1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
//! Conversion from AST representation of types to the `ty.rs` representation.
//! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
//! instance of `AstConv`.

mod errors;
mod generics;

use crate::bounds::Bounds;
use crate::collect::PlaceholderHirTyCollector;
use crate::errors::{
    AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
    TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
};
use crate::middle::resolve_lifetime as rl;
use crate::require_c_abi_if_c_variadic;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{struct_span_err, Applicability, ErrorReported, FatalError};
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{walk_generics, Visitor as _};
use rustc_hir::lang_items::LangItem;
use rustc_hir::{GenericArg, GenericArgs};
use rustc_middle::ty::subst::{self, GenericArgKind, InternalSubsts, Subst, SubstsRef};
use rustc_middle::ty::GenericParamDefKind;
use rustc_middle::ty::{self, Const, DefIdTree, Ty, TyCtxt, TypeFoldable};
use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::symbol::{Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_target::spec::abi;
use rustc_trait_selection::traits;
use rustc_trait_selection::traits::astconv_object_safety_violations;
use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
use rustc_trait_selection::traits::wf::object_region_bounds;

use smallvec::SmallVec;
use std::array;
use std::collections::BTreeSet;
use std::slice;

#[derive(Debug)]
pub struct PathSeg(pub DefId, pub usize);

pub trait AstConv<'tcx> {
    fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;

    fn item_def_id(&self) -> Option<DefId>;

    /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
    /// is a type parameter `X` with the given id `def_id` and T
    /// matches `assoc_name`. This is a subset of the full set of
    /// predicates.
    ///
    /// This is used for one specific purpose: resolving "short-hand"
    /// associated type references like `T::Item`. In principle, we
    /// would do that by first getting the full set of predicates in
    /// scope and then filtering down to find those that apply to `T`,
    /// but this can lead to cycle errors. The problem is that we have
    /// to do this resolution *in order to create the predicates in
    /// the first place*. Hence, we have this "special pass".
    fn get_type_parameter_bounds(
        &self,
        span: Span,
        def_id: DefId,
        assoc_name: Ident,
    ) -> ty::GenericPredicates<'tcx>;

    /// Returns the lifetime to use when a lifetime is omitted (and not elided).
    fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
    -> Option<ty::Region<'tcx>>;

    /// Returns the type to use when a type is omitted.
    fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;

    /// Returns `true` if `_` is allowed in type signatures in the current context.
    fn allow_ty_infer(&self) -> bool;

    /// Returns the const to use when a const is omitted.
    fn ct_infer(
        &self,
        ty: Ty<'tcx>,
        param: Option<&ty::GenericParamDef>,
        span: Span,
    ) -> &'tcx Const<'tcx>;

    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(
        &self,
        span: Span,
        item_def_id: DefId,
        item_segment: &hir::PathSegment<'_>,
        poly_trait_ref: ty::PolyTraitRef<'tcx>,
    ) -> Ty<'tcx>;

    /// Normalize an associated type coming from the user.
    fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;

    /// Invoked when we encounter an error from some prior pass
    /// (e.g., resolve) that is translated into a ty-error. This is
    /// used to help suppress derived errors typeck might otherwise
    /// report.
    fn set_tainted_by_errors(&self);

    fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
}

#[derive(Debug)]
struct ConvertedBinding<'a, 'tcx> {
    hir_id: hir::HirId,
    item_name: Ident,
    kind: ConvertedBindingKind<'a, 'tcx>,
    gen_args: &'a GenericArgs<'a>,
    span: Span,
}

#[derive(Debug)]
enum ConvertedBindingKind<'a, 'tcx> {
    Equality(Ty<'tcx>),
    Constraint(&'a [hir::GenericBound<'a>]),
}

/// New-typed boolean indicating whether explicit late-bound lifetimes
/// are present in a set of generic arguments.
///
/// For example if we have some method `fn f<'a>(&'a self)` implemented
/// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
/// is late-bound so should not be provided explicitly. Thus, if `f` is
/// instantiated with some generic arguments providing `'a` explicitly,
/// we taint those arguments with `ExplicitLateBound::Yes` so that we
/// can provide an appropriate diagnostic later.
#[derive(Copy, Clone, PartialEq)]
pub enum ExplicitLateBound {
    Yes,
    No,
}

