1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
//! The virtual memory representation of the MIR interpreter.

use std::borrow::Cow;
use std::convert::{TryFrom, TryInto};
use std::iter;
use std::ops::{Deref, Range};
use std::ptr;

use rustc_ast::Mutability;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_span::DUMMY_SP;
use rustc_target::abi::{Align, HasDataLayout, Size};

use super::{
    read_target_uint, write_target_uint, AllocId, InterpError, InterpResult, Pointer, Provenance,
    ResourceExhaustionInfo, Scalar, ScalarMaybeUninit, UndefinedBehaviorInfo, UninitBytesAccess,
    UnsupportedOpInfo,
};
use crate::ty;

/// This type represents an Allocation in the Miri/CTFE core engine.
///
/// Its public API is rather low-level, working directly with allocation offsets and a custom error
/// type to account for the lack of an AllocId on this level. The Miri/CTFE core engine `memory`
/// module provides higher-level access.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct Allocation<Tag = AllocId, Extra = ()> {
    /// The actual bytes of the allocation.
    /// Note that the bytes of a pointer represent the offset of the pointer.
    bytes: Box<[u8]>,
    /// Maps from byte addresses to extra data for each pointer.
    /// Only the first byte of a pointer is inserted into the map; i.e.,
    /// every entry in this map applies to `pointer_size` consecutive bytes starting
    /// at the given offset.
    relocations: Relocations<Tag>,
    /// Denotes which part of this allocation is initialized.
    init_mask: InitMask,
    /// The alignment of the allocation to detect unaligned reads.
    /// (`Align` guarantees that this is a power of two.)
    pub align: Align,
    /// `true` if the allocation is mutable.
    /// Also used by codegen to determine if a static should be put into mutable memory,
    /// which happens for `static mut` and `static` with interior mutability.
    pub mutability: Mutability,
    /// Extra state for the machine.
    pub extra: Extra,
}

/// We have our own error type that does not know about the `AllocId`; that information
/// is added when converting to `InterpError`.
#[derive(Debug)]
pub enum AllocError {
    /// Encountered a pointer where we needed raw bytes.
    ReadPointerAsBytes,
    /// Partially overwriting a pointer.
    PartialPointerOverwrite(Size),
    /// Using uninitialized data where it is not allowed.
    InvalidUninitBytes(Option<UninitBytesAccess>),
}
pub type AllocResult<T = ()> = Result<T, AllocError>;

impl AllocError {
    pub fn to_interp_error<'tcx>(self, alloc_id: AllocId) -> InterpError<'tcx> {
        use AllocError::*;
        match self {
            ReadPointerAsBytes => InterpError::Unsupported(UnsupportedOpInfo::ReadPointerAsBytes),
            PartialPointerOverwrite(offset) => InterpError::Unsupported(
                UnsupportedOpInfo::PartialPointerOverwrite(Pointer::new(alloc_id, offset)),
            ),
            InvalidUninitBytes(info) => InterpError::UndefinedBehavior(
                UndefinedBehaviorInfo::InvalidUninitBytes(info.map(|b| (alloc_id, b))),
            ),
        }
    }
}

/// The information that makes up a memory access: offset and size.
#[derive(Copy, Clone, Debug)]
pub struct AllocRange {
    pub start: Size,
    pub size: Size,
}

/// Free-starting constructor for less syntactic overhead.
#[inline(always)]
pub fn alloc_range(start: Size, size: Size) -> AllocRange {
    AllocRange { start, size }
}

impl AllocRange {
    #[inline(always)]
    pub fn end(self) -> Size {
        self.start + self.size // This does overflow checking.
    }

    /// Returns the `subrange` within this range; panics if it is not a subrange.
    #[inline]
    pub fn subrange(self, subrange: AllocRange) -> AllocRange {
        let sub_start = self.start + subrange.start;
        let range = alloc_range(sub_start, subrange.size);
        assert!(range.end() <= self.end(), "access outside the bounds for given AllocRange");
        range
    }
}

// The constructors are all without extra; the extra gets added by a machine hook later.
impl<Tag> Allocation<Tag> {
    /// Creates an allocation initialized by the given bytes
    pub fn from_bytes<'a>(
        slice: impl Into<Cow<'a, [u8]>>,
        align: Align,
        mutability: Mutability,
    ) -> Self {
        let bytes = Box::<[u8]>::from(slice.into());
        let size = Size::from_bytes(bytes.len());
        Self {
            bytes,
            relocations: Relocations::new(),
            init_mask: InitMask::new(size, true),
            align,
            mutability,
            extra: (),
        }
    }

    pub fn from_bytes_byte_aligned_immutable<'a>(slice: impl Into<Cow<'a, [u8]>>) -> Self {
        Allocation::from_bytes(slice, Align::ONE, Mutability::Not)
    }

