moving the · without
//! consuming any input are called epsilon transitions. It only advances or calls
//! out to the real Rust parser when no `cur_items` threads remain.
//!
//! Example:
//!
//! ```text, ignore
//! Start parsing a a a a b against [· a $( a )* a b].
//!
//! Remaining input: a a a a b
//! next: [· a $( a )* a b]
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a a b
//! cur: [a · $( a )* a b]
//! Descend/Skip (first item).
//! next: [a $( · a )* a b] [a $( a )* · a b].
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over a b. - - -
//!
//! Remaining input: ''
//! eof: [a $( a )* a b ·]
//! ```
crate use NamedMatch::*;
crate use ParseResult::*;
use TokenTreeOrTokenTreeSlice::*;
use crate::mbe::{self, TokenTree};
use rustc_ast::token::{self, DocComment, Nonterminal, Token};
use rustc_parse::parser::Parser;
use rustc_session::parse::ParseSess;
use rustc_span::symbol::MacroRulesNormalizedIdent;
use smallvec::{smallvec, SmallVec};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_span::symbol::Ident;
use std::borrow::Cow;
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::mem;
use std::ops::{Deref, DerefMut};
// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.
/// Either a sequence of token trees or a single one. This is used as the representation of the
/// sequence of tokens that make up a matcher.
#[derive(Clone)]
enum TokenTreeOrTokenTreeSlice<'tt> {
Tt(TokenTree),
TtSeq(&'tt [TokenTree]),
}
impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
/// Returns the number of constituent top-level token trees of `self` (top-level in that it
/// will not recursively descend into subtrees).
fn len(&self) -> usize {
match *self {
TtSeq(ref v) => v.len(),
Tt(ref tt) => tt.len(),
}
}
/// The `index`-th token tree of `self`.
fn get_tt(&self, index: usize) -> TokenTree {
match *self {
TtSeq(ref v) => v[index].clone(),
Tt(ref tt) => tt.get_tt(index),
}
}
}
/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
///
/// This is used by `inner_parse_loop` to keep track of delimited submatchers that we have
/// descended into.
#[derive(Clone)]
struct MatcherTtFrame<'tt> {
/// The "parent" matcher that we are descending into.
elts: TokenTreeOrTokenTreeSlice<'tt>,
/// The position of the "dot" in `elts` at the time we descended.
idx: usize,
}
type NamedMatchVec = SmallVec<[NamedMatch; 4]>;
/// Represents a single "position" (aka "matcher position", aka "item"), as
/// described in the module documentation.
///
/// Here:
///
/// - `'root` represents the lifetime of the stack slot that holds the root
/// `MatcherPos`. As described in `MatcherPosHandle`, the root `MatcherPos`
/// structure is stored on the stack, but subsequent instances are put into
/// the heap.
/// - `'tt` represents the lifetime of the token trees that this matcher
/// position refers to.
///
/// It is important to distinguish these two lifetimes because we have a
/// `SmallVec<TokenTreeOrTokenTreeSlice<'tt>>` below, and the destructor of
/// that is considered to possibly access the data from its elements (it lacks
/// a `#[may_dangle]` attribute). As a result, the compiler needs to know that
/// all the elements in that `SmallVec` strictly outlive the root stack slot
/// lifetime. By separating `'tt` from `'root`, we can show that.
#[derive(Clone)]
struct MatcherPos<'root, 'tt> {
/// The token or sequence of tokens that make up the matcher
top_elts: TokenTreeOrTokenTreeSlice<'tt>,
/// The position of the "dot" in this matcher
idx: usize,
/// For each named metavar in the matcher, we keep track of token trees matched against the
/// metavar by the black box parser. In particular, there may be more than one match per
/// metavar if we are in a repetition (each repetition matches each of the variables).
/// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the
/// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of
/// the current position of the `self` matcher position in the shared `matches` list.
