1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
//! Code related to match expressions. These are sufficiently complex to
//! warrant their own module and submodules. :) This main module includes the
//! high-level algorithm, the submodules contain the details.
//!
//! This also includes code for pattern bindings in `let` statements and
//! function parameters.

use crate::build::expr::as_place::PlaceBuilder;
use crate::build::scope::DropKind;
use crate::build::ForGuard::{self, OutsideGuard, RefWithinGuard};
use crate::build::{BlockAnd, BlockAndExtension, Builder};
use crate::build::{GuardFrame, GuardFrameLocal, LocalsForNode};
use rustc_data_structures::{
    fx::{FxHashSet, FxIndexMap},
    stack::ensure_sufficient_stack,
};
use rustc_hir::HirId;
use rustc_index::bit_set::BitSet;
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::thir::{self, *};
use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty};
use rustc_span::symbol::Symbol;
use rustc_span::{BytePos, Pos, Span};
use rustc_target::abi::VariantIdx;
use smallvec::{smallvec, SmallVec};

// helper functions, broken out by category:
mod simplify;
mod test;
mod util;

use std::borrow::Borrow;
use std::convert::TryFrom;
use std::mem;

impl<'a, 'tcx> Builder<'a, 'tcx> {
    pub(crate) fn then_else_break(
        &mut self,
        mut block: BasicBlock,
        expr: &Expr<'tcx>,
        temp_scope_override: Option<region::Scope>,
        break_scope: region::Scope,
        variable_scope_span: Span,
    ) -> BlockAnd<()> {
        let this = self;
        let expr_span = expr.span;

        match expr.kind {
            ExprKind::Scope { region_scope, lint_level, value } => {
                let region_scope = (region_scope, this.source_info(expr_span));
                this.in_scope(region_scope, lint_level, |this| {
                    this.then_else_break(
                        block,
                        &this.thir[value],
                        temp_scope_override,
                        break_scope,
                        variable_scope_span,
                    )
                })
            }
            ExprKind::Let { expr, ref pat } => {
                this.lower_let_expr(block, &this.thir[expr], pat, break_scope, variable_scope_span)
            }
            _ => {
                let temp_scope = temp_scope_override.unwrap_or_else(|| this.local_scope());
                let mutability = Mutability::Mut;
                let place =
                    unpack!(block = this.as_temp(block, Some(temp_scope), expr, mutability));
                let operand = Operand::Move(Place::from(place));

                let then_block = this.cfg.start_new_block();
                let else_block = this.cfg.start_new_block();
                let term = TerminatorKind::if_(this.tcx, operand, then_block, else_block);

                let source_info = this.source_info(expr_span);
                this.cfg.terminate(block, source_info, term);
                this.break_for_else(else_block, break_scope, source_info);

                then_block.unit()
            }
        }
    }

    /// Generates MIR for a `match` expression.
    ///
    /// The MIR that we generate for a match looks like this.
    ///
    /// ```text
    /// [ 0. Pre-match ]
    ///        |
    /// [ 1. Evaluate Scrutinee (expression being matched on) ]
    /// [ (fake read of scrutinee) ]
    ///        |
    /// [ 2. Decision tree -- check discriminants ] <--------+
    ///        |                                             |
    ///        | (once a specific arm is chosen)             |
    ///        |                                             |
    /// [pre_binding_block]                           [otherwise_block]
    ///        |                                             |
    /// [ 3. Create "guard bindings" for arm ]               |
    /// [ (create fake borrows) ]                            |
    ///        |                                             |
    /// [ 4. Execute guard code ]                            |
    /// [ (read fake borrows) ] --(guard is false)-----------+
    ///        |
    ///        | (guard results in true)
    ///        |
    /// [ 5. Create real bindings and execute arm ]
    ///        |
    /// [ Exit match ]
    /// ```
    ///
    /// All of the different arms have been stacked on top of each other to
    /// simplify the diagram. For an arm with no guard the blocks marked 3 and
    /// 4 and the fake borrows are omitted.
    ///
    /// We generate MIR in the following steps:
    ///
    /// 1. Evaluate the scrutinee and add the fake read of it ([Builder::lower_scrutinee]).
    /// 2. Create the decision tree ([Builder::lower_match_tree]).
    /// 3. Determine the fake borrows that are needed from the places that were
    ///    matched against and create the required temporaries for them
    ///    ([Builder::calculate_fake_borrows]).
    /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
    ///
    /// ## False edges
    ///
    /// We don't want to have the exact structure of the decision tree be
    /// visible through borrow checking. False edges ensure that the CFG as
    /// seen by borrow checking doesn't encode this. False edges are added:
    ///
    /// * From each pre-binding block to the next pre-binding block.
    /// * From each otherwise block to the next pre-binding block.
    crate fn match_expr(
        &mut self,
        destination: Place<'tcx>,
        span: Span,
        mut block: BasicBlock,
        scrutinee: &Expr<'tcx>,
        arms: &[ArmId],
    ) -> BlockAnd<()> {
        let scrutinee_span = scrutinee.span;
        let scrutinee_place =
            unpack!(block = self.lower_scrutinee(block, scrutinee, scrutinee_span,));

        let mut arm_candidates = self.create_match_candidates(scrutinee_place.clone(), &arms);

        let match_has_guard = arms.iter().copied().any(|arm| self.thir[arm].guard.is_some());
        let mut candidates =
            arm_candidates.iter_mut().map(|(_, candidate)| candidate).collect::<Vec<_>>();

        let match_start_span = span.shrink_to_lo().to(scrutinee.span);

        let fake_borrow_temps = self.lower_match_tree(
            block,
            scrutinee_span,
            match_start_span,
            match_has_guard,
            &mut candidates,
        );

        self.lower_match_arms(
            destination,
            scrutinee_place,
            scrutinee_span,
            arm_candidates,
            self.source_info(span),
            fake_borrow_temps,
        )
    }

    /// Evaluate the scrutinee and add the fake read of it.
    fn lower_scrutinee(
        &mut self,
        mut block: BasicBlock,
        scrutinee: &Expr<'tcx>,
        scrutinee_span: Span,
    ) -> BlockAnd<PlaceBuilder<'tcx>> {
        let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee));
        // Matching on a `scrutinee_place` with an uninhabited type doesn't
        // generate any memory reads by itself, and so if the place "expression"
        // contains unsafe operations like raw pointer dereferences or union
        // field projections, we wouldn't know to require an `unsafe` block
        // around a `match` equivalent to `std::intrinsics::unreachable()`.
        // See issue #47412 for this hole being discovered in the wild.
        //
        // HACK(eddyb) Work around the above issue by adding a dummy inspection
        // of `scrutinee_place`, specifically by applying `ReadForMatch`.
        //
        // NOTE: ReadForMatch also checks that the scrutinee is initialized.
        // This is currently needed to not allow matching on an uninitialized,
        // uninhabited value. If we get never patterns, those will check that
        // the place is initialized, and so this read would only be used to
        // check safety.
        let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
        let source_info = self.source_info(scrutinee_span);

        if let Ok(scrutinee_builder) =
            scrutinee_place_builder.clone().try_upvars_resolved(self.tcx, self.typeck_results)
        {
            let scrutinee_place = scrutinee_builder.into_place(self.tcx, self.typeck_results);
            self.cfg.push_fake_read(block, source_info, cause_matched_place, scrutinee_place);
        }

        block.and(scrutinee_place_builder)
    }

    /// Create the initial `Candidate`s for a `match` expression.
    fn create_match_candidates<'pat>(
        &mut self,
        scrutinee: PlaceBuilder<'tcx>,
        arms: &'pat [ArmId],
    ) -> Vec<(&'pat Arm<'tcx>, Candidate<'pat, 'tcx>)>
    where
        'a: 'pat,
    {
        // Assemble a list of candidates: there is one candidate per pattern,
        // which means there may be more than one candidate *per arm*.
        arms.iter()
            .copied()
            .map(|arm| {
                let arm = &self.thir[arm];
                let arm_has_guard = arm.guard.is_some();
                let arm_candidate = Candidate::new(scrutinee.clone(), &arm.pattern, arm_has_guard);
                (arm, arm_candidate)
            })
            .collect()
    }

    /// Create the decision tree for the match expression, starting from `block`.
    ///
    /// Modifies `candidates` to store the bindings and type ascriptions for
    /// that candidate.
    ///
    /// Returns the places that need fake borrows because we bind or test them.
    fn lower_match_tree<'pat>(
        &mut self,
        block: BasicBlock,
        scrutinee_span: Span,
        match_start_span: Span,
        match_has_guard: bool,
        candidates: &mut [&mut Candidate<'pat, 'tcx>],
    ) -> Vec<(Place<'tcx>, Local)> {
        // The set of places that we are creating fake borrows of. If there are
        // no match guards then we don't need any fake borrows, so don't track
        // them.
        let mut fake_borrows = if match_has_guard { Some(FxHashSet::default()) } else { None };

        let mut otherwise = None;

        // This will generate code to test scrutinee_place and
        // branch to the appropriate arm block
        self.match_candidates(
            match_start_span,
            scrutinee_span,
            block,
            &mut otherwise,
            candidates,
            &mut fake_borrows,
        );

        if let Some(otherwise_block) = otherwise {
            // See the doc comment on `match_candidates` for why we may have an
            // otherwise block. Match checking will ensure this is actually
            // unreachable.
            let source_info = self.source_info(scrutinee_span);
            self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
        }