#[derive(Copy, Clone, PartialEq)]
pub enum IsMethodCall {
    Yes,
    No,
}

/// Denotes the "position" of a generic argument, indicating if it is a generic type,
/// generic function or generic method call.
#[derive(Copy, Clone, PartialEq)]
pub(crate) enum GenericArgPosition {
    Type,
    Value, // e.g., functions
    MethodCall,
}

/// A marker denoting that the generic arguments that were
/// provided did not match the respective generic parameters.
#[derive(Clone, Default)]
pub struct GenericArgCountMismatch {
    /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
    pub reported: Option<ErrorReported>,
    /// A list of spans of arguments provided that were not valid.
    pub invalid_args: Vec<Span>,
}

/// Decorates the result of a generic argument count mismatch
/// check with whether explicit late bounds were provided.
#[derive(Clone)]
pub struct GenericArgCountResult {
    pub explicit_late_bound: ExplicitLateBound,
    pub correct: Result<(), GenericArgCountMismatch>,
}

pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
    fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);

    fn provided_kind(
        &mut self,
        param: &ty::GenericParamDef,
        arg: &GenericArg<'_>,
    ) -> subst::GenericArg<'tcx>;

    fn inferred_kind(
        &mut self,
        substs: Option<&[subst::GenericArg<'tcx>]>,
        param: &ty::GenericParamDef,
        infer_args: bool,
    ) -> subst::GenericArg<'tcx>;
}

impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
    #[tracing::instrument(level = "debug", skip(self))]
    pub fn ast_region_to_region(
        &self,
        lifetime: &hir::Lifetime,
        def: Option<&ty::GenericParamDef>,
    ) -> ty::Region<'tcx> {
        let tcx = self.tcx();
        let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));

        let r = match tcx.named_region(lifetime.hir_id) {
            Some(rl::Region::Static) => tcx.lifetimes.re_static,

            Some(rl::Region::LateBound(debruijn, index, def_id, _)) => {
                let name = lifetime_name(def_id.expect_local());
                let br = ty::BoundRegion {
                    var: ty::BoundVar::from_u32(index),
                    kind: ty::BrNamed(def_id, name),
                };
                tcx.mk_region(ty::ReLateBound(debruijn, br))
            }

            Some(rl::Region::LateBoundAnon(debruijn, index, anon_index)) => {
                let br = ty::BoundRegion {
                    var: ty::BoundVar::from_u32(index),
                    kind: ty::BrAnon(anon_index),
                };
                tcx.mk_region(ty::ReLateBound(debruijn, br))
            }

            Some(rl::Region::EarlyBound(index, id, _)) => {
                let name = lifetime_name(id.expect_local());
                tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
            }

            Some(rl::Region::Free(scope, id)) => {
                let name = lifetime_name(id.expect_local());
                tcx.mk_region(ty::ReFree(ty::FreeRegion {
                    scope,
                    bound_region: ty::BrNamed(id, name),
                }))

                // (*) -- not late-bound, won't change
            }

            None => {
                self.re_infer(def, lifetime.span).unwrap_or_else(|| {
                    debug!(?lifetime, "unelided lifetime in signature");

                    // This indicates an illegal lifetime
                    // elision. `resolve_lifetime` should have
                    // reported an error in this case -- but if
                    // not, let's error out.
                    tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");

                    // Supply some dummy value. We don't have an
                    // `re_error`, annoyingly, so use `'static`.
                    tcx.lifetimes.re_static
                })
            }
        };

        debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);

        r
    }

    /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
    /// returns an appropriate set of substitutions for this particular reference to `I`.
    pub fn ast_path_substs_for_ty(
        &self,
        span: Span,
        def_id: DefId,
        item_segment: &hir::PathSegment<'_>,
    ) -> SubstsRef<'tcx> {
        let (substs, _) = self.create_substs_for_ast_path(
            span,
            def_id,
            &[],
            item_segment,
            item_segment.args(),
            item_segment.infer_args,
            None,
        );
        let assoc_bindings = self.create_assoc_bindings_for_generic_args(item_segment.args());

        if let Some(b) = assoc_bindings.first() {
            Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
        }