///
/// Also, note that while we are descending into a sequence, matchers are given their own
/// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add
/// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep`
/// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one
/// wants the shared `matches`, one should use `up.matches`.
matches: Box<[Lrc<NamedMatchVec>]>,
/// The position in `matches` corresponding to the first metavar in this matcher's sequence of
/// token trees. In other words, the first metavar in the first token of `top_elts` corresponds
/// to `matches[match_lo]`.
match_lo: usize,
/// The position in `matches` corresponding to the metavar we are currently trying to match
/// against the source token stream. `match_lo <= match_cur <= match_hi`.
match_cur: usize,
/// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar
/// in this matcher.
match_hi: usize,
// The following fields are used if we are matching a repetition. If we aren't, they should be
// `None`.
/// The KleeneOp of this sequence if we are in a repetition.
seq_op: Option<mbe::KleeneOp>,
/// The separator if we are in a repetition.
sep: Option<Token>,
/// The "parent" matcher position if we are in a repetition. That is, the matcher position just
/// before we enter the sequence.
up: Option<MatcherPosHandle<'root, 'tt>>,
/// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from
/// a delimited token tree (e.g., something wrapped in `(` `)`) or to get the contents of a doc
/// comment...
///
/// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. )
/// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
/// that where the bottom of the stack is the outermost matcher.
/// Also, throughout the comments, this "descent" is often referred to as "unzipping"...
stack: SmallVec<[MatcherTtFrame<'tt>; 1]>,
}
impl<'root, 'tt> MatcherPos<'root, 'tt> {
/// Adds `m` as a named match for the `idx`-th metavar.
fn push_match(&mut self, idx: usize, m: NamedMatch) {
let matches = Lrc::make_mut(&mut self.matches[idx]);
matches.push(m);
}
}
// Lots of MatcherPos instances are created at runtime. Allocating them on the
// heap is slow. Furthermore, using SmallVec<MatcherPos> to allocate them all
// on the stack is also slow, because MatcherPos is quite a large type and
// instances get moved around a lot between vectors, which requires lots of
// slow memcpy calls.
//
// Therefore, the initial MatcherPos is always allocated on the stack,
// subsequent ones (of which there aren't that many) are allocated on the heap,
// and this type is used to encapsulate both cases.
enum MatcherPosHandle<'root, 'tt> {
Ref(&'root mut MatcherPos<'root, 'tt>),
Box(Box<MatcherPos<'root, 'tt>>),
}
impl<'root, 'tt> Clone for MatcherPosHandle<'root, 'tt> {
// This always produces a new Box.
fn clone(&self) -> Self {
MatcherPosHandle::Box(match *self {
MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()),
MatcherPosHandle::Box(ref b) => b.clone(),
})
}
}
impl<'root, 'tt> Deref for MatcherPosHandle<'root, 'tt> {
type Target = MatcherPos<'root, 'tt>;
fn deref(&self) -> &Self::Target {
match *self {
MatcherPosHandle::Ref(ref r) => r,
MatcherPosHandle::Box(ref b) => b,
}
}
}
impl<'root, 'tt> DerefMut for MatcherPosHandle<'root, 'tt> {
fn deref_mut(&mut self) -> &mut MatcherPos<'root, 'tt> {
match *self {
MatcherPosHandle::Ref(ref mut r) => r,
MatcherPosHandle::Box(ref mut b) => b,
}
}
}
/// Represents the possible results of an attempted parse.
crate enum ParseResult<T> {
/// Parsed successfully.
Success(T),
/// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected
/// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
Failure(Token, &'static str),
/// Fatal error (malformed macro?). Abort compilation.