    /// Try to create an Allocation of `size` bytes, failing if there is not enough memory
    /// available to the compiler to do so.
    pub fn uninit(size: Size, align: Align, panic_on_fail: bool) -> InterpResult<'static, Self> {
        let bytes = Box::<[u8]>::try_new_zeroed_slice(size.bytes_usize()).map_err(|_| {
            // This results in an error that can happen non-deterministically, since the memory
            // available to the compiler can change between runs. Normally queries are always
            // deterministic. However, we can be non-determinstic here because all uses of const
            // evaluation (including ConstProp!) will make compilation fail (via hard error
            // or ICE) upon encountering a `MemoryExhausted` error.
            if panic_on_fail {
                panic!("Allocation::uninit called with panic_on_fail had allocation failure")
            }
            ty::tls::with(|tcx| {
                tcx.sess.delay_span_bug(DUMMY_SP, "exhausted memory during interpreation")
            });
            InterpError::ResourceExhaustion(ResourceExhaustionInfo::MemoryExhausted)
        })?;
        // SAFETY: the box was zero-allocated, which is a valid initial value for Box<[u8]>
        let bytes = unsafe { bytes.assume_init() };
        Ok(Allocation {
            bytes,
            relocations: Relocations::new(),
            init_mask: InitMask::new(size, false),
            align,
            mutability: Mutability::Mut,
            extra: (),
        })
    }
}

impl Allocation {
    /// Convert Tag and add Extra fields
    pub fn convert_tag_add_extra<Tag, Extra>(
        self,
        cx: &impl HasDataLayout,
        extra: Extra,
        mut tagger: impl FnMut(Pointer<AllocId>) -> Pointer<Tag>,
    ) -> Allocation<Tag, Extra> {
        // Compute new pointer tags, which also adjusts the bytes.
        let mut bytes = self.bytes;
        let mut new_relocations = Vec::with_capacity(self.relocations.0.len());
        let ptr_size = cx.data_layout().pointer_size.bytes_usize();
        let endian = cx.data_layout().endian;
        for &(offset, alloc_id) in self.relocations.iter() {
            let idx = offset.bytes_usize();
            let ptr_bytes = &mut bytes[idx..idx + ptr_size];
            let bits = read_target_uint(endian, ptr_bytes).unwrap();
            let (ptr_tag, ptr_offset) =
                tagger(Pointer::new(alloc_id, Size::from_bytes(bits))).into_parts();
            write_target_uint(endian, ptr_bytes, ptr_offset.bytes().into()).unwrap();
            new_relocations.push((offset, ptr_tag));
        }
        // Create allocation.
        Allocation {
            bytes,
            relocations: Relocations::from_presorted(new_relocations),
            init_mask: self.init_mask,
            align: self.align,
            mutability: self.mutability,
            extra,
        }
    }
}

/// Raw accessors. Provide access to otherwise private bytes.
impl<Tag, Extra> Allocation<Tag, Extra> {
    pub fn len(&self) -> usize {
        self.bytes.len()
    }

    pub fn size(&self) -> Size {
        Size::from_bytes(self.len())
    }

    /// Looks at a slice which may describe uninitialized bytes or describe a relocation. This differs
    /// from `get_bytes_with_uninit_and_ptr` in that it does no relocation checks (even on the
    /// edges) at all.
    /// This must not be used for reads affecting the interpreter execution.
    pub fn inspect_with_uninit_and_ptr_outside_interpreter(&self, range: Range<usize>) -> &[u8] {
        &self.bytes[range]
    }

    /// Returns the mask indicating which bytes are initialized.
    pub fn init_mask(&self) -> &InitMask {
        &self.init_mask
    }

    /// Returns the relocation list.
    pub fn relocations(&self) -> &Relocations<Tag> {
        &self.relocations
    }
}