        // Link each leaf candidate to the `pre_binding_block` of the next one.
        let mut previous_candidate: Option<&mut Candidate<'_, '_>> = None;

        for candidate in candidates {
            candidate.visit_leaves(|leaf_candidate| {
                if let Some(ref mut prev) = previous_candidate {
                    prev.next_candidate_pre_binding_block = leaf_candidate.pre_binding_block;
                }
                previous_candidate = Some(leaf_candidate);
            });
        }

        if let Some(ref borrows) = fake_borrows {
            self.calculate_fake_borrows(borrows, scrutinee_span)
        } else {
            Vec::new()
        }
    }

    /// Lower the bindings, guards and arm bodies of a `match` expression.
    ///
    /// The decision tree should have already been created
    /// (by [Builder::lower_match_tree]).
    ///
    /// `outer_source_info` is the SourceInfo for the whole match.
    fn lower_match_arms(
        &mut self,
        destination: Place<'tcx>,
        scrutinee_place_builder: PlaceBuilder<'tcx>,
        scrutinee_span: Span,
        arm_candidates: Vec<(&'_ Arm<'tcx>, Candidate<'_, 'tcx>)>,
        outer_source_info: SourceInfo,
        fake_borrow_temps: Vec<(Place<'tcx>, Local)>,
    ) -> BlockAnd<()> {
        let arm_end_blocks: Vec<_> = arm_candidates
            .into_iter()
            .map(|(arm, candidate)| {
                debug!("lowering arm {:?}\ncandidate = {:?}", arm, candidate);

                let arm_source_info = self.source_info(arm.span);
                let arm_scope = (arm.scope, arm_source_info);
                let match_scope = self.local_scope();
                self.in_scope(arm_scope, arm.lint_level, |this| {
                    // `try_upvars_resolved` may fail if it is unable to resolve the given
                    // `PlaceBuilder` inside a closure. In this case, we don't want to include
                    // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
                    // if the only match arm is a wildcard (`_`).
                    // Example:
                    // ```
                    // let foo = (0, 1);
                    // let c = || {
                    //    match foo { _ => () };
                    // };
                    // ```
                    let mut opt_scrutinee_place: Option<(Option<&Place<'tcx>>, Span)> = None;
                    let scrutinee_place: Place<'tcx>;
                    if let Ok(scrutinee_builder) = scrutinee_place_builder
                        .clone()
                        .try_upvars_resolved(this.tcx, this.typeck_results)
                    {
                        scrutinee_place =
                            scrutinee_builder.into_place(this.tcx, this.typeck_results);
                        opt_scrutinee_place = Some((Some(&scrutinee_place), scrutinee_span));
                    }
                    let scope = this.declare_bindings(
                        None,
                        arm.span,
                        &arm.pattern,
                        ArmHasGuard(arm.guard.is_some()),
                        opt_scrutinee_place,
                    );

                    let arm_block = this.bind_pattern(
                        outer_source_info,
                        candidate,
                        arm.guard.as_ref(),
                        &fake_borrow_temps,
                        scrutinee_span,
                        Some(arm.span),
                        Some(arm.scope),
                        Some(match_scope),
                    );

                    if let Some(source_scope) = scope {
                        this.source_scope = source_scope;
                    }

                    this.expr_into_dest(destination, arm_block, &&this.thir[arm.body])
                })
            })
            .collect();

        // all the arm blocks will rejoin here
        let end_block = self.cfg.start_new_block();

        let end_brace = self.source_info(
            outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
        );
        for arm_block in arm_end_blocks {
            let block = &self.cfg.basic_blocks[arm_block.0];
            let last_location = block.statements.last().map(|s| s.source_info);

            self.cfg.goto(unpack!(arm_block), last_location.unwrap_or(end_brace), end_block);
        }

        self.source_scope = outer_source_info.scope;

        end_block.unit()
    }

    /// Binds the variables and ascribes types for a given `match` arm or
    /// `let` binding.
    ///
    /// Also check if the guard matches, if it's provided.
    /// `arm_scope` should be `Some` if and only if this is called for a
    /// `match` arm.
    fn bind_pattern(
        &mut self,
        outer_source_info: SourceInfo,
        candidate: Candidate<'_, 'tcx>,
        guard: Option<&Guard<'tcx>>,
        fake_borrow_temps: &Vec<(Place<'tcx>, Local)>,
        scrutinee_span: Span,
        arm_span: Option<Span>,
        arm_scope: Option<region::Scope>,
        match_scope: Option<region::Scope>,
    ) -> BasicBlock {
        if candidate.subcandidates.is_empty() {
            // Avoid generating another `BasicBlock` when we only have one
            // candidate.
            self.bind_and_guard_matched_candidate(
                candidate,
                &[],
                guard,
                fake_borrow_temps,
                scrutinee_span,
                arm_span,
                match_scope,
                true,
            )
        } else {
            // It's helpful to avoid scheduling drops multiple times to save
            // drop elaboration from having to clean up the extra drops.
            //
            // If we are in a `let` then we only schedule drops for the first
            // candidate.
            //
            // If we're in a `match` arm then we could have a case like so:
            //
            // Ok(x) | Err(x) if return => { /* ... */ }
            //
            // In this case we don't want a drop of `x` scheduled when we
            // return: it isn't bound by move until right before enter the arm.
            // To handle this we instead unschedule it's drop after each time
            // we lower the guard.
            let target_block = self.cfg.start_new_block();
            let mut schedule_drops = true;
            // We keep a stack of all of the bindings and type asciptions
            // from the parent candidates that we visit, that also need to
            // be bound for each candidate.
            traverse_candidate(
                candidate,
                &mut Vec::new(),
                &mut |leaf_candidate, parent_bindings| {
                    if let Some(arm_scope) = arm_scope {
                        self.clear_top_scope(arm_scope);
                    }
                    let binding_end = self.bind_and_guard_matched_candidate(
                        leaf_candidate,
                        parent_bindings,
                        guard,
                        &fake_borrow_temps,
                        scrutinee_span,
                        arm_span,
                        match_scope,
                        schedule_drops,
                    );
                    if arm_scope.is_none() {
                        schedule_drops = false;
                    }
                    self.cfg.goto(binding_end, outer_source_info, target_block);
                },
                |inner_candidate, parent_bindings| {
                    parent_bindings.push((inner_candidate.bindings, inner_candidate.ascriptions));
                    inner_candidate.subcandidates.into_iter()
                },
                |parent_bindings| {
                    parent_bindings.pop();
                },
            );

            target_block
        }
    }

    pub(super) fn expr_into_pattern(
        &mut self,
        mut block: BasicBlock,
        irrefutable_pat: Pat<'tcx>,
        initializer: &Expr<'tcx>,
    ) -> BlockAnd<()> {
        match *irrefutable_pat.kind {
            // Optimize the case of `let x = ...` to write directly into `x`
            PatKind::Binding { mode: BindingMode::ByValue, var, subpattern: None, .. } => {
                let place =
                    self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
                unpack!(block = self.expr_into_dest(place, block, initializer));

                // Inject a fake read, see comments on `FakeReadCause::ForLet`.
                let source_info = self.source_info(irrefutable_pat.span);
                self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);

                self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
                block.unit()
            }

            // Optimize the case of `let x: T = ...` to write directly
            // into `x` and then require that `T == typeof(x)`.
            //
            // Weirdly, this is needed to prevent the
            // `intrinsic-move-val.rs` test case from crashing. That
            // test works with uninitialized values in a rather
            // dubious way, so it may be that the test is kind of
            // broken.
            PatKind::AscribeUserType {
                subpattern:
                    Pat {
                        kind:
                            box PatKind::Binding {
                                mode: BindingMode::ByValue,
                                var,
                                subpattern: None,
                                ..
                            },
                        ..
                    },
                ascription:
                    thir::Ascription { user_ty: pat_ascription_ty, variance: _, user_ty_span },
            } => {
                let place =
                    self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
                unpack!(block = self.expr_into_dest(place, block, initializer));

                // Inject a fake read, see comments on `FakeReadCause::ForLet`.
                let pattern_source_info = self.source_info(irrefutable_pat.span);
                let cause_let = FakeReadCause::ForLet(None);
                self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);

                let ty_source_info = self.source_info(user_ty_span);
                let user_ty = pat_ascription_ty.user_ty(
                    &mut self.canonical_user_type_annotations,
                    place.ty(&self.local_decls, self.tcx).ty,
                    ty_source_info.span,
                );
                self.cfg.push(
                    block,
                    Statement {
                        source_info: ty_source_info,
                        kind: StatementKind::AscribeUserType(
                            Box::new((place, user_ty)),
                            // We always use invariant as the variance here. This is because the
                            // variance field from the ascription refers to the variance to use
                            // when applying the type to the value being matched, but this
                            // ascription applies rather to the type of the binding. e.g., in this
                            // example:
                            //
                            // ```
                            // let x: T = <expr>
                            // ```
                            //
                            // We are creating an ascription that defines the type of `x` to be
                            // exactly `T` (i.e., with invariance). The variance field, in
                            // contrast, is intended to be used to relate `T` to the type of
                            // `<expr>`.
                            ty::Variance::Invariant,
                        ),
                    },
                );

                self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
                block.unit()
            }