        substs
    }

    /// Given the type/lifetime/const arguments provided to some path (along with
    /// an implicit `Self`, if this is a trait reference), returns the complete
    /// set of substitutions. This may involve applying defaulted type parameters.
    /// Also returns back constraints on associated types.
    ///
    /// Example:
    ///
    /// ```
    /// T: std::ops::Index<usize, Output = u32>
    /// ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
    /// ```
    ///
    /// 1. The `self_ty` here would refer to the type `T`.
    /// 2. The path in question is the path to the trait `std::ops::Index`,
    ///    which will have been resolved to a `def_id`
    /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
    ///    parameters are returned in the `SubstsRef`, the associated type bindings like
    ///    `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    ///
    /// For (generic) associated types
    ///
    /// ```
    /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
    /// ```
    ///
    /// We have the parent substs are the substs for the parent trait:
    /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
    /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
    /// lists: `[Vec<u8>, u8, 'a]`.
    #[tracing::instrument(level = "debug", skip(self, span))]
    fn create_substs_for_ast_path<'a>(
        &self,
        span: Span,
        def_id: DefId,
        parent_substs: &[subst::GenericArg<'tcx>],
        seg: &hir::PathSegment<'_>,
        generic_args: &'a hir::GenericArgs<'_>,
        infer_args: bool,
        self_ty: Option<Ty<'tcx>>,
    ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).

        let tcx = self.tcx();
        let generics = tcx.generics_of(def_id);
        debug!("generics: {:?}", generics);

        if generics.has_self {
            if generics.parent.is_some() {
                // The parent is a trait so it should have at least one subst
                // for the `Self` type.
                assert!(!parent_substs.is_empty())
            } else {
                // This item (presumably a trait) needs a self-type.
                assert!(self_ty.is_some());
            }
        } else {
            assert!(self_ty.is_none() && parent_substs.is_empty());
        }

        let arg_count = Self::check_generic_arg_count(
            tcx,
            span,
            def_id,
            seg,
            generics,
            generic_args,
            GenericArgPosition::Type,
            self_ty.is_some(),
            infer_args,
        );

        // Skip processing if type has no generic parameters.
        // Traits always have `Self` as a generic parameter, which means they will not return early
        // here and so associated type bindings will be handled regardless of whether there are any
        // non-`Self` generic parameters.
        if generics.params.is_empty() {
            return (tcx.intern_substs(&[]), arg_count);
        }

        let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);

        struct SubstsForAstPathCtxt<'a, 'tcx> {
            astconv: &'a (dyn AstConv<'tcx> + 'a),
            def_id: DefId,
            generic_args: &'a GenericArgs<'a>,
            span: Span,
            missing_type_params: Vec<String>,
            inferred_params: Vec<Span>,
            infer_args: bool,
            is_object: bool,
        }

        impl<'tcx, 'a> SubstsForAstPathCtxt<'tcx, 'a> {
            fn default_needs_object_self(&mut self, param: &ty::GenericParamDef) -> bool {
                let tcx = self.astconv.tcx();
                if let GenericParamDefKind::Type { has_default, .. } = param.kind {
                    if self.is_object && has_default {
                        let default_ty = tcx.at(self.span).type_of(param.def_id);
                        let self_param = tcx.types.self_param;
                        if default_ty.walk(tcx).any(|arg| arg == self_param.into()) {
                            // There is no suitable inference default for a type parameter
                            // that references self, in an object type.
                            return true;
                        }
                    }
                }

                false
            }
        }

        impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
            fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
                if did == self.def_id {
                    (Some(self.generic_args), self.infer_args)
                } else {
                    // The last component of this tuple is unimportant.
                    (None, false)
                }
            }