/// Byte accessors.
impl<Tag: Provenance, Extra> Allocation<Tag, Extra> {
    /// The last argument controls whether we error out when there are uninitialized
    /// or pointer bytes. You should never call this, call `get_bytes` or
    /// `get_bytes_with_uninit_and_ptr` instead,
    ///
    /// This function also guarantees that the resulting pointer will remain stable
    /// even when new allocations are pushed to the `HashMap`. `copy_repeatedly` relies
    /// on that.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    fn get_bytes_internal(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
        check_init_and_ptr: bool,
    ) -> AllocResult<&[u8]> {
        if check_init_and_ptr {
            self.check_init(range)?;
            self.check_relocations(cx, range)?;
        } else {
            // We still don't want relocations on the *edges*.
            self.check_relocation_edges(cx, range)?;
        }

        Ok(&self.bytes[range.start.bytes_usize()..range.end().bytes_usize()])
    }

    /// Checks that these bytes are initialized and not pointer bytes, and then return them
    /// as a slice.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
    /// on `InterpCx` instead.
    #[inline]
    pub fn get_bytes(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult<&[u8]> {
        self.get_bytes_internal(cx, range, true)
    }

    /// It is the caller's responsibility to handle uninitialized and pointer bytes.
    /// However, this still checks that there are no relocations on the *edges*.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    #[inline]
    pub fn get_bytes_with_uninit_and_ptr(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
    ) -> AllocResult<&[u8]> {
        self.get_bytes_internal(cx, range, false)
    }

    /// Just calling this already marks everything as defined and removes relocations,
    /// so be sure to actually put data there!
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
    /// on `InterpCx` instead.
    pub fn get_bytes_mut(
        &mut self,
        cx: &impl HasDataLayout,
        range: AllocRange,
    ) -> AllocResult<&mut [u8]> {
        self.mark_init(range, true);
        self.clear_relocations(cx, range)?;

        Ok(&mut self.bytes[range.start.bytes_usize()..range.end().bytes_usize()])
    }

    /// A raw pointer variant of `get_bytes_mut` that avoids invalidating existing aliases into this memory.
    pub fn get_bytes_mut_ptr(
        &mut self,
        cx: &impl HasDataLayout,
        range: AllocRange,
    ) -> AllocResult<*mut [u8]> {
        self.mark_init(range, true);
        self.clear_relocations(cx, range)?;

        assert!(range.end().bytes_usize() <= self.bytes.len()); // need to do our own bounds-check
        let begin_ptr = self.bytes.as_mut_ptr().wrapping_add(range.start.bytes_usize());
        let len = range.end().bytes_usize() - range.start.bytes_usize();
        Ok(ptr::slice_from_raw_parts_mut(begin_ptr, len))
    }
}

/// Reading and writing.
impl<Tag: Provenance, Extra> Allocation<Tag, Extra> {
    /// Validates that `ptr.offset` and `ptr.offset + size` do not point to the middle of a
    /// relocation. If `allow_uninit_and_ptr` is `false`, also enforces that the memory in the
    /// given range contains neither relocations nor uninitialized bytes.
    pub fn check_bytes(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
        allow_uninit_and_ptr: bool,
    ) -> AllocResult {
        // Check bounds and relocations on the edges.
        self.get_bytes_with_uninit_and_ptr(cx, range)?;
        // Check uninit and ptr.
        if !allow_uninit_and_ptr {
            self.check_init(range)?;
            self.check_relocations(cx, range)?;
        }
        Ok(())
    }

    /// Reads a *non-ZST* scalar.
    ///
    /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
    /// for ZSTness anyway due to integer pointers being valid for ZSTs.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::read_scalar` instead of this method.
    pub fn read_scalar(
        &self,
        cx: &impl HasDataLayout,
        range: AllocRange,
    ) -> AllocResult<ScalarMaybeUninit<Tag>> {
        // `get_bytes_with_uninit_and_ptr` tests relocation edges.
        // We deliberately error when loading data that partially has provenance, or partially
        // initialized data (that's the check below), into a scalar. The LLVM semantics of this are
        // unclear so we are conservative. See <https://github.com/rust-lang/rust/issues/69488> for
        // further discussion.
        let bytes = self.get_bytes_with_uninit_and_ptr(cx, range)?;
        // Uninit check happens *after* we established that the alignment is correct.
        // We must not return `Ok()` for unaligned pointers!
        if self.is_init(range).is_err() {
            // This inflates uninitialized bytes to the entire scalar, even if only a few
            // bytes are uninitialized.
            return Ok(ScalarMaybeUninit::Uninit);
        }
        // Now we do the actual reading.
        let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap();
        // See if we got a pointer.
        if range.size != cx.data_layout().pointer_size {
            // Not a pointer.
            // *Now*, we better make sure that the inside is free of relocations too.
            self.check_relocations(cx, range)?;
        } else {
            // Maybe a pointer.
            if let Some(&prov) = self.relocations.get(&range.start) {
                let ptr = Pointer::new(prov, Size::from_bytes(bits));
                return Ok(ScalarMaybeUninit::from_pointer(ptr, cx));
            }
        }
        // We don't. Just return the bits.
        Ok(ScalarMaybeUninit::Scalar(Scalar::from_uint(bits, range.size)))
    }