            _ => {
                let place_builder = unpack!(block = self.as_place_builder(block, initializer));
                self.place_into_pattern(block, irrefutable_pat, place_builder, true)
            }
        }
    }

    crate fn place_into_pattern(
        &mut self,
        block: BasicBlock,
        irrefutable_pat: Pat<'tcx>,
        initializer: PlaceBuilder<'tcx>,
        set_match_place: bool,
    ) -> BlockAnd<()> {
        let mut candidate = Candidate::new(initializer.clone(), &irrefutable_pat, false);
        let fake_borrow_temps = self.lower_match_tree(
            block,
            irrefutable_pat.span,
            irrefutable_pat.span,
            false,
            &mut [&mut candidate],
        );
        // For matches and function arguments, the place that is being matched
        // can be set when creating the variables. But the place for
        // let PATTERN = ... might not even exist until we do the assignment.
        // so we set it here instead.
        if set_match_place {
            let mut candidate_ref = &candidate;
            while let Some(next) = {
                for binding in &candidate_ref.bindings {
                    let local = self.var_local_id(binding.var_id, OutsideGuard);

                    if let Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
                        VarBindingForm { opt_match_place: Some((ref mut match_place, _)), .. },
                    )))) = self.local_decls[local].local_info
                    {
                        // `try_upvars_resolved` may fail if it is unable to resolve the given
                        // `PlaceBuilder` inside a closure. In this case, we don't want to include
                        // a scrutinee place. `scrutinee_place_builder` will fail for destructured
                        // assignments. This is because a closure only captures the precise places
                        // that it will read and as a result a closure may not capture the entire
                        // tuple/struct and rather have individual places that will be read in the
                        // final MIR.
                        // Example:
                        // ```
                        // let foo = (0, 1);
                        // let c = || {
                        //    let (v1, v2) = foo;
                        // };
                        // ```
                        if let Ok(match_pair_resolved) =
                            initializer.clone().try_upvars_resolved(self.tcx, self.typeck_results)
                        {
                            let place =
                                match_pair_resolved.into_place(self.tcx, self.typeck_results);
                            *match_place = Some(place);
                        }
                    } else {
                        bug!("Let binding to non-user variable.")
                    }
                }
                // All of the subcandidates should bind the same locals, so we
                // only visit the first one.
                candidate_ref.subcandidates.get(0)
            } {
                candidate_ref = next;
            }
        }

        self.bind_pattern(
            self.source_info(irrefutable_pat.span),
            candidate,
            None,
            &fake_borrow_temps,
            irrefutable_pat.span,
            None,
            None,
            None,
        )
        .unit()
    }

    /// Declares the bindings of the given patterns and returns the visibility
    /// scope for the bindings in these patterns, if such a scope had to be
    /// created. NOTE: Declaring the bindings should always be done in their
    /// drop scope.
    crate fn declare_bindings(
        &mut self,
        mut visibility_scope: Option<SourceScope>,
        scope_span: Span,
        pattern: &Pat<'tcx>,
        has_guard: ArmHasGuard,
        opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
    ) -> Option<SourceScope> {
        debug!("declare_bindings: pattern={:?}", pattern);
        self.visit_primary_bindings(
            &pattern,
            UserTypeProjections::none(),
            &mut |this, mutability, name, mode, var, span, ty, user_ty| {
                if visibility_scope.is_none() {
                    visibility_scope =
                        Some(this.new_source_scope(scope_span, LintLevel::Inherited, None));
                }
                let source_info = SourceInfo { span, scope: this.source_scope };
                let visibility_scope = visibility_scope.unwrap();
                this.declare_binding(
                    source_info,
                    visibility_scope,
                    mutability,
                    name,
                    mode,
                    var,
                    ty,
                    user_ty,
                    has_guard,
                    opt_match_place.map(|(x, y)| (x.cloned(), y)),
                    pattern.span,
                );
            },
        );
        visibility_scope
    }

    crate fn storage_live_binding(
        &mut self,
        block: BasicBlock,
        var: HirId,
        span: Span,
        for_guard: ForGuard,
        schedule_drop: bool,
    ) -> Place<'tcx> {
        let local_id = self.var_local_id(var, for_guard);
        let source_info = self.source_info(span);
        self.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(local_id) });
        let region_scope = self.region_scope_tree.var_scope(var.local_id);
        if schedule_drop {
            self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
        }
        Place::from(local_id)
    }

    crate fn schedule_drop_for_binding(&mut self, var: HirId, span: Span, for_guard: ForGuard) {
        let local_id = self.var_local_id(var, for_guard);
        let region_scope = self.region_scope_tree.var_scope(var.local_id);
        self.schedule_drop(span, region_scope, local_id, DropKind::Value);
    }

    /// Visit all of the primary bindings in a patterns, that is, visit the
    /// leftmost occurrence of each variable bound in a pattern. A variable
    /// will occur more than once in an or-pattern.
    pub(super) fn visit_primary_bindings(
        &mut self,
        pattern: &Pat<'tcx>,
        pattern_user_ty: UserTypeProjections,
        f: &mut impl FnMut(
            &mut Self,
            Mutability,
            Symbol,
            BindingMode,
            HirId,
            Span,
            Ty<'tcx>,
            UserTypeProjections,
        ),
    ) {
        debug!(
            "visit_primary_bindings: pattern={:?} pattern_user_ty={:?}",
            pattern, pattern_user_ty
        );
        match *pattern.kind {
            PatKind::Binding {
                mutability,
                name,
                mode,
                var,
                ty,
                ref subpattern,
                is_primary,
                ..
            } => {
                if is_primary {
                    f(self, mutability, name, mode, var, pattern.span, ty, pattern_user_ty.clone());
                }
                if let Some(subpattern) = subpattern.as_ref() {
                    self.visit_primary_bindings(subpattern, pattern_user_ty, f);
                }
            }

            PatKind::Array { ref prefix, ref slice, ref suffix }
            | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
                let from = u64::try_from(prefix.len()).unwrap();
                let to = u64::try_from(suffix.len()).unwrap();
                for subpattern in prefix {
                    self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
                }
                for subpattern in slice {
                    self.visit_primary_bindings(
                        subpattern,
                        pattern_user_ty.clone().subslice(from, to),
                        f,
                    );
                }
                for subpattern in suffix {
                    self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
                }
            }

            PatKind::Constant { .. } | PatKind::Range { .. } | PatKind::Wild => {}

            PatKind::Deref { ref subpattern } => {
                self.visit_primary_bindings(subpattern, pattern_user_ty.deref(), f);
            }

            PatKind::AscribeUserType {
                ref subpattern,
                ascription: thir::Ascription { ref user_ty, user_ty_span, variance: _ },
            } => {
                // This corresponds to something like
                //
                // ```
                // let A::<'a>(_): A<'static> = ...;
                // ```
                //
                // Note that the variance doesn't apply here, as we are tracking the effect
                // of `user_ty` on any bindings contained with subpattern.
                let annotation = CanonicalUserTypeAnnotation {
                    span: user_ty_span,
                    user_ty: user_ty.user_ty,
                    inferred_ty: subpattern.ty,
                };
                let projection = UserTypeProjection {
                    base: self.canonical_user_type_annotations.push(annotation),
                    projs: Vec::new(),
                };
                let subpattern_user_ty = pattern_user_ty.push_projection(&projection, user_ty_span);
                self.visit_primary_bindings(subpattern, subpattern_user_ty, f)
            }

            PatKind::Leaf { ref subpatterns } => {
                for subpattern in subpatterns {
                    let subpattern_user_ty = pattern_user_ty.clone().leaf(subpattern.field);
                    debug!("visit_primary_bindings: subpattern_user_ty={:?}", subpattern_user_ty);
                    self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
                }
            }

            PatKind::Variant { adt_def, substs: _, variant_index, ref subpatterns } => {
                for subpattern in subpatterns {
                    let subpattern_user_ty =
                        pattern_user_ty.clone().variant(adt_def, variant_index, subpattern.field);
                    self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
                }
            }
            PatKind::Or { ref pats } => {
                // In cases where we recover from errors the primary bindings
                // may not all be in the leftmost subpattern. For example in
                // `let (x | y) = ...`, the primary binding of `y` occurs in
                // the right subpattern
                for subpattern in pats {
                    self.visit_primary_bindings(subpattern, pattern_user_ty.clone(), f);
                }
            }
        }
    }
}

#[derive(Debug)]
struct Candidate<'pat, 'tcx> {
    /// [`Span`] of the original pattern that gave rise to this candidate.
    span: Span,

    /// Whether this `Candidate` has a guard.
    has_guard: bool,

    /// All of these must be satisfied...
    match_pairs: SmallVec<[MatchPair<'pat, 'tcx>; 1]>,

    /// ...these bindings established...
    bindings: Vec<Binding<'tcx>>,

    /// ...and these types asserted...
    ascriptions: Vec<Ascription<'tcx>>,

    /// ...and if this is non-empty, one of these subcandidates also has to match...
    subcandidates: Vec<Candidate<'pat, 'tcx>>,

    /// ...and the guard must be evaluated; if it's `false` then branch to `otherwise_block`.
    otherwise_block: Option<BasicBlock>,