            fn provided_kind(
                &mut self,
                param: &ty::GenericParamDef,
                arg: &GenericArg<'_>,
            ) -> subst::GenericArg<'tcx> {
                let tcx = self.astconv.tcx();
                match (&param.kind, arg) {
                    (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
                        self.astconv.ast_region_to_region(lt, Some(param)).into()
                    }
                    (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
                        if has_default {
                            tcx.check_optional_stability(
                                param.def_id,
                                Some(arg.id()),
                                arg.span(),
                                None,
                                |_, _| {
                                    // Default generic parameters may not be marked
                                    // with stability attributes, i.e. when the
                                    // default parameter was defined at the same time
                                    // as the rest of the type. As such, we ignore missing
                                    // stability attributes.
                                },
                            )
                        }
                        if let (hir::TyKind::Infer, false) =
                            (&ty.kind, self.astconv.allow_ty_infer())
                        {
                            self.inferred_params.push(ty.span);
                            tcx.ty_error().into()
                        } else {
                            self.astconv.ast_ty_to_ty(ty).into()
                        }
                    }
                    (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
                        ty::Const::from_opt_const_arg_anon_const(
                            tcx,
                            ty::WithOptConstParam {
                                did: tcx.hir().local_def_id(ct.value.hir_id),
                                const_param_did: Some(param.def_id),
                            },
                        )
                        .into()
                    }
                    (&GenericParamDefKind::Const { has_default }, hir::GenericArg::Infer(inf)) => {
                        if has_default {
                            tcx.const_param_default(param.def_id).into()
                        } else if self.astconv.allow_ty_infer() {
                            // FIXME(const_generics): Actually infer parameter here?
                            todo!()
                        } else {
                            self.inferred_params.push(inf.span);
                            tcx.ty_error().into()
                        }
                    }
                    (
                        &GenericParamDefKind::Type { has_default, .. },
                        hir::GenericArg::Infer(inf),
                    ) => {
                        if has_default {
                            tcx.check_optional_stability(
                                param.def_id,
                                Some(arg.id()),
                                arg.span(),
                                None,
                                |_, _| {
                                    // Default generic parameters may not be marked
                                    // with stability attributes, i.e. when the
                                    // default parameter was defined at the same time
                                    // as the rest of the type. As such, we ignore missing
                                    // stability attributes.
                                },
                            );
                        }
                        if self.astconv.allow_ty_infer() {
                            self.astconv.ast_ty_to_ty(&inf.to_ty()).into()
                        } else {
                            self.inferred_params.push(inf.span);
                            tcx.ty_error().into()
                        }
                    }
                    _ => unreachable!(),
                }
            }

            fn inferred_kind(
                &mut self,
                substs: Option<&[subst::GenericArg<'tcx>]>,
                param: &ty::GenericParamDef,
                infer_args: bool,
            ) -> subst::GenericArg<'tcx> {
                let tcx = self.astconv.tcx();
                match param.kind {
                    GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
                    GenericParamDefKind::Type { has_default, .. } => {
                        if !infer_args && has_default {
                            // No type parameter provided, but a default exists.

                            // If we are converting an object type, then the
                            // `Self` parameter is unknown. However, some of the
                            // other type parameters may reference `Self` in their
                            // defaults. This will lead to an ICE if we are not
                            // careful!
                            if self.default_needs_object_self(param) {
                                self.missing_type_params.push(param.name.to_string());
                                tcx.ty_error().into()
                            } else {
                                // This is a default type parameter.
                                let substs = substs.unwrap();
                                if substs.iter().any(|arg| match arg.unpack() {
                                    GenericArgKind::Type(ty) => ty.references_error(),
                                    _ => false,
                                }) {
                                    // Avoid ICE #86756 when type error recovery goes awry.
                                    return tcx.ty_error().into();
                                }
                                self.astconv
                                    .normalize_ty(
                                        self.span,
                                        tcx.at(self.span).type_of(param.def_id).subst_spanned(
                                            tcx,
                                            substs,
                                            Some(self.span),
                                        ),
                                    )
                                    .into()
                            }
                        } else if infer_args {
                            // No type parameters were provided, we can infer all.
                            let param = if !self.default_needs_object_self(param) {
                                Some(param)
                            } else {
                                None
                            };
                            self.astconv.ty_infer(param, self.span).into()
                        } else {
                            // We've already errored above about the mismatch.
                            tcx.ty_error().into()
                        }
                    }
                    GenericParamDefKind::Const { has_default } => {
                        let ty = tcx.at(self.span).type_of(param.def_id);
                        if !infer_args && has_default {
                            tcx.const_param_default(param.def_id)
                                .subst_spanned(tcx, substs.unwrap(), Some(self.span))
                                .into()
                        } else {
                            if infer_args {
                                self.astconv.ct_infer(ty, Some(param), self.span).into()
                            } else {
                                // We've already errored above about the mismatch.
                                tcx.const_error(ty).into()
                            }
                        }
                    }
                }
            }
        }