Error(rustc_span::Span, String),
ErrorReported,
}
/// A `ParseResult` where the `Success` variant contains a mapping of
/// `MacroRulesNormalizedIdent`s to `NamedMatch`es. This represents the mapping
/// of metavars to the token trees they bind to.
crate type NamedParseResult = ParseResult<FxHashMap<MacroRulesNormalizedIdent, NamedMatch>>;
/// Count how many metavars are named in the given matcher `ms`.
pub(super) fn count_names(ms: &[TokenTree]) -> usize {
ms.iter().fold(0, |count, elt| {
count
+ match *elt {
TokenTree::Sequence(_, ref seq) => seq.num_captures,
TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
TokenTree::MetaVar(..) => 0,
TokenTree::MetaVarDecl(..) => 1,
TokenTree::Token(..) => 0,
}
})
}
/// `len` `Vec`s (initially shared and empty) that will store matches of metavars.
fn create_matches(len: usize) -> Box<[Lrc<NamedMatchVec>]> {
if len == 0 {
vec![]
} else {
let empty_matches = Lrc::new(SmallVec::new());
vec![empty_matches; len]
}
.into_boxed_slice()
}
/// Generates the top-level matcher position in which the "dot" is before the first token of the
/// matcher `ms`.
fn initial_matcher_pos<'root, 'tt>(ms: &'tt [TokenTree]) -> MatcherPos<'root, 'tt> {
let match_idx_hi = count_names(ms);
let matches = create_matches(match_idx_hi);
MatcherPos {
// Start with the top level matcher given to us
top_elts: TtSeq(ms), // "elts" is an abbr. for "elements"
// The "dot" is before the first token of the matcher
idx: 0,
// Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in `top_elts`.
// `match_lo` for `top_elts` is 0 and `match_hi` is `matches.len()`. `match_cur` is 0 since
// we haven't actually matched anything yet.
matches,
match_lo: 0,
match_cur: 0,
match_hi: match_idx_hi,
// Haven't descended into any delimiters, so empty stack
stack: smallvec![],
// Haven't descended into any sequences, so both of these are `None`.
seq_op: None,
sep: None,
up: None,
}
}
/// `NamedMatch` is a pattern-match result for a single `token::MATCH_NONTERMINAL`:
/// so it is associated with a single ident in a parse, and all
/// `MatchedNonterminal`s in the `NamedMatch` have the same non-terminal type
/// (expr, item, etc). Each leaf in a single `NamedMatch` corresponds to a
/// single `token::MATCH_NONTERMINAL` in the `TokenTree` that produced it.
///
/// The in-memory structure of a particular `NamedMatch` represents the match
/// that occurred when a particular subset of a matcher was applied to a
/// particular token tree.
///
/// The width of each `MatchedSeq` in the `NamedMatch`, and the identity of
/// the `MatchedNonterminal`s, will depend on the token tree it was applied
/// to: each `MatchedSeq` corresponds to a single `TTSeq` in the originating
/// token tree. The depth of the `NamedMatch` structure will therefore depend
/// only on the nesting depth of `ast::TTSeq`s in the originating
/// token tree it was derived from.
#[derive(Debug, Clone)]
crate enum NamedMatch {
MatchedSeq(Lrc<NamedMatchVec>),
MatchedNonterminal(Lrc<Nonterminal>),
}
/// Takes a sequence of token trees `ms` representing a matcher which successfully matched input
/// and an iterator of items that matched input and produces a `NamedParseResult`.
fn nameize<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
ms: &[TokenTree],
mut res: I,
) -> NamedParseResult {
// Recursively descend into each type of matcher (e.g., sequences, delimited, metavars) and make
// sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one
// binding, then there is an error. If it does, then we insert the binding into the
// `NamedParseResult`.
fn n_rec<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
m: &TokenTree,
res: &mut I,
ret_val: &mut FxHashMap<MacroRulesNormalizedIdent, NamedMatch>,
) -> Result<(), (rustc_span::Span, String)> {
match *m {
TokenTree::Sequence(_, ref seq) => {
for next_m in &seq.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?