    /// The block before the `bindings` have been established.
    pre_binding_block: Option<BasicBlock>,
    /// The pre-binding block of the next candidate.
    next_candidate_pre_binding_block: Option<BasicBlock>,
}

impl<'tcx, 'pat> Candidate<'pat, 'tcx> {
    fn new(place: PlaceBuilder<'tcx>, pattern: &'pat Pat<'tcx>, has_guard: bool) -> Self {
        Candidate {
            span: pattern.span,
            has_guard,
            match_pairs: smallvec![MatchPair { place, pattern }],
            bindings: Vec::new(),
            ascriptions: Vec::new(),
            subcandidates: Vec::new(),
            otherwise_block: None,
            pre_binding_block: None,
            next_candidate_pre_binding_block: None,
        }
    }

    /// Visit the leaf candidates (those with no subcandidates) contained in
    /// this candidate.
    fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
        traverse_candidate(
            self,
            &mut (),
            &mut move |c, _| visit_leaf(c),
            move |c, _| c.subcandidates.iter_mut(),
            |_| {},
        );
    }
}

/// A depth-first traversal of the `Candidate` and all of its recursive
/// subcandidates.
fn traverse_candidate<'pat, 'tcx: 'pat, C, T, I>(
    candidate: C,
    context: &mut T,
    visit_leaf: &mut impl FnMut(C, &mut T),
    get_children: impl Copy + Fn(C, &mut T) -> I,
    complete_children: impl Copy + Fn(&mut T),
) where
    C: Borrow<Candidate<'pat, 'tcx>>,
    I: Iterator<Item = C>,
{
    if candidate.borrow().subcandidates.is_empty() {
        visit_leaf(candidate, context)
    } else {
        for child in get_children(candidate, context) {
            traverse_candidate(child, context, visit_leaf, get_children, complete_children);
        }
        complete_children(context)
    }
}

#[derive(Clone, Debug)]
struct Binding<'tcx> {
    span: Span,
    source: Place<'tcx>,
    var_id: HirId,
    binding_mode: BindingMode,
}

/// Indicates that the type of `source` must be a subtype of the
/// user-given type `user_ty`; this is basically a no-op but can
/// influence region inference.
#[derive(Clone, Debug)]
struct Ascription<'tcx> {
    span: Span,
    source: Place<'tcx>,
    user_ty: PatTyProj<'tcx>,
    variance: ty::Variance,
}

#[derive(Clone, Debug)]
crate struct MatchPair<'pat, 'tcx> {
    // this place...
    place: PlaceBuilder<'tcx>,

    // ... must match this pattern.
    pattern: &'pat Pat<'tcx>,
}

/// See [`Test`] for more.
#[derive(Clone, Debug, PartialEq)]
enum TestKind<'tcx> {
    /// Test what enum variant a value is.
    Switch {
        /// The enum type being tested.
        adt_def: &'tcx ty::AdtDef,
        /// The set of variants that we should create a branch for. We also
        /// create an additional "otherwise" case.
        variants: BitSet<VariantIdx>,
    },

    /// Test what value an integer, `bool`, or `char` has.
    SwitchInt {
        /// The type of the value that we're testing.
        switch_ty: Ty<'tcx>,
        /// The (ordered) set of values that we test for.
        ///
        /// For integers and `char`s we create a branch to each of the values in
        /// `options`, as well as an "otherwise" branch for all other values, even
        /// in the (rare) case that `options` is exhaustive.
        ///
        /// For `bool` we always generate two edges, one for `true` and one for
        /// `false`.
        options: FxIndexMap<&'tcx ty::Const<'tcx>, u128>,
    },

    /// Test for equality with value, possibly after an unsizing coercion to
    /// `ty`,
    Eq {
        value: &'tcx ty::Const<'tcx>,
        // Integer types are handled by `SwitchInt`, and constants with ADT
        // types are converted back into patterns, so this can only be `&str`,
        // `&[T]`, `f32` or `f64`.
        ty: Ty<'tcx>,
    },

    /// Test whether the value falls within an inclusive or exclusive range
    Range(PatRange<'tcx>),

    /// Test that the length of the slice is equal to `len`.
    Len { len: u64, op: BinOp },
}

/// A test to perform to determine which [`Candidate`] matches a value.
///
/// [`Test`] is just the test to perform; it does not include the value
/// to be tested.
#[derive(Debug)]
crate struct Test<'tcx> {
    span: Span,
    kind: TestKind<'tcx>,
}

/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
/// a match arm has a guard expression attached to it.
#[derive(Copy, Clone, Debug)]
crate struct ArmHasGuard(crate bool);

///////////////////////////////////////////////////////////////////////////
// Main matching algorithm

impl<'a, 'tcx> Builder<'a, 'tcx> {
    /// The main match algorithm. It begins with a set of candidates
    /// `candidates` and has the job of generating code to determine
    /// which of these candidates, if any, is the correct one. The
    /// candidates are sorted such that the first item in the list
    /// has the highest priority. When a candidate is found to match
    /// the value, we will set and generate a branch to the appropriate
    /// pre-binding block.
    ///
    /// If we find that *NONE* of the candidates apply, we branch to the
    /// `otherwise_block`, setting it to `Some` if required. In principle, this
    /// means that the input list was not exhaustive, though at present we
    /// sometimes are not smart enough to recognize all exhaustive inputs.
    ///
    /// It might be surprising that the input can be non-exhaustive.
    /// Indeed, initially, it is not, because all matches are
    /// exhaustive in Rust. But during processing we sometimes divide
    /// up the list of candidates and recurse with a non-exhaustive
    /// list. This is important to keep the size of the generated code
    /// under control. See [`Builder::test_candidates`] for more details.
    ///
    /// If `fake_borrows` is `Some`, then places which need fake borrows
    /// will be added to it.
    ///
    /// For an example of a case where we set `otherwise_block`, even for an
    /// exhaustive match, consider:
    ///
    /// ```
    /// match x {
    ///     (true, true) => (),
    ///     (_, false) => (),
    ///     (false, true) => (),
    /// }
    /// ```
    ///
    /// For this match, we check if `x.0` matches `true` (for the first
    /// arm). If it doesn't match, we check `x.1`. If `x.1` is `true` we check
    /// if `x.0` matches `false` (for the third arm). In the (impossible at
    /// runtime) case when `x.0` is now `true`, we branch to
    /// `otherwise_block`.
    fn match_candidates<'pat>(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        start_block: BasicBlock,
        otherwise_block: &mut Option<BasicBlock>,
        candidates: &mut [&mut Candidate<'pat, 'tcx>],
        fake_borrows: &mut Option<FxHashSet<Place<'tcx>>>,
    ) {
        debug!(
            "matched_candidate(span={:?}, candidates={:?}, start_block={:?}, otherwise_block={:?})",
            span, candidates, start_block, otherwise_block,
        );

        // Start by simplifying candidates. Once this process is complete, all
        // the match pairs which remain require some form of test, whether it
        // be a switch or pattern comparison.
        let mut split_or_candidate = false;
        for candidate in &mut *candidates {
            split_or_candidate |= self.simplify_candidate(candidate);
        }

        ensure_sufficient_stack(|| {
            if split_or_candidate {
                // At least one of the candidates has been split into subcandidates.
                // We need to change the candidate list to include those.
                let mut new_candidates = Vec::new();

                for candidate in candidates {
                    candidate.visit_leaves(|leaf_candidate| new_candidates.push(leaf_candidate));
                }
                self.match_simplified_candidates(
                    span,
                    scrutinee_span,
                    start_block,
                    otherwise_block,
                    &mut *new_candidates,
                    fake_borrows,
                );
            } else {
                self.match_simplified_candidates(
                    span,
                    scrutinee_span,
                    start_block,
                    otherwise_block,
                    candidates,
                    fake_borrows,
                );
            }
        });
    }

    fn match_simplified_candidates(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        start_block: BasicBlock,
        otherwise_block: &mut Option<BasicBlock>,
        candidates: &mut [&mut Candidate<'_, 'tcx>],
        fake_borrows: &mut Option<FxHashSet<Place<'tcx>>>,
    ) {
        // The candidates are sorted by priority. Check to see whether the
        // higher priority candidates (and hence at the front of the slice)
        // have satisfied all their match pairs.
        let fully_matched = candidates.iter().take_while(|c| c.match_pairs.is_empty()).count();
        debug!("match_candidates: {:?} candidates fully matched", fully_matched);
        let (matched_candidates, unmatched_candidates) = candidates.split_at_mut(fully_matched);

        let block = if !matched_candidates.is_empty() {
            let otherwise_block =
                self.select_matched_candidates(matched_candidates, start_block, fake_borrows);

            if let Some(last_otherwise_block) = otherwise_block {
                last_otherwise_block
            } else {
                // Any remaining candidates are unreachable.
                if unmatched_candidates.is_empty() {
                    return;
                }
                self.cfg.start_new_block()
            }
        } else {
            start_block
        };

        // If there are no candidates that still need testing, we're
        // done. Since all matches are exhaustive, execution should
        // never reach this point.
        if unmatched_candidates.is_empty() {
            let source_info = self.source_info(span);
            if let Some(otherwise) = *otherwise_block {
                self.cfg.goto(block, source_info, otherwise);
            } else {
                *otherwise_block = Some(block);
            }
            return;
        }

        // Test for the remaining candidates.
        self.test_candidates_with_or(
            span,
            scrutinee_span,
            unmatched_candidates,
            block,
            otherwise_block,
            fake_borrows,
        );
    }