    /// Writes a *non-ZST* scalar.
    ///
    /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
    /// for ZSTness anyway due to integer pointers being valid for ZSTs.
    ///
    /// It is the caller's responsibility to check bounds and alignment beforehand.
    /// Most likely, you want to call `InterpCx::write_scalar` instead of this method.
    pub fn write_scalar(
        &mut self,
        cx: &impl HasDataLayout,
        range: AllocRange,
        val: ScalarMaybeUninit<Tag>,
    ) -> AllocResult {
        assert!(self.mutability == Mutability::Mut);

        let val = match val {
            ScalarMaybeUninit::Scalar(scalar) => scalar,
            ScalarMaybeUninit::Uninit => {
                self.mark_init(range, false);
                return Ok(());
            }
        };

        // `to_bits_or_ptr_internal` is the right method because we just want to store this data
        // as-is into memory.
        let (bytes, provenance) = match val.to_bits_or_ptr_internal(range.size) {
            Err(val) => {
                let (provenance, offset) = val.into_parts();
                (u128::from(offset.bytes()), Some(provenance))
            }
            Ok(data) => (data, None),
        };

        let endian = cx.data_layout().endian;
        let dst = self.get_bytes_mut(cx, range)?;
        write_target_uint(endian, dst, bytes).unwrap();

        // See if we have to also write a relocation.
        if let Some(provenance) = provenance {
            self.relocations.0.insert(range.start, provenance);
        }

        Ok(())
    }
}

/// Relocations.
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    /// Returns all relocations overlapping with the given pointer-offset pair.
    pub fn get_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> &[(Size, Tag)] {
        // We have to go back `pointer_size - 1` bytes, as that one would still overlap with
        // the beginning of this range.
        let start = range.start.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1);
        self.relocations.range(Size::from_bytes(start)..range.end())
    }

    /// Checks that there are no relocations overlapping with the given range.
    #[inline(always)]
    fn check_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
        if self.get_relocations(cx, range).is_empty() {
            Ok(())
        } else {
            Err(AllocError::ReadPointerAsBytes)
        }
    }

    /// Removes all relocations inside the given range.
    /// If there are relocations overlapping with the edges, they
    /// are removed as well *and* the bytes they cover are marked as
    /// uninitialized. This is a somewhat odd "spooky action at a distance",
    /// but it allows strictly more code to run than if we would just error
    /// immediately in that case.
    fn clear_relocations(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult
    where
        Tag: Provenance,
    {
        // Find the start and end of the given range and its outermost relocations.
        let (first, last) = {
            // Find all relocations overlapping the given range.
            let relocations = self.get_relocations(cx, range);
            if relocations.is_empty() {
                return Ok(());
            }

            (
                relocations.first().unwrap().0,
                relocations.last().unwrap().0 + cx.data_layout().pointer_size,
            )
        };
        let start = range.start;
        let end = range.end();

        // We need to handle clearing the relocations from parts of a pointer. See
        // <https://github.com/rust-lang/rust/issues/87184> for details.
        if first < start {
            if Tag::ERR_ON_PARTIAL_PTR_OVERWRITE {
                return Err(AllocError::PartialPointerOverwrite(first));
            }
            self.init_mask.set_range(first, start, false);
        }
        if last > end {
            if Tag::ERR_ON_PARTIAL_PTR_OVERWRITE {
                return Err(AllocError::PartialPointerOverwrite(
                    last - cx.data_layout().pointer_size,
                ));
            }
            self.init_mask.set_range(end, last, false);
        }

        // Forget all the relocations.
        self.relocations.0.remove_range(first..last);