}
}
TokenTree::Delimited(_, ref delim) => {
for next_m in &delim.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?;
}
}
TokenTree::MetaVarDecl(span, _, None) => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() {
return Err((span, "missing fragment specifier".to_string()));
}
}
TokenTree::MetaVarDecl(sp, bind_name, _) => match ret_val
.entry(MacroRulesNormalizedIdent::new(bind_name))
{
Vacant(spot) => {
spot.insert(res.next().unwrap());
}
Occupied(..) => return Err((sp, format!("duplicated bind name: {}", bind_name))),
},
TokenTree::MetaVar(..) | TokenTree::Token(..) => (),
}
Ok(())
}
let mut ret_val = FxHashMap::default();
for m in ms {
match n_rec(sess, m, res.by_ref(), &mut ret_val) {
Ok(_) => {}
Err((sp, msg)) => return Error(sp, msg),
}
}
Success(ret_val)
}
/// Performs a token equality check, ignoring syntax context (that is, an unhygienic comparison)
fn token_name_eq(t1: &Token, t2: &Token) -> bool {
if let (Some((ident1, is_raw1)), Some((ident2, is_raw2))) = (t1.ident(), t2.ident()) {
ident1.name == ident2.name && is_raw1 == is_raw2
} else if let (Some(ident1), Some(ident2)) = (t1.lifetime(), t2.lifetime()) {
ident1.name == ident2.name
} else {
t1.kind == t2.kind
}
}
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
/// produce more items in `next_items`, `eof_items`, and `bb_items`.
///
/// For more info about the how this happens, see the module-level doc comments and the inline
/// comments of this function.
///
/// # Parameters
///
/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
/// successful execution of this function.
/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
/// the function `parse`.
/// - `eof_items`: the set of items that would be valid if this was the EOF.
/// - `bb_items`: the set of items that are waiting for the black-box parser.
/// - `token`: the current token of the parser.
///
/// # Returns
///
/// A `ParseResult`. Note that matches are kept track of through the items generated.
fn inner_parse_loop<'root, 'tt>(
sess: &ParseSess,
cur_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
next_items: &mut Vec<MatcherPosHandle<'root, 'tt>>,
eof_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
bb_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
token: &Token,
) -> ParseResult<()> {
// Pop items from `cur_items` until it is empty.
while let Some(mut item) = cur_items.pop() {
// When unzipped trees end, remove them. This corresponds to backtracking out of a
// delimited submatcher into which we already descended. In backtracking out again, we need
// to advance the "dot" past the delimiters in the outer matcher.
while item.idx >= item.top_elts.len() {
match item.stack.pop() {
Some(MatcherTtFrame { elts, idx }) => {
item.top_elts = elts;
item.idx = idx + 1;
}
None => break,
}
}
// Get the current position of the "dot" (`idx`) in `item` and the number of token trees in
// the matcher (`len`).
let idx = item.idx;
let len = item.top_elts.len();
// If `idx >= len`, then we are at or past the end of the matcher of `item`.
if idx >= len {
// We are repeating iff there is a parent. If the matcher is inside of a repetition,
// then we could be at the end of a sequence or at the beginning of the next
// repetition.
if item.up.is_some() {
// At this point, regardless of whether there is a separator, we should add all
// matches from the complete repetition of the sequence to the shared, top-level
// `matches` list (actually, `up.matches`, which could itself not be the top-level,
// but anyway...). Moreover, we add another item to `cur_items` in which the "dot"
// is at the end of the `up` matcher. This ensures that the "dot" in the `up`
// matcher is also advanced sufficiently.
//
// NOTE: removing the condition `idx == len` allows trailing separators.
if idx == len {
// Get the `up` matcher
let mut new_pos = item.up.clone().unwrap();
// Add matches from this repetition to the `matches` of `up`
for idx in item.match_lo..item.match_hi {
let sub = item.matches[idx].clone();
new_pos.push_match(idx, MatchedSeq(sub));
}
// Move the "dot" past the repetition in `up`
new_pos.match_cur = item.match_hi;
new_pos.idx += 1;
cur_items.push(new_pos);
}
// Check if we need a separator.
if idx == len && item.sep.is_some() {
// We have a separator, and it is the current token. We can advance past the
// separator token.
if item.sep.as_ref().map_or(false, |sep| token_name_eq(token, sep)) {
item.idx += 1;
next_items.push(item);
}
}
// We don't need a separator. Move the "dot" back to the beginning of the matcher
// and try to match again UNLESS we are only allowed to have _one_ repetition.