    /// Link up matched candidates.
    ///
    /// For example, if we have something like this:
    ///
    /// ```rust
    /// ...
    /// Some(x) if cond1 => ...
    /// Some(x) => ...
    /// Some(x) if cond2 => ...
    /// ...
    /// ```
    ///
    /// We generate real edges from:
    ///
    /// * `start_block` to the [pre-binding block] of the first pattern,
    /// * the [otherwise block] of the first pattern to the second pattern,
    /// * the [otherwise block] of the third pattern to a block with an
    ///   [`Unreachable` terminator](TerminatorKind::Unreachable).
    ///
    /// In addition, we add fake edges from the otherwise blocks to the
    /// pre-binding block of the next candidate in the original set of
    /// candidates.
    ///
    /// [pre-binding block]: Candidate::pre_binding_block
    /// [otherwise block]: Candidate::otherwise_block
    fn select_matched_candidates(
        &mut self,
        matched_candidates: &mut [&mut Candidate<'_, 'tcx>],
        start_block: BasicBlock,
        fake_borrows: &mut Option<FxHashSet<Place<'tcx>>>,
    ) -> Option<BasicBlock> {
        debug_assert!(
            !matched_candidates.is_empty(),
            "select_matched_candidates called with no candidates",
        );
        debug_assert!(
            matched_candidates.iter().all(|c| c.subcandidates.is_empty()),
            "subcandidates should be empty in select_matched_candidates",
        );

        // Insert a borrows of prefixes of places that are bound and are
        // behind a dereference projection.
        //
        // These borrows are taken to avoid situations like the following:
        //
        // match x[10] {
        //     _ if { x = &[0]; false } => (),
        //     y => (), // Out of bounds array access!
        // }
        //
        // match *x {
        //     // y is bound by reference in the guard and then by copy in the
        //     // arm, so y is 2 in the arm!
        //     y if { y == 1 && (x = &2) == () } => y,
        //     _ => 3,
        // }
        if let Some(fake_borrows) = fake_borrows {
            for Binding { source, .. } in
                matched_candidates.iter().flat_map(|candidate| &candidate.bindings)
            {
                if let Some(i) =
                    source.projection.iter().rposition(|elem| elem == ProjectionElem::Deref)
                {
                    let proj_base = &source.projection[..i];

                    fake_borrows.insert(Place {
                        local: source.local,
                        projection: self.tcx.intern_place_elems(proj_base),
                    });
                }
            }
        }

        let fully_matched_with_guard = matched_candidates
            .iter()
            .position(|c| !c.has_guard)
            .unwrap_or(matched_candidates.len() - 1);

        let (reachable_candidates, unreachable_candidates) =
            matched_candidates.split_at_mut(fully_matched_with_guard + 1);

        let mut next_prebinding = start_block;

        for candidate in reachable_candidates.iter_mut() {
            assert!(candidate.otherwise_block.is_none());
            assert!(candidate.pre_binding_block.is_none());
            candidate.pre_binding_block = Some(next_prebinding);
            if candidate.has_guard {
                // Create the otherwise block for this candidate, which is the
                // pre-binding block for the next candidate.
                next_prebinding = self.cfg.start_new_block();
                candidate.otherwise_block = Some(next_prebinding);
            }
        }

        debug!(
            "match_candidates: add pre_binding_blocks for unreachable {:?}",
            unreachable_candidates,
        );
        for candidate in unreachable_candidates {
            assert!(candidate.pre_binding_block.is_none());
            candidate.pre_binding_block = Some(self.cfg.start_new_block());
        }

        reachable_candidates.last_mut().unwrap().otherwise_block
    }

    /// Tests a candidate where there are only or-patterns left to test, or
    /// forwards to [Builder::test_candidates].
    ///
    /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
    /// so:
    ///
    /// ```text
    /// [ start ]
    ///      |
    /// [ match P, Q ]
    ///      |
    ///      +----------------------------------------+------------------------------------+
    ///      |                                        |                                    |
    ///      V                                        V                                    V
    /// [ P matches ]                           [ Q matches ]                        [ otherwise ]
    ///      |                                        |                                    |
    ///      V                                        V                                    |
    /// [ match R, S ]                          [ match R, S ]                             |
    ///      |                                        |                                    |
    ///      +--------------+------------+            +--------------+------------+        |
    ///      |              |            |            |              |            |        |
    ///      V              V            V            V              V            V        |
    /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ]  |
    ///      |              |            |            |              |            |        |
    ///      +--------------+------------|------------+--------------+            |        |
    ///      |                           |                                        |        |
    ///      |                           +----------------------------------------+--------+
    ///      |                           |
    ///      V                           V
    /// [ Success ]                 [ Failure ]
    /// ```
    ///
    /// In practice there are some complications:
    ///
    /// * If there's a guard, then the otherwise branch of the first match on
    ///   `R | S` goes to a test for whether `Q` matches, and the control flow
    ///   doesn't merge into a single success block until after the guard is
    ///   tested.
    /// * If neither `P` or `Q` has any bindings or type ascriptions and there
    ///   isn't a match guard, then we create a smaller CFG like:
    ///
    /// ```text
    ///     ...
    ///      +---------------+------------+
    ///      |               |            |
    /// [ P matches ] [ Q matches ] [ otherwise ]
    ///      |               |            |
    ///      +---------------+            |
    ///      |                           ...
    /// [ match R, S ]
    ///      |
    ///     ...
    /// ```
    fn test_candidates_with_or(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        candidates: &mut [&mut Candidate<'_, 'tcx>],
        block: BasicBlock,
        otherwise_block: &mut Option<BasicBlock>,
        fake_borrows: &mut Option<FxHashSet<Place<'tcx>>>,
    ) {
        let (first_candidate, remaining_candidates) = candidates.split_first_mut().unwrap();

        // All of the or-patterns have been sorted to the end, so if the first
        // pattern is an or-pattern we only have or-patterns.
        match *first_candidate.match_pairs[0].pattern.kind {
            PatKind::Or { .. } => (),
            _ => {
                self.test_candidates(
                    span,
                    scrutinee_span,
                    candidates,
                    block,
                    otherwise_block,
                    fake_borrows,
                );
                return;
            }
        }

        let match_pairs = mem::take(&mut first_candidate.match_pairs);
        first_candidate.pre_binding_block = Some(block);

        let mut otherwise = None;
        for match_pair in match_pairs {
            if let PatKind::Or { ref pats } = *match_pair.pattern.kind {
                let or_span = match_pair.pattern.span;
                let place = match_pair.place;

                first_candidate.visit_leaves(|leaf_candidate| {
                    self.test_or_pattern(
                        leaf_candidate,
                        &mut otherwise,
                        pats,
                        or_span,
                        place.clone(),
                        fake_borrows,
                    );
                });
            } else {
                bug!("Or-patterns should have been sorted to the end");
            }
        }

        let remainder_start = otherwise.unwrap_or_else(|| self.cfg.start_new_block());

        self.match_candidates(
            span,
            scrutinee_span,
            remainder_start,
            otherwise_block,
            remaining_candidates,
            fake_borrows,
        )
    }

    fn test_or_pattern<'pat>(
        &mut self,
        candidate: &mut Candidate<'pat, 'tcx>,
        otherwise: &mut Option<BasicBlock>,
        pats: &'pat [Pat<'tcx>],
        or_span: Span,
        place: PlaceBuilder<'tcx>,
        fake_borrows: &mut Option<FxHashSet<Place<'tcx>>>,
    ) {
        debug!("test_or_pattern:\ncandidate={:#?}\npats={:#?}", candidate, pats);
        let mut or_candidates: Vec<_> = pats
            .iter()
            .map(|pat| Candidate::new(place.clone(), pat, candidate.has_guard))
            .collect();
        let mut or_candidate_refs: Vec<_> = or_candidates.iter_mut().collect();
        let otherwise = if candidate.otherwise_block.is_some() {
            &mut candidate.otherwise_block
        } else {
            otherwise
        };
        self.match_candidates(
            or_span,
            or_span,
            candidate.pre_binding_block.unwrap(),
            otherwise,
            &mut or_candidate_refs,
            fake_borrows,
        );
        candidate.subcandidates = or_candidates;
        self.merge_trivial_subcandidates(candidate, self.source_info(or_span));
    }

    /// Try to merge all of the subcandidates of the given candidate into one.
    /// This avoids exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`.
    fn merge_trivial_subcandidates(
        &mut self,
        candidate: &mut Candidate<'_, 'tcx>,
        source_info: SourceInfo,
    ) {
        if candidate.subcandidates.is_empty() || candidate.has_guard {
            // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
            return;
        }

        let mut can_merge = true;

        // Not `Iterator::all` because we don't want to short-circuit.
        for subcandidate in &mut candidate.subcandidates {
            self.merge_trivial_subcandidates(subcandidate, source_info);

            // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
            can_merge &= subcandidate.subcandidates.is_empty()
                && subcandidate.bindings.is_empty()
                && subcandidate.ascriptions.is_empty();
        }

        if can_merge {
            let any_matches = self.cfg.start_new_block();
            for subcandidate in mem::take(&mut candidate.subcandidates) {
                let or_block = subcandidate.pre_binding_block.unwrap();
                self.cfg.goto(or_block, source_info, any_matches);
            }
            candidate.pre_binding_block = Some(any_matches);
        }
    }