        let mut substs_ctx = SubstsForAstPathCtxt {
            astconv: self,
            def_id,
            span,
            generic_args,
            missing_type_params: vec![],
            inferred_params: vec![],
            infer_args,
            is_object,
        };
        let substs = Self::create_substs_for_generic_args(
            tcx,
            def_id,
            parent_substs,
            self_ty.is_some(),
            self_ty,
            &arg_count,
            &mut substs_ctx,
        );

        self.complain_about_missing_type_params(
            substs_ctx.missing_type_params,
            def_id,
            span,
            generic_args.args.is_empty(),
        );

        debug!(
            "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
            generics, self_ty, substs
        );

        (substs, arg_count)
    }

    fn create_assoc_bindings_for_generic_args<'a>(
        &self,
        generic_args: &'a hir::GenericArgs<'_>,
    ) -> Vec<ConvertedBinding<'a, 'tcx>> {
        // Convert associated-type bindings or constraints into a separate vector.
        // Example: Given this:
        //
        //     T: Iterator<Item = u32>
        //
        // The `T` is passed in as a self-type; the `Item = u32` is
        // not a "type parameter" of the `Iterator` trait, but rather
        // a restriction on `<T as Iterator>::Item`, so it is passed
        // back separately.
        let assoc_bindings = generic_args
            .bindings
            .iter()
            .map(|binding| {
                let kind = match binding.kind {
                    hir::TypeBindingKind::Equality { ty } => {
                        ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
                    }
                    hir::TypeBindingKind::Constraint { bounds } => {
                        ConvertedBindingKind::Constraint(bounds)
                    }
                };
                ConvertedBinding {
                    hir_id: binding.hir_id,
                    item_name: binding.ident,
                    kind,
                    gen_args: binding.gen_args,
                    span: binding.span,
                }
            })
            .collect();

        assoc_bindings
    }

    crate fn create_substs_for_associated_item(
        &self,
        tcx: TyCtxt<'tcx>,
        span: Span,
        item_def_id: DefId,
        item_segment: &hir::PathSegment<'_>,
        parent_substs: SubstsRef<'tcx>,
    ) -> SubstsRef<'tcx> {
        debug!(
            "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
            span, item_def_id, item_segment
        );
        if tcx.generics_of(item_def_id).params.is_empty() {
            self.prohibit_generics(slice::from_ref(item_segment));

            parent_substs
        } else {
            self.create_substs_for_ast_path(
                span,
                item_def_id,
                parent_substs,
                item_segment,
                item_segment.args(),
                item_segment.infer_args,
                None,
            )
            .0
        }
    }

    /// Instantiates the path for the given trait reference, assuming that it's
    /// bound to a valid trait type. Returns the `DefId` of the defining trait.
    /// The type _cannot_ be a type other than a trait type.
    ///
    /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
    /// are disallowed. Otherwise, they are pushed onto the vector given.
    pub fn instantiate_mono_trait_ref(
        &self,
        trait_ref: &hir::TraitRef<'_>,
        self_ty: Ty<'tcx>,
    ) -> ty::TraitRef<'tcx> {
        self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);

        self.ast_path_to_mono_trait_ref(
            trait_ref.path.span,
            trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
            self_ty,
            trait_ref.path.segments.last().unwrap(),
        )
    }

    fn instantiate_poly_trait_ref_inner(
        &self,
        hir_id: hir::HirId,
        span: Span,
        binding_span: Option<Span>,
        constness: ty::BoundConstness,
        bounds: &mut Bounds<'tcx>,
        speculative: bool,
        trait_ref_span: Span,
        trait_def_id: DefId,
        trait_segment: &hir::PathSegment<'_>,
        args: &GenericArgs<'_>,
        infer_args: bool,
        self_ty: Ty<'tcx>,
    ) -> GenericArgCountResult {
        let (substs, arg_count) = self.create_substs_for_ast_path(
            trait_ref_span,
            trait_def_id,
            &[],
            trait_segment,
            args,
            infer_args,
            Some(self_ty),
        );