else if item.seq_op != Some(mbe::KleeneOp::ZeroOrOne) {
item.match_cur = item.match_lo;
item.idx = 0;
cur_items.push(item);
}
}
// If we are not in a repetition, then being at the end of a matcher means that we have
// reached the potential end of the input.
else {
eof_items.push(item);
}
}
// We are in the middle of a matcher.
else {
// Look at what token in the matcher we are trying to match the current token (`token`)
// against. Depending on that, we may generate new items.
match item.top_elts.get_tt(idx) {
// Need to descend into a sequence
TokenTree::Sequence(sp, seq) => {
// Examine the case where there are 0 matches of this sequence. We are
// implicitly disallowing OneOrMore from having 0 matches here. Thus, that will
// result in a "no rules expected token" error by virtue of this matcher not
// working.
if seq.kleene.op == mbe::KleeneOp::ZeroOrMore
|| seq.kleene.op == mbe::KleeneOp::ZeroOrOne
{
let mut new_item = item.clone();
new_item.match_cur += seq.num_captures;
new_item.idx += 1;
for idx in item.match_cur..item.match_cur + seq.num_captures {
new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![])));
}
cur_items.push(new_item);
}
let matches = create_matches(item.matches.len());
cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos {
stack: smallvec![],
sep: seq.separator.clone(),
seq_op: Some(seq.kleene.op),
idx: 0,
matches,
match_lo: item.match_cur,
match_cur: item.match_cur,
match_hi: item.match_cur + seq.num_captures,
up: Some(item),
top_elts: Tt(TokenTree::Sequence(sp, seq)),
})));
}
// We need to match a metavar (but the identifier is invalid)... this is an error
TokenTree::MetaVarDecl(span, _, None) => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() {
return Error(span, "missing fragment specifier".to_string());
}
}
// We need to match a metavar with a valid ident... call out to the black-box
// parser by adding an item to `bb_items`.
TokenTree::MetaVarDecl(_, _, Some(kind)) => {
// Built-in nonterminals never start with these tokens, so we can eliminate
// them from consideration.
//
// We use the span of the metavariable declaration to determine any
// edition-specific matching behavior for non-terminals.
if Parser::nonterminal_may_begin_with(kind, token) {
bb_items.push(item);
}
}
// We need to descend into a delimited submatcher or a doc comment. To do this, we
// push the current matcher onto a stack and push a new item containing the
// submatcher onto `cur_items`.
//
// At the beginning of the loop, if we reach the end of the delimited submatcher,
// we pop the stack to backtrack out of the descent.
seq
@
(TokenTree::Delimited(..)
| TokenTree::Token(Token { kind: DocComment(..), .. })) => {
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
let idx = item.idx;
item.stack.push(MatcherTtFrame { elts: lower_elts, idx });
item.idx = 0;
cur_items.push(item);
}
// We just matched a normal token. We can just advance the parser.
TokenTree::Token(t) if token_name_eq(&t, token) => {
item.idx += 1;
next_items.push(item);
}
// There was another token that was not `token`... This means we can't add any
// rules. NOTE that this is not necessarily an error unless _all_ items in
// `cur_items` end up doing this. There may still be some other matchers that do
// end up working out.
TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
}
}
}
// Yay a successful parse (so far)!
Success(())
}
/// Use the given sequence of token trees (`ms`) as a matcher. Match the token
/// stream from the given `parser` against it and return the match.
pub(super) fn parse_tt(
parser: &mut Cow<'_, Parser<'_>>,
ms: &[TokenTree],
macro_name: Ident,
) -> NamedParseResult {
// A queue of possible matcher positions. We initialize it with the matcher position in which
// the "dot" is before the first token of the first token tree in `ms`. `inner_parse_loop` then
// processes all of these possible matcher positions and produces possible next positions into
// `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items`
// and we start over again.