    /// This is the most subtle part of the matching algorithm. At
    /// this point, the input candidates have been fully simplified,
    /// and so we know that all remaining match-pairs require some
    /// sort of test. To decide what test to perform, we take the highest
    /// priority candidate (the first one in the list, as of January 2021)
    /// and extract the first match-pair from the list. From this we decide
    /// what kind of test is needed using [`Builder::test`], defined in the
    /// [`test` module](mod@test).
    ///
    /// *Note:* taking the first match pair is somewhat arbitrary, and
    /// we might do better here by choosing more carefully what to
    /// test.
    ///
    /// For example, consider the following possible match-pairs:
    ///
    /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
    /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
    /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
    /// 4. etc.
    ///
    /// [`Switch`]: TestKind::Switch
    /// [`SwitchInt`]: TestKind::SwitchInt
    /// [`Range`]: TestKind::Range
    ///
    /// Once we know what sort of test we are going to perform, this
    /// test may also help us winnow down our candidates. So we walk over
    /// the candidates (from high to low priority) and check. This
    /// gives us, for each outcome of the test, a transformed list of
    /// candidates. For example, if we are testing `x.0`'s variant,
    /// and we have a candidate `(x.0 @ Some(v), x.1 @ 22)`,
    /// then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)`.
    /// Note that the first match-pair is now simpler (and, in fact, irrefutable).
    ///
    /// But there may also be candidates that the test just doesn't
    /// apply to. The classical example involves wildcards:
    ///
    /// ```
    /// # let (x, y, z) = (true, true, true);
    /// match (x, y, z) {
    ///     (true, _, true) => true,    // (0)
    ///     (_, true, _) => true,       // (1)
    ///     (false, false, _) => false, // (2)
    ///     (true, _, false) => false,  // (3)
    /// }
    /// ```
    ///
    /// In that case, after we test on `x`, there are 2 overlapping candidate
    /// sets:
    ///
    /// - If the outcome is that `x` is true, candidates 0, 1, and 3
    /// - If the outcome is that `x` is false, candidates 1 and 2
    ///
    /// Here, the traditional "decision tree" method would generate 2
    /// separate code-paths for the 2 separate cases.
    ///
    /// In some cases, this duplication can create an exponential amount of
    /// code. This is most easily seen by noticing that this method terminates
    /// with precisely the reachable arms being reachable - but that problem
    /// is trivially NP-complete:
    ///
    /// ```rust
    ///     match (var0, var1, var2, var3, ...) {
    ///         (true, _, _, false, true, ...) => false,
    ///         (_, true, true, false, _, ...) => false,
    ///         (false, _, false, false, _, ...) => false,
    ///         ...
    ///         _ => true
    ///     }
    /// ```
    ///
    /// Here the last arm is reachable only if there is an assignment to
    /// the variables that does not match any of the literals. Therefore,
    /// compilation would take an exponential amount of time in some cases.
    ///
    /// That kind of exponential worst-case might not occur in practice, but
    /// our simplistic treatment of constants and guards would make it occur
    /// in very common situations - for example [#29740]:
    ///
    /// ```rust
    /// match x {
    ///     "foo" if foo_guard => ...,
    ///     "bar" if bar_guard => ...,
    ///     "baz" if baz_guard => ...,
    ///     ...
    /// }
    /// ```
    ///
    /// [#29740]: https://github.com/rust-lang/rust/issues/29740
    ///
    /// Here we first test the match-pair `x @ "foo"`, which is an [`Eq` test].
    ///
    /// [`Eq` test]: TestKind::Eq
    ///
    /// It might seem that we would end up with 2 disjoint candidate
    /// sets, consisting of the first candidate or the other two, but our
    /// algorithm doesn't reason about `"foo"` being distinct from the other
    /// constants; it considers the latter arms to potentially match after
    /// both outcomes, which obviously leads to an exponential number
    /// of tests.
    ///
    /// To avoid these kinds of problems, our algorithm tries to ensure
    /// the amount of generated tests is linear. When we do a k-way test,
    /// we return an additional "unmatched" set alongside the obvious `k`
    /// sets. When we encounter a candidate that would be present in more
    /// than one of the sets, we put it and all candidates below it into the
    /// "unmatched" set. This ensures these `k+1` sets are disjoint.
    ///
    /// After we perform our test, we branch into the appropriate candidate
    /// set and recurse with `match_candidates`. These sub-matches are
    /// obviously non-exhaustive - as we discarded our otherwise set - so
    /// we set their continuation to do `match_candidates` on the
    /// "unmatched" set (which is again non-exhaustive).
    ///
    /// If you apply this to the above test, you basically wind up
    /// with an if-else-if chain, testing each candidate in turn,
    /// which is precisely what we want.
    ///
    /// In addition to avoiding exponential-time blowups, this algorithm
    /// also has the nice property that each guard and arm is only generated
    /// once.
    fn test_candidates<'pat, 'b, 'c>(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        mut candidates: &'b mut [&'c mut Candidate<'pat, 'tcx>],
        block: BasicBlock,
        otherwise_block: &mut Option<BasicBlock>,
        fake_borrows: &mut Option<FxHashSet<Place<'tcx>>>,
    ) {
        // extract the match-pair from the highest priority candidate
        let match_pair = &candidates.first().unwrap().match_pairs[0];
        let mut test = self.test(match_pair);
        let match_place = match_pair.place.clone();

        // most of the time, the test to perform is simply a function
        // of the main candidate; but for a test like SwitchInt, we
        // may want to add cases based on the candidates that are
        // available
        match test.kind {
            TestKind::SwitchInt { switch_ty, ref mut options } => {
                for candidate in candidates.iter() {
                    if !self.add_cases_to_switch(&match_place, candidate, switch_ty, options) {
                        break;
                    }
                }
            }
            TestKind::Switch { adt_def: _, ref mut variants } => {
                for candidate in candidates.iter() {
                    if !self.add_variants_to_switch(&match_place, candidate, variants) {
                        break;
                    }
                }
            }
            _ => {}
        }

        // Insert a Shallow borrow of any places that is switched on.
        if let Some(fb) = fake_borrows {
            if let Ok(match_place_resolved) =
                match_place.clone().try_upvars_resolved(self.tcx, self.typeck_results)
            {
                let resolved_place = match_place_resolved.into_place(self.tcx, self.typeck_results);
                fb.insert(resolved_place);
            }
        }

        // perform the test, branching to one of N blocks. For each of
        // those N possible outcomes, create a (initially empty)
        // vector of candidates. Those are the candidates that still
        // apply if the test has that particular outcome.
        debug!("match_candidates: test={:?} match_pair={:?}", test, match_pair);
        let mut target_candidates: Vec<Vec<&mut Candidate<'pat, 'tcx>>> = vec![];
        target_candidates.resize_with(test.targets(), Default::default);

        let total_candidate_count = candidates.len();

        // Sort the candidates into the appropriate vector in
        // `target_candidates`. Note that at some point we may
        // encounter a candidate where the test is not relevant; at
        // that point, we stop sorting.
        while let Some(candidate) = candidates.first_mut() {
            if let Some(idx) = self.sort_candidate(&match_place.clone(), &test, candidate) {
                let (candidate, rest) = candidates.split_first_mut().unwrap();
                target_candidates[idx].push(candidate);
                candidates = rest;
            } else {
                break;
            }
        }
        // at least the first candidate ought to be tested
        assert!(total_candidate_count > candidates.len());
        debug!("tested_candidates: {}", total_candidate_count - candidates.len());
        debug!("untested_candidates: {}", candidates.len());

        // HACK(matthewjasper) This is a closure so that we can let the test
        // create its blocks before the rest of the match. This currently
        // improves the speed of llvm when optimizing long string literal
        // matches
        let make_target_blocks = move |this: &mut Self| -> Vec<BasicBlock> {
            // The block that we should branch to if none of the
            // `target_candidates` match. This is either the block where we
            // start matching the untested candidates if there are any,
            // otherwise it's the `otherwise_block`.
            let remainder_start = &mut None;
            let remainder_start =
                if candidates.is_empty() { &mut *otherwise_block } else { remainder_start };

            // For each outcome of test, process the candidates that still
            // apply. Collect a list of blocks where control flow will
            // branch if one of the `target_candidate` sets is not
            // exhaustive.
            let target_blocks: Vec<_> = target_candidates
                .into_iter()
                .map(|mut candidates| {
                    if !candidates.is_empty() {
                        let candidate_start = this.cfg.start_new_block();
                        this.match_candidates(
                            span,
                            scrutinee_span,
                            candidate_start,
                            remainder_start,
                            &mut *candidates,
                            fake_borrows,
                        );
                        candidate_start
                    } else {
                        *remainder_start.get_or_insert_with(|| this.cfg.start_new_block())
                    }
                })
                .collect();

            if !candidates.is_empty() {
                let remainder_start = remainder_start.unwrap_or_else(|| this.cfg.start_new_block());
                this.match_candidates(
                    span,
                    scrutinee_span,
                    remainder_start,
                    otherwise_block,
                    candidates,
                    fake_borrows,
                );
            };

            target_blocks
        };

        self.perform_test(span, scrutinee_span, block, match_place, &test, make_target_blocks);
    }