        Ok(())
    }

    /// Errors if there are relocations overlapping with the edges of the
    /// given memory range.
    #[inline]
    fn check_relocation_edges(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
        self.check_relocations(cx, alloc_range(range.start, Size::ZERO))?;
        self.check_relocations(cx, alloc_range(range.end(), Size::ZERO))?;
        Ok(())
    }
}

/// "Relocations" stores the provenance information of pointers stored in memory.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
pub struct Relocations<Tag = AllocId>(SortedMap<Size, Tag>);

impl<Tag> Relocations<Tag> {
    pub fn new() -> Self {
        Relocations(SortedMap::new())
    }

    // The caller must guarantee that the given relocations are already sorted
    // by address and contain no duplicates.
    pub fn from_presorted(r: Vec<(Size, Tag)>) -> Self {
        Relocations(SortedMap::from_presorted_elements(r))
    }
}

impl<Tag> Deref for Relocations<Tag> {
    type Target = SortedMap<Size, Tag>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// A partial, owned list of relocations to transfer into another allocation.
pub struct AllocationRelocations<Tag> {
    relative_relocations: Vec<(Size, Tag)>,
}

impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    pub fn prepare_relocation_copy(
        &self,
        cx: &impl HasDataLayout,
        src: AllocRange,
        dest: Size,
        count: u64,
    ) -> AllocationRelocations<Tag> {
        let relocations = self.get_relocations(cx, src);
        if relocations.is_empty() {
            return AllocationRelocations { relative_relocations: Vec::new() };
        }

        let size = src.size;
        let mut new_relocations = Vec::with_capacity(relocations.len() * (count as usize));

        for i in 0..count {
            new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
                // compute offset for current repetition
                let dest_offset = dest + size * i; // `Size` operations
                (
                    // shift offsets from source allocation to destination allocation
                    (offset + dest_offset) - src.start, // `Size` operations
                    reloc,
                )
            }));
        }

        AllocationRelocations { relative_relocations: new_relocations }
    }

    /// Applies a relocation copy.
    /// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
    /// to be clear of relocations.
    pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Tag>) {
        self.relocations.0.insert_presorted(relocations.relative_relocations);
    }
}

////////////////////////////////////////////////////////////////////////////////
// Uninitialized byte tracking
////////////////////////////////////////////////////////////////////////////////

type Block = u64;

/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct InitMask {
    blocks: Vec<Block>,
    len: Size,
}

impl InitMask {
    pub const BLOCK_SIZE: u64 = 64;

    #[inline]
    fn bit_index(bits: Size) -> (usize, usize) {
        // BLOCK_SIZE is the number of bits that can fit in a `Block`.
        // Each bit in a `Block` represents the initialization state of one byte of an allocation,
        // so we use `.bytes()` here.
        let bits = bits.bytes();
        let a = bits / InitMask::BLOCK_SIZE;
        let b = bits % InitMask::BLOCK_SIZE;
        (usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
    }

    #[inline]
    fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
        let block = block.try_into().ok().unwrap();
        let bit = bit.try_into().ok().unwrap();
        Size::from_bytes(block * InitMask::BLOCK_SIZE + bit)
    }

    pub fn new(size: Size, state: bool) -> Self {
        let mut m = InitMask { blocks: vec![], len: Size::ZERO };
        m.grow(size, state);
        m
    }

    pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
        let len = self.len;
        if end > len {
            self.grow(end - len, new_state);
        }
        self.set_range_inbounds(start, end, new_state);
    }

    pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
        let (blocka, bita) = Self::bit_index(start);
        let (blockb, bitb) = Self::bit_index(end);
        if blocka == blockb {
            // First set all bits except the first `bita`,
            // then unset the last `64 - bitb` bits.
            let range = if bitb == 0 {
                u64::MAX << bita
            } else {
                (u64::MAX << bita) & (u64::MAX >> (64 - bitb))
            };
            if new_state {
                self.blocks[blocka] |= range;
            } else {
                self.blocks[blocka] &= !range;
            }
            return;
        }
        // across block boundaries
        if new_state {
            // Set `bita..64` to `1`.
            self.blocks[blocka] |= u64::MAX << bita;
            // Set `0..bitb` to `1`.
            if bitb != 0 {
                self.blocks[blockb] |= u64::MAX >> (64 - bitb);
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (blocka + 1)..blockb {
                self.blocks[block] = u64::MAX;
            }
        } else {
            // Set `bita..64` to `0`.
            self.blocks[blocka] &= !(u64::MAX << bita);
            // Set `0..bitb` to `0`.
            if bitb != 0 {
                self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
            }
            // Fill in all the other blocks (much faster than one bit at a time).
            for block in (blocka + 1)..blockb {
                self.blocks[block] = 0;
            }
        }
    }