//
// This MatcherPos instance is allocated on the stack. All others -- and
// there are frequently *no* others! -- are allocated on the heap.
let mut initial = initial_matcher_pos(ms);
let mut cur_items = smallvec![MatcherPosHandle::Ref(&mut initial)];
let mut next_items = Vec::new();
loop {
// Matcher positions black-box parsed by parser.rs (`parser`)
let mut bb_items = SmallVec::new();
// Matcher positions that would be valid if the macro invocation was over now
let mut eof_items = SmallVec::new();
assert!(next_items.is_empty());
// Process `cur_items` until either we have finished the input or we need to get some
// parsing from the black-box parser done. The result is that `next_items` will contain a
// bunch of possible next matcher positions in `next_items`.
match inner_parse_loop(
parser.sess,
&mut cur_items,
&mut next_items,
&mut eof_items,
&mut bb_items,
&parser.token,
) {
Success(_) => {}
Failure(token, msg) => return Failure(token, msg),
Error(sp, msg) => return Error(sp, msg),
ErrorReported => return ErrorReported,
}
// inner parse loop handled all cur_items, so it's empty
assert!(cur_items.is_empty());
// We need to do some post processing after the `inner_parser_loop`.
//
// Error messages here could be improved with links to original rules.
// If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
// either the parse is ambiguous (which should never happen) or there is a syntax error.
if parser.token == token::Eof {
if eof_items.len() == 1 {
let matches =
eof_items[0].matches.iter_mut().map(|dv| Lrc::make_mut(dv).pop().unwrap());
return nameize(parser.sess, ms, matches);
} else if eof_items.len() > 1 {
return Error(
parser.token.span,
"ambiguity: multiple successful parses".to_string(),
);
} else {
return Failure(
Token::new(
token::Eof,
if parser.token.span.is_dummy() {
parser.token.span
} else {
parser.token.span.shrink_to_hi()
},
),
"missing tokens in macro arguments",
);
}
}
// Performance hack: eof_items may share matchers via Rc with other things that we want
// to modify. Dropping eof_items now may drop these refcounts to 1, preventing an
// unnecessary implicit clone later in Rc::make_mut.
drop(eof_items);
// If there are no possible next positions AND we aren't waiting for the black-box parser,
// then there is a syntax error.
if bb_items.is_empty() && next_items.is_empty() {
return Failure(parser.token.clone(), "no rules expected this token in macro call");
}
// Another possibility is that we need to call out to parse some rust nonterminal
// (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
else if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
let nts = bb_items
.iter()
.map(|item| match item.top_elts.get_tt(item.idx) {
TokenTree::MetaVarDecl(_, bind, Some(kind)) => format!("{} ('{}')", kind, bind),
_ => panic!(),
})
.collect::<Vec<String>>()
.join(" or ");
return Error(
parser.token.span,
format!(
"local ambiguity when calling macro `{macro_name}`: multiple parsing options: {}",
match next_items.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
),
);
}
// Dump all possible `next_items` into `cur_items` for the next iteration.
else if !next_items.is_empty() {
// Now process the next token
cur_items.extend(next_items.drain(..));
parser.to_mut().bump();
}
// Finally, we have the case where we need to call the black-box parser to get some
// nonterminal.
else {
assert_eq!(bb_items.len(), 1);
let mut item = bb_items.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, Some(kind)) = item.top_elts.get_tt(item.idx) {
let match_cur = item.match_cur;
// We use the span of the metavariable declaration to determine any
// edition-specific matching behavior for non-terminals.
let nt = match parser.to_mut().parse_nonterminal(kind) {
Err(mut err) => {
err.span_label(
span,
format!("while parsing argument for this `{}` macro fragment", kind),
)
.emit();
return ErrorReported;
}
Ok(nt) => nt,
};
item.push_match(match_cur, MatchedNonterminal(Lrc::new(nt)));
item.idx += 1;
item.match_cur += 1;
} else {
unreachable!()
}
cur_items.push(item);
}
assert!(!cur_items.is_empty());
}
}