    /// Determine the fake borrows that are needed from a set of places that
    /// have to be stable across match guards.
    ///
    /// Returns a list of places that need a fake borrow and the temporary
    /// that's used to store the fake borrow.
    ///
    /// Match exhaustiveness checking is not able to handle the case where the
    /// place being matched on is mutated in the guards. We add "fake borrows"
    /// to the guards that prevent any mutation of the place being matched.
    /// There are a some subtleties:
    ///
    /// 1. Borrowing `*x` doesn't prevent assigning to `x`. If `x` is a shared
    ///    reference, the borrow isn't even tracked. As such we have to add fake
    ///    borrows of any prefixes of a place
    /// 2. We don't want `match x { _ => (), }` to conflict with mutable
    ///    borrows of `x`, so we only add fake borrows for places which are
    ///    bound or tested by the match.
    /// 3. We don't want the fake borrows to conflict with `ref mut` bindings,
    ///    so we use a special BorrowKind for them.
    /// 4. The fake borrows may be of places in inactive variants, so it would
    ///    be UB to generate code for them. They therefore have to be removed
    ///    by a MIR pass run after borrow checking.
    fn calculate_fake_borrows<'b>(
        &mut self,
        fake_borrows: &'b FxHashSet<Place<'tcx>>,
        temp_span: Span,
    ) -> Vec<(Place<'tcx>, Local)> {
        let tcx = self.tcx;

        debug!("add_fake_borrows fake_borrows = {:?}", fake_borrows);

        let mut all_fake_borrows = Vec::with_capacity(fake_borrows.len());

        // Insert a Shallow borrow of the prefixes of any fake borrows.
        for place in fake_borrows {
            let mut cursor = place.projection.as_ref();
            while let [proj_base @ .., elem] = cursor {
                cursor = proj_base;

                if let ProjectionElem::Deref = elem {
                    // Insert a shallow borrow after a deref. For other
                    // projections the borrow of prefix_cursor will
                    // conflict with any mutation of base.
                    all_fake_borrows.push(PlaceRef { local: place.local, projection: proj_base });
                }
            }

            all_fake_borrows.push(place.as_ref());
        }

        // Deduplicate and ensure a deterministic order.
        all_fake_borrows.sort();
        all_fake_borrows.dedup();

        debug!("add_fake_borrows all_fake_borrows = {:?}", all_fake_borrows);

        all_fake_borrows
            .into_iter()
            .map(|matched_place_ref| {
                let matched_place = Place {
                    local: matched_place_ref.local,
                    projection: tcx.intern_place_elems(matched_place_ref.projection),
                };
                let fake_borrow_deref_ty = matched_place.ty(&self.local_decls, tcx).ty;
                let fake_borrow_ty = tcx.mk_imm_ref(tcx.lifetimes.re_erased, fake_borrow_deref_ty);
                let fake_borrow_temp =
                    self.local_decls.push(LocalDecl::new(fake_borrow_ty, temp_span));

                (matched_place, fake_borrow_temp)
            })
            .collect()
    }
}

///////////////////////////////////////////////////////////////////////////
// Pat binding - used for `let` and function parameters as well.

impl<'a, 'tcx> Builder<'a, 'tcx> {
    crate fn lower_let_expr(
        &mut self,
        mut block: BasicBlock,
        expr: &Expr<'tcx>,
        pat: &Pat<'tcx>,
        else_target: region::Scope,
        span: Span,
    ) -> BlockAnd<()> {
        let expr_span = expr.span;
        let expr_place_builder = unpack!(block = self.lower_scrutinee(block, expr, expr_span));
        let mut guard_candidate = Candidate::new(expr_place_builder.clone(), &pat, false);
        let wildcard = Pat::wildcard_from_ty(pat.ty);
        let mut otherwise_candidate = Candidate::new(expr_place_builder.clone(), &wildcard, false);
        let fake_borrow_temps = self.lower_match_tree(
            block,
            pat.span,
            pat.span,
            false,
            &mut [&mut guard_candidate, &mut otherwise_candidate],
        );
        let mut opt_expr_place: Option<(Option<&Place<'tcx>>, Span)> = None;
        let expr_place: Place<'tcx>;
        if let Ok(expr_builder) =
            expr_place_builder.try_upvars_resolved(self.tcx, self.typeck_results)
        {
            expr_place = expr_builder.into_place(self.tcx, self.typeck_results);
            opt_expr_place = Some((Some(&expr_place), expr_span));
        }
        let otherwise_post_guard_block = otherwise_candidate.pre_binding_block.unwrap();
        self.break_for_else(otherwise_post_guard_block, else_target, self.source_info(expr_span));

        self.declare_bindings(None, pat.span.to(span), pat, ArmHasGuard(false), opt_expr_place);
        let post_guard_block = self.bind_pattern(
            self.source_info(pat.span),
            guard_candidate,
            None,
            &fake_borrow_temps,
            expr.span,
            None,
            None,
            None,
        );

        post_guard_block.unit()
    }

    /// Initializes each of the bindings from the candidate by
    /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
    /// any, and then branches to the arm. Returns the block for the case where
    /// the guard succeeds.
    ///
    /// Note: we do not check earlier that if there is a guard,
    /// there cannot be move bindings. We avoid a use-after-move by only
    /// moving the binding once the guard has evaluated to true (see below).
    fn bind_and_guard_matched_candidate<'pat>(
        &mut self,
        candidate: Candidate<'pat, 'tcx>,
        parent_bindings: &[(Vec<Binding<'tcx>>, Vec<Ascription<'tcx>>)],
        guard: Option<&Guard<'tcx>>,
        fake_borrows: &Vec<(Place<'tcx>, Local)>,
        scrutinee_span: Span,
        arm_span: Option<Span>,
        match_scope: Option<region::Scope>,
        schedule_drops: bool,
    ) -> BasicBlock {
        debug!("bind_and_guard_matched_candidate(candidate={:?})", candidate);

        debug_assert!(candidate.match_pairs.is_empty());

        let candidate_source_info = self.source_info(candidate.span);

        let mut block = candidate.pre_binding_block.unwrap();

        if candidate.next_candidate_pre_binding_block.is_some() {
            let fresh_block = self.cfg.start_new_block();
            self.false_edges(
                block,
                fresh_block,
                candidate.next_candidate_pre_binding_block,
                candidate_source_info,
            );
            block = fresh_block;
        }

        self.ascribe_types(
            block,
            parent_bindings
                .iter()
                .flat_map(|(_, ascriptions)| ascriptions)
                .chain(&candidate.ascriptions),
        );

        // rust-lang/rust#27282: The `autoref` business deserves some
        // explanation here.
        //
        // The intent of the `autoref` flag is that when it is true,
        // then any pattern bindings of type T will map to a `&T`
        // within the context of the guard expression, but will
        // continue to map to a `T` in the context of the arm body. To
        // avoid surfacing this distinction in the user source code
        // (which would be a severe change to the language and require
        // far more revision to the compiler), when `autoref` is true,
        // then any occurrence of the identifier in the guard
        // expression will automatically get a deref op applied to it.
        //
        // So an input like:
        //
        // ```
        // let place = Foo::new();
        // match place { foo if inspect(foo)
        //     => feed(foo), ...  }
        // ```
        //
        // will be treated as if it were really something like:
        //
        // ```
        // let place = Foo::new();
        // match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
        //     => { let tmp2 = place; feed(tmp2) }, ... }
        //
        // And an input like:
        //
        // ```
        // let place = Foo::new();
        // match place { ref mut foo if inspect(foo)
        //     => feed(foo), ...  }
        // ```
        //
        // will be treated as if it were really something like:
        //
        // ```
        // let place = Foo::new();
        // match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
        //     => { let tmp2 = &mut place; feed(tmp2) }, ... }
        // ```
        //
        // In short, any pattern binding will always look like *some*
        // kind of `&T` within the guard at least in terms of how the
        // MIR-borrowck views it, and this will ensure that guard
        // expressions cannot mutate their the match inputs via such
        // bindings. (It also ensures that guard expressions can at
        // most *copy* values from such bindings; non-Copy things
        // cannot be moved via pattern bindings in guard expressions.)
        //
        // ----
        //
        // Implementation notes (under assumption `autoref` is true).
        //
        // To encode the distinction above, we must inject the
        // temporaries `tmp1` and `tmp2`.
        //
        // There are two cases of interest: binding by-value, and binding by-ref.
        //
        // 1. Binding by-value: Things are simple.
        //
        //    * Establishing `tmp1` creates a reference into the
        //      matched place. This code is emitted by
        //      bind_matched_candidate_for_guard.
        //
        //    * `tmp2` is only initialized "lazily", after we have
        //      checked the guard. Thus, the code that can trigger
        //      moves out of the candidate can only fire after the
        //      guard evaluated to true. This initialization code is
        //      emitted by bind_matched_candidate_for_arm.
        //
        // 2. Binding by-reference: Things are tricky.
        //
        //    * Here, the guard expression wants a `&&` or `&&mut`
        //      into the original input. This means we need to borrow
        //      the reference that we create for the arm.
        //    * So we eagerly create the reference for the arm and then take a
        //      reference to that.
        if let Some(guard) = guard {
            let tcx = self.tcx;
            let bindings = parent_bindings
                .iter()
                .flat_map(|(bindings, _)| bindings)
                .chain(&candidate.bindings);

            self.bind_matched_candidate_for_guard(block, schedule_drops, bindings.clone());
            let guard_frame = GuardFrame {
                locals: bindings.map(|b| GuardFrameLocal::new(b.var_id, b.binding_mode)).collect(),
            };
            debug!("entering guard building context: {:?}", guard_frame);
            self.guard_context.push(guard_frame);

            let re_erased = tcx.lifetimes.re_erased;
            let scrutinee_source_info = self.source_info(scrutinee_span);
            for &(place, temp) in fake_borrows {
                let borrow = Rvalue::Ref(re_erased, BorrowKind::Shallow, place);
                self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
            }