    #[inline]
    pub fn get(&self, i: Size) -> bool {
        let (block, bit) = Self::bit_index(i);
        (self.blocks[block] & (1 << bit)) != 0
    }

    #[inline]
    pub fn set(&mut self, i: Size, new_state: bool) {
        let (block, bit) = Self::bit_index(i);
        self.set_bit(block, bit, new_state);
    }

    #[inline]
    fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
        if new_state {
            self.blocks[block] |= 1 << bit;
        } else {
            self.blocks[block] &= !(1 << bit);
        }
    }

    pub fn grow(&mut self, amount: Size, new_state: bool) {
        if amount.bytes() == 0 {
            return;
        }
        let unused_trailing_bits =
            u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
        if amount.bytes() > unused_trailing_bits {
            let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
            self.blocks.extend(
                // FIXME(oli-obk): optimize this by repeating `new_state as Block`.
                iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
            );
        }
        let start = self.len;
        self.len += amount;
        self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
    }

    /// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
    fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
        /// A fast implementation of `find_bit`,
        /// which skips over an entire block at a time if it's all 0s (resp. 1s),
        /// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
        ///
        /// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
        /// and with the least significant bit (and lowest block) first:
        ///
        ///          00000000|00000000
        ///          ^      ^ ^      ^
        ///   index: 0      7 8      15
        ///
        /// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
        fn find_bit_fast(
            init_mask: &InitMask,
            start: Size,
            end: Size,
            is_init: bool,
        ) -> Option<Size> {
            /// Search one block, returning the index of the first bit equal to `is_init`.
            fn search_block(
                bits: Block,
                block: usize,
                start_bit: usize,
                is_init: bool,
            ) -> Option<Size> {
                // For the following examples, assume this function was called with:
                //   bits = 0b00111011
                //   start_bit = 3
                //   is_init = false
                // Note that, for the examples in this function, the most significant bit is written first,
                // which is backwards compared to the comments in `find_bit`/`find_bit_fast`.

                // Invert bits so we're always looking for the first set bit.
                //        ! 0b00111011
                //   bits = 0b11000100
                let bits = if is_init { bits } else { !bits };
                // Mask off unused start bits.
                //          0b11000100
                //        & 0b11111000
                //   bits = 0b11000000
                let bits = bits & (!0 << start_bit);
                // Find set bit, if any.
                //   bit = trailing_zeros(0b11000000)
                //   bit = 6
                if bits == 0 {
                    None
                } else {
                    let bit = bits.trailing_zeros();
                    Some(InitMask::size_from_bit_index(block, bit))
                }
            }

            if start >= end {
                return None;
            }

            // Convert `start` and `end` to block indexes and bit indexes within each block.
            // We must convert `end` to an inclusive bound to handle block boundaries correctly.
            //
            // For example:
            //
            //   (a) 00000000|00000000    (b) 00000000|
            //       ^~~~~~~~~~~^             ^~~~~~~~~^
            //     start       end          start     end
            //
            // In both cases, the block index of `end` is 1.
            // But we do want to search block 1 in (a), and we don't in (b).
            //
            // We subtract 1 from both end positions to make them inclusive:
            //
            //   (a) 00000000|00000000    (b) 00000000|
            //       ^~~~~~~~~~^              ^~~~~~~^
            //     start    end_inclusive   start end_inclusive
            //
            // For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
            // This provides the desired behavior of searching blocks 0 and 1 for (a),
            // and searching only block 0 for (b).
            // There is no concern of overflows since we checked for `start >= end` above.
            let (start_block, start_bit) = InitMask::bit_index(start);
            let end_inclusive = Size::from_bytes(end.bytes() - 1);
            let (end_block_inclusive, _) = InitMask::bit_index(end_inclusive);