        let tcx = self.tcx();
        let bound_vars = tcx.late_bound_vars(hir_id);
        debug!(?bound_vars);

        let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);

        let poly_trait_ref =
            ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);

        debug!(?poly_trait_ref, ?assoc_bindings);
        bounds.trait_bounds.push((poly_trait_ref, span, constness));

        let mut dup_bindings = FxHashMap::default();
        for binding in &assoc_bindings {
            // Specify type to assert that error was already reported in `Err` case.
            let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
                hir_id,
                poly_trait_ref,
                binding,
                bounds,
                speculative,
                &mut dup_bindings,
                binding_span.unwrap_or(binding.span),
            );
            // Okay to ignore `Err` because of `ErrorReported` (see above).
        }

        arg_count
    }

    /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
    /// a full trait reference. The resulting trait reference is returned. This may also generate
    /// auxiliary bounds, which are added to `bounds`.
    ///
    /// Example:
    ///
    /// ```
    /// poly_trait_ref = Iterator<Item = u32>
    /// self_ty = Foo
    /// ```
    ///
    /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
    ///
    /// **A note on binders:** against our usual convention, there is an implied bounder around
    /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
    /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
    /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
    /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
    /// however.
    #[tracing::instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
    pub(crate) fn instantiate_poly_trait_ref(
        &self,
        trait_ref: &hir::TraitRef<'_>,
        span: Span,
        constness: ty::BoundConstness,
        self_ty: Ty<'tcx>,
        bounds: &mut Bounds<'tcx>,
        speculative: bool,
    ) -> GenericArgCountResult {
        let hir_id = trait_ref.hir_ref_id;
        let binding_span = None;
        let trait_ref_span = trait_ref.path.span;
        let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
        let trait_segment = trait_ref.path.segments.last().unwrap();
        let args = trait_segment.args();
        let infer_args = trait_segment.infer_args;

        self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
        self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);

        self.instantiate_poly_trait_ref_inner(
            hir_id,
            span,
            binding_span,
            constness,
            bounds,
            speculative,
            trait_ref_span,
            trait_def_id,
            trait_segment,
            args,
            infer_args,
            self_ty,
        )
    }

    pub(crate) fn instantiate_lang_item_trait_ref(
        &self,
        lang_item: hir::LangItem,
        span: Span,
        hir_id: hir::HirId,
        args: &GenericArgs<'_>,
        self_ty: Ty<'tcx>,
        bounds: &mut Bounds<'tcx>,
    ) {
        let binding_span = Some(span);
        let constness = ty::BoundConstness::NotConst;
        let speculative = false;
        let trait_ref_span = span;
        let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
        let trait_segment = &hir::PathSegment::invalid();
        let infer_args = false;

        self.instantiate_poly_trait_ref_inner(
            hir_id,
            span,
            binding_span,
            constness,
            bounds,
            speculative,
            trait_ref_span,
            trait_def_id,
            trait_segment,
            args,
            infer_args,
            self_ty,
        );
    }

    fn ast_path_to_mono_trait_ref(
        &self,
        span: Span,
        trait_def_id: DefId,
        self_ty: Ty<'tcx>,
        trait_segment: &hir::PathSegment<'_>,
    ) -> ty::TraitRef<'tcx> {
        let (substs, _) =
            self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
        let assoc_bindings = self.create_assoc_bindings_for_generic_args(trait_segment.args());
        if let Some(b) = assoc_bindings.first() {
            Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
        }
        ty::TraitRef::new(trait_def_id, substs)
    }

    #[tracing::instrument(level = "debug", skip(self, span))]
    fn create_substs_for_ast_trait_ref<'a>(
        &self,
        span: Span,
        trait_def_id: DefId,
        self_ty: Ty<'tcx>,
        trait_segment: &'a hir::PathSegment<'a>,
    ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
        self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);

        self.create_substs_for_ast_path(
            span,
            trait_def_id,
            &[],
            trait_segment,
            trait_segment.args(),
            trait_segment.infer_args,
            Some(self_ty),
        )
    }

    fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
        self.tcx()
            .associated_items(trait_def_id)
            .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
            .is_some()
    }