            let arm_span = arm_span.unwrap();
            let match_scope = match_scope.unwrap();
            let mut guard_span = rustc_span::DUMMY_SP;

            let (post_guard_block, otherwise_post_guard_block) =
                self.in_if_then_scope(match_scope, |this| match *guard {
                    Guard::If(e) => {
                        let e = &this.thir[e];
                        guard_span = e.span;
                        this.then_else_break(block, e, None, match_scope, arm_span)
                    }
                    Guard::IfLet(ref pat, scrutinee) => {
                        let s = &this.thir[scrutinee];
                        guard_span = s.span;
                        this.lower_let_expr(block, s, pat, match_scope, arm_span)
                    }
                });

            let source_info = self.source_info(guard_span);
            let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
            let guard_frame = self.guard_context.pop().unwrap();
            debug!("Exiting guard building context with locals: {:?}", guard_frame);

            for &(_, temp) in fake_borrows {
                let cause = FakeReadCause::ForMatchGuard;
                self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
            }

            let otherwise_block = candidate.otherwise_block.unwrap_or_else(|| {
                let unreachable = self.cfg.start_new_block();
                self.cfg.terminate(unreachable, source_info, TerminatorKind::Unreachable);
                unreachable
            });
            self.false_edges(
                otherwise_post_guard_block,
                otherwise_block,
                candidate.next_candidate_pre_binding_block,
                source_info,
            );

            // We want to ensure that the matched candidates are bound
            // after we have confirmed this candidate *and* any
            // associated guard; Binding them on `block` is too soon,
            // because that would be before we've checked the result
            // from the guard.
            //
            // But binding them on the arm is *too late*, because
            // then all of the candidates for a single arm would be
            // bound in the same place, that would cause a case like:
            //
            // ```rust
            // match (30, 2) {
            //     (mut x, 1) | (2, mut x) if { true } => { ... }
            //     ...                                 // ^^^^^^^ (this is `arm_block`)
            // }
            // ```
            //
            // would yield an `arm_block` something like:
            //
            // ```
            // StorageLive(_4);        // _4 is `x`
            // _4 = &mut (_1.0: i32);  // this is handling `(mut x, 1)` case
            // _4 = &mut (_1.1: i32);  // this is handling `(2, mut x)` case
            // ```
            //
            // and that is clearly not correct.
            let by_value_bindings = parent_bindings
                .iter()
                .flat_map(|(bindings, _)| bindings)
                .chain(&candidate.bindings)
                .filter(|binding| matches!(binding.binding_mode, BindingMode::ByValue));
            // Read all of the by reference bindings to ensure that the
            // place they refer to can't be modified by the guard.
            for binding in by_value_bindings.clone() {
                let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
                let cause = FakeReadCause::ForGuardBinding;
                self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
            }
            assert!(schedule_drops, "patterns with guards must schedule drops");
            self.bind_matched_candidate_for_arm_body(post_guard_block, true, by_value_bindings);

            post_guard_block
        } else {
            // (Here, it is not too early to bind the matched
            // candidate on `block`, because there is no guard result
            // that we have to inspect before we bind them.)
            self.bind_matched_candidate_for_arm_body(
                block,
                schedule_drops,
                parent_bindings
                    .iter()
                    .flat_map(|(bindings, _)| bindings)
                    .chain(&candidate.bindings),
            );
            block
        }
    }

    /// Append `AscribeUserType` statements onto the end of `block`
    /// for each ascription
    fn ascribe_types<'b>(
        &mut self,
        block: BasicBlock,
        ascriptions: impl IntoIterator<Item = &'b Ascription<'tcx>>,
    ) where
        'tcx: 'b,
    {
        for ascription in ascriptions {
            let source_info = self.source_info(ascription.span);

            debug!(
                "adding user ascription at span {:?} of place {:?} and {:?}",
                source_info.span, ascription.source, ascription.user_ty,
            );

            let user_ty = ascription.user_ty.user_ty(
                &mut self.canonical_user_type_annotations,
                ascription.source.ty(&self.local_decls, self.tcx).ty,
                source_info.span,
            );
            self.cfg.push(
                block,
                Statement {
                    source_info,
                    kind: StatementKind::AscribeUserType(
                        Box::new((ascription.source, user_ty)),
                        ascription.variance,
                    ),
                },
            );
        }
    }

    fn bind_matched_candidate_for_guard<'b>(
        &mut self,
        block: BasicBlock,
        schedule_drops: bool,
        bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
    ) where
        'tcx: 'b,
    {
        debug!("bind_matched_candidate_for_guard(block={:?})", block);

        // Assign each of the bindings. Since we are binding for a
        // guard expression, this will never trigger moves out of the
        // candidate.
        let re_erased = self.tcx.lifetimes.re_erased;
        for binding in bindings {
            debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
            let source_info = self.source_info(binding.span);

            // For each pattern ident P of type T, `ref_for_guard` is
            // a reference R: &T pointing to the location matched by
            // the pattern, and every occurrence of P within a guard
            // denotes *R.
            let ref_for_guard = self.storage_live_binding(
                block,
                binding.var_id,
                binding.span,
                RefWithinGuard,
                schedule_drops,
            );
            match binding.binding_mode {
                BindingMode::ByValue => {
                    let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
                    self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
                }
                BindingMode::ByRef(borrow_kind) => {
                    let value_for_arm = self.storage_live_binding(
                        block,
                        binding.var_id,
                        binding.span,
                        OutsideGuard,
                        schedule_drops,
                    );

                    let rvalue = Rvalue::Ref(re_erased, borrow_kind, binding.source);
                    self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
                    let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
                    self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
                }
            }
        }
    }

    fn bind_matched_candidate_for_arm_body<'b>(
        &mut self,
        block: BasicBlock,
        schedule_drops: bool,
        bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
    ) where
        'tcx: 'b,
    {
        debug!("bind_matched_candidate_for_arm_body(block={:?})", block);

        let re_erased = self.tcx.lifetimes.re_erased;
        // Assign each of the bindings. This may trigger moves out of the candidate.
        for binding in bindings {
            let source_info = self.source_info(binding.span);
            let local = self.storage_live_binding(
                block,
                binding.var_id,
                binding.span,
                OutsideGuard,
                schedule_drops,
            );
            if schedule_drops {
                self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
            }
            let rvalue = match binding.binding_mode {
                BindingMode::ByValue => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
                BindingMode::ByRef(borrow_kind) => {
                    Rvalue::Ref(re_erased, borrow_kind, binding.source)
                }
            };
            self.cfg.push_assign(block, source_info, local, rvalue);
        }
    }

    /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
    /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
    /// first local is a binding for occurrences of `var` in the guard, which
    /// will have type `&T`. The second local is a binding for occurrences of
    /// `var` in the arm body, which will have type `T`.
    fn declare_binding(
        &mut self,
        source_info: SourceInfo,
        visibility_scope: SourceScope,
        mutability: Mutability,
        name: Symbol,
        mode: BindingMode,
        var_id: HirId,
        var_ty: Ty<'tcx>,
        user_ty: UserTypeProjections,
        has_guard: ArmHasGuard,
        opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
        pat_span: Span,
    ) {
        debug!(
            "declare_binding(var_id={:?}, name={:?}, mode={:?}, var_ty={:?}, \
             visibility_scope={:?}, source_info={:?})",
            var_id, name, mode, var_ty, visibility_scope, source_info
        );

        let tcx = self.tcx;
        let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
        let binding_mode = match mode {
            BindingMode::ByValue => ty::BindingMode::BindByValue(mutability),
            BindingMode::ByRef(_) => ty::BindingMode::BindByReference(mutability),
        };
        debug!("declare_binding: user_ty={:?}", user_ty);
        let local = LocalDecl::<'tcx> {
            mutability,
            ty: var_ty,
            user_ty: if user_ty.is_empty() { None } else { Some(Box::new(user_ty)) },
            source_info,
            internal: false,
            is_block_tail: None,
            local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
                VarBindingForm {
                    binding_mode,
                    // hypothetically, `visit_primary_bindings` could try to unzip
                    // an outermost hir::Ty as we descend, matching up
                    // idents in pat; but complex w/ unclear UI payoff.
                    // Instead, just abandon providing diagnostic info.
                    opt_ty_info: None,
                    opt_match_place,
                    pat_span,
                },
            ))))),
        };
        let for_arm_body = self.local_decls.push(local);
        self.var_debug_info.push(VarDebugInfo {
            name,
            source_info: debug_source_info,
            value: VarDebugInfoContents::Place(for_arm_body.into()),
        });
        let locals = if has_guard.0 {
            let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
                // This variable isn't mutated but has a name, so has to be
                // immutable to avoid the unused mut lint.
                mutability: Mutability::Not,
                ty: tcx.mk_imm_ref(tcx.lifetimes.re_erased, var_ty),
                user_ty: None,
                source_info,
                internal: false,
                is_block_tail: None,
                local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(
                    BindingForm::RefForGuard,
                )))),
            });
            self.var_debug_info.push(VarDebugInfo {
                name,
                source_info: debug_source_info,
                value: VarDebugInfoContents::Place(ref_for_guard.into()),
            });
            LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
        } else {
            LocalsForNode::One(for_arm_body)
        };
        debug!("declare_binding: vars={:?}", locals);
        self.var_indices.insert(var_id, locals);
    }
}