            // Handle first block: need to skip `start_bit` bits.
            //
            // We need to handle the first block separately,
            // because there may be bits earlier in the block that should be ignored,
            // such as the bit marked (1) in this example:
            //
            //       (1)
            //       -|------
            //   (c) 01000000|00000000|00000001
            //          ^~~~~~~~~~~~~~~~~~^
            //        start              end
            if let Some(i) =
                search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
            {
                // If the range is less than a block, we may find a matching bit after `end`.
                //
                // For example, we shouldn't successfully find bit (2), because it's after `end`:
                //
                //             (2)
                //       -------|
                //   (d) 00000001|00000000|00000001
                //        ^~~~~^
                //      start end
                //
                // An alternative would be to mask off end bits in the same way as we do for start bits,
                // but performing this check afterwards is faster and simpler to implement.
                if i < end {
                    return Some(i);
                } else {
                    return None;
                }
            }

            // Handle remaining blocks.
            //
            // We can skip over an entire block at once if it's all 0s (resp. 1s).
            // The block marked (3) in this example is the first block that will be handled by this loop,
            // and it will be skipped for that reason:
            //
            //                   (3)
            //                --------
            //   (e) 01000000|00000000|00000001
            //          ^~~~~~~~~~~~~~~~~~^
            //        start              end
            if start_block < end_block_inclusive {
                // This loop is written in a specific way for performance.
                // Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
                // and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
                // because both alternatives result in significantly worse codegen.
                // `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
                // and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
                for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
                    .iter()
                    .zip(start_block + 1..)
                {
                    if let Some(i) = search_block(bits, block, 0, is_init) {
                        // If this is the last block, we may find a matching bit after `end`.
                        //
                        // For example, we shouldn't successfully find bit (4), because it's after `end`:
                        //
                        //                               (4)
                        //                         -------|
                        //   (f) 00000001|00000000|00000001
                        //          ^~~~~~~~~~~~~~~~~~^
                        //        start              end
                        //
                        // As above with example (d), we could handle the end block separately and mask off end bits,
                        // but unconditionally searching an entire block at once and performing this check afterwards
                        // is faster and much simpler to implement.
                        if i < end {
                            return Some(i);
                        } else {
                            return None;
                        }
                    }
                }
            }

            None
        }

        #[cfg_attr(not(debug_assertions), allow(dead_code))]
        fn find_bit_slow(
            init_mask: &InitMask,
            start: Size,
            end: Size,
            is_init: bool,
        ) -> Option<Size> {
            (start..end).find(|&i| init_mask.get(i) == is_init)
        }

        let result = find_bit_fast(self, start, end, is_init);

        debug_assert_eq!(
            result,
            find_bit_slow(self, start, end, is_init),
            "optimized implementation of find_bit is wrong for start={:?} end={:?} is_init={} init_mask={:#?}",
            start,
            end,
            is_init,
            self
        );

        result
    }
}

/// A contiguous chunk of initialized or uninitialized memory.
pub enum InitChunk {
    Init(Range<Size>),
    Uninit(Range<Size>),
}

impl InitChunk {
    #[inline]
    pub fn is_init(&self) -> bool {
        match self {
            Self::Init(_) => true,
            Self::Uninit(_) => false,
        }
    }

    #[inline]
    pub fn range(&self) -> Range<Size> {
        match self {
            Self::Init(r) => r.clone(),
            Self::Uninit(r) => r.clone(),
        }
    }
}

impl InitMask {
    /// Checks whether the range `start..end` (end-exclusive) is entirely initialized.
    ///
    /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
    /// indexes for the first contiguous span of the uninitialized access.
    #[inline]
    pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), Range<Size>> {
        if end > self.len {
            return Err(self.len..end);
        }

        let uninit_start = self.find_bit(start, end, false);

        match uninit_start {
            Some(uninit_start) => {
                let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
                Err(uninit_start..uninit_end)
            }
            None => Ok(()),
        }
    }

    /// Returns an iterator, yielding a range of byte indexes for each contiguous region
    /// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
    ///
    /// The iterator guarantees the following:
    /// - Chunks are nonempty.
    /// - Chunks are adjacent (each range's start is equal to the previous range's end).
    /// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
    /// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
    #[inline]
    pub fn range_as_init_chunks(&self, start: Size, end: Size) -> InitChunkIter<'_> {
        assert!(end <= self.len);

        let is_init = if start < end {
            self.get(start)
        } else {
            // `start..end` is empty: there are no chunks, so use some arbitrary value
            false
        };

        InitChunkIter { init_mask: self, is_init, start, end }
    }
}

/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
pub struct InitChunkIter<'a> {
    init_mask: &'a InitMask,
    /// Whether the next chunk we will return is initialized.
    /// If there are no more chunks, contains some arbitrary value.
    is_init: bool,
    /// The current byte index into `init_mask`.
    start: Size,
    /// The end byte index into `init_mask`.
    end: Size,
}

impl<'a> Iterator for InitChunkIter<'a> {
    type Item = InitChunk;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.start >= self.end {
            return None;
        }

        let end_of_chunk =
            self.init_mask.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
        let range = self.start..end_of_chunk;

        let ret =
            Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });

        self.is_init = !self.is_init;
        self.start = end_of_chunk;

        ret
    }
}

/// Uninitialized bytes.
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
    /// Checks whether the given range  is entirely initialized.
    ///
    /// Returns `Ok(())` if it's initialized. Otherwise returns the range of byte
    /// indexes of the first contiguous uninitialized access.
    fn is_init(&self, range: AllocRange) -> Result<(), Range<Size>> {
        self.init_mask.is_range_initialized(range.start, range.end()) // `Size` addition
    }

    /// Checks that a range of bytes is initialized. If not, returns the `InvalidUninitBytes`
    /// error which will report the first range of bytes which is uninitialized.
    fn check_init(&self, range: AllocRange) -> AllocResult {
        self.is_init(range).map_err(|idx_range| {
            AllocError::InvalidUninitBytes(Some(UninitBytesAccess {
                access_offset: range.start,
                access_size: range.size,
                uninit_offset: idx_range.start,
                uninit_size: idx_range.end - idx_range.start, // `Size` subtraction
            }))
        })
    }

    pub fn mark_init(&mut self, range: AllocRange, is_init: bool) {
        if range.size.bytes() == 0 {
            return;
        }
        assert!(self.mutability == Mutability::Mut);
        self.init_mask.set_range(range.start, range.end(), is_init);
    }
}

/// Run-length encoding of the uninit mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct InitMaskCompressed {
    /// Whether the first range is initialized.
    initial: bool,
    /// The lengths of ranges that are run-length encoded.
    /// The initialization state of the ranges alternate starting with `initial`.
    ranges: smallvec::SmallVec<[u64; 1]>,
}

impl InitMaskCompressed {
    pub fn no_bytes_init(&self) -> bool {
        // The `ranges` are run-length encoded and of alternating initialization state.
        // So if `ranges.len() > 1` then the second block is an initialized range.
        !self.initial && self.ranges.len() == 1
    }
}

/// Transferring the initialization mask to other allocations.
impl<Tag, Extra> Allocation<Tag, Extra> {
    /// Creates a run-length encoding of the initialization mask; panics if range is empty.
    ///
    /// This is essentially a more space-efficient version of
    /// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
    pub fn compress_uninit_range(&self, range: AllocRange) -> InitMaskCompressed {
        // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
        // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
        // the source and write it to the destination. Even if we optimized the memory accesses,
        // we'd be doing all of this `repeat` times.
        // Therefore we precompute a compressed version of the initialization mask of the source value and
        // then write it back `repeat` times without computing any more information from the source.

        // A precomputed cache for ranges of initialized / uninitialized bits
        // 0000010010001110 will become
        // `[5, 1, 2, 1, 3, 3, 1]`,
        // where each element toggles the state.

        let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();

        let mut chunks = self.init_mask.range_as_init_chunks(range.start, range.end()).peekable();

        let initial = chunks.peek().expect("range should be nonempty").is_init();

        // Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
        for chunk in chunks {
            let len = chunk.range().end.bytes() - chunk.range().start.bytes();
            ranges.push(len);
        }

        InitMaskCompressed { ranges, initial }
    }

    /// Applies multiple instances of the run-length encoding to the initialization mask.
    pub fn mark_compressed_init_range(
        &mut self,
        defined: &InitMaskCompressed,
        range: AllocRange,
        repeat: u64,
    ) {
        // An optimization where we can just overwrite an entire range of initialization
        // bits if they are going to be uniformly `1` or `0`.
        if defined.ranges.len() <= 1 {
            self.init_mask.set_range_inbounds(
                range.start,
                range.start + range.size * repeat, // `Size` operations
                defined.initial,
            );
            return;
        }

        for mut j in 0..repeat {
            j *= range.size.bytes();
            j += range.start.bytes();
            let mut cur = defined.initial;
            for range in &defined.ranges {
                let old_j = j;
                j += range;
                self.init_mask.set_range_inbounds(
                    Size::from_bytes(old_j),
                    Size::from_bytes(j),
                    cur,
                );
                cur = !cur;
            }
        }
    }
}