    // Sets `implicitly_sized` to true on `Bounds` if necessary
    pub(crate) fn add_implicitly_sized<'hir>(
        &self,
        bounds: &mut Bounds<'hir>,
        ast_bounds: &'hir [hir::GenericBound<'hir>],
        self_ty_where_predicates: Option<(hir::HirId, &'hir [hir::WherePredicate<'hir>])>,
        span: Span,
    ) {
        let tcx = self.tcx();

        // Try to find an unbound in bounds.
        let mut unbound = None;
        let mut search_bounds = |ast_bounds: &'hir [hir::GenericBound<'hir>]| {
            for ab in ast_bounds {
                if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
                    if unbound.is_none() {
                        unbound = Some(&ptr.trait_ref);
                    } else {
                        tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
                    }
                }
            }
        };
        search_bounds(ast_bounds);
        if let Some((self_ty, where_clause)) = self_ty_where_predicates {
            let self_ty_def_id = tcx.hir().local_def_id(self_ty).to_def_id();
            for clause in where_clause {
                if let hir::WherePredicate::BoundPredicate(pred) = clause {
                    match pred.bounded_ty.kind {
                        hir::TyKind::Path(hir::QPath::Resolved(_, path)) => match path.res {
                            Res::Def(DefKind::TyParam, def_id) if def_id == self_ty_def_id => {}
                            _ => continue,
                        },
                        _ => continue,
                    }
                    search_bounds(pred.bounds);
                }
            }
        }

        let sized_def_id = tcx.lang_items().require(LangItem::Sized);
        match (&sized_def_id, unbound) {
            (Ok(sized_def_id), Some(tpb))
                if tpb.path.res == Res::Def(DefKind::Trait, *sized_def_id) =>
            {
                // There was in fact a `?Sized` bound, return without doing anything
                return;
            }
            (_, Some(_)) => {
                // There was a `?Trait` bound, but it was not `?Sized`; warn.
                tcx.sess.span_warn(
                    span,
                    "default bound relaxed for a type parameter, but \
                        this does nothing because the given bound is not \
                        a default; only `?Sized` is supported",
                );
                // Otherwise, add implicitly sized if `Sized` is available.
            }
            _ => {
                // There was no `?Sized` bound; add implicitly sized if `Sized` is available.
            }
        }
        if sized_def_id.is_err() {
            // No lang item for `Sized`, so we can't add it as a bound.
            return;
        }
        bounds.implicitly_sized = Some(span);
    }

    /// This helper takes a *converted* parameter type (`param_ty`)
    /// and an *unconverted* list of bounds:
    ///
    /// ```text
    /// fn foo<T: Debug>
    ///        ^  ^^^^^ `ast_bounds` parameter, in HIR form
    ///        |
    ///        `param_ty`, in ty form
    /// ```
    ///
    /// It adds these `ast_bounds` into the `bounds` structure.
    ///
    /// **A note on binders:** there is an implied binder around
    /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
    /// for more details.
    #[tracing::instrument(level = "debug", skip(self, ast_bounds, bounds))]
    pub(crate) fn add_bounds<'hir, I: Iterator<Item = &'hir hir::GenericBound<'hir>>>(
        &self,
        param_ty: Ty<'tcx>,
        ast_bounds: I,
        bounds: &mut Bounds<'tcx>,
        bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
    ) {
        for ast_bound in ast_bounds {
            match ast_bound {
                hir::GenericBound::Trait(poly_trait_ref, modifier) => {
                    let constness = match modifier {
                        hir::TraitBoundModifier::MaybeConst => ty::BoundConstness::ConstIfConst,
                        hir::TraitBoundModifier::None => ty::BoundConstness::NotConst,
                        hir::TraitBoundModifier::Maybe => continue,
                    };

                    let _ = self.instantiate_poly_trait_ref(
                        &poly_trait_ref.trait_ref,
                        poly_trait_ref.span,
                        constness,
                        param_ty,
                        bounds,
                        false,
                    );
                }
                &hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
                    self.instantiate_lang_item_trait_ref(
                        lang_item, span, hir_id, args, param_ty, bounds,
                    );
                }
                hir::GenericBound::Outlives(lifetime) => {
                    let region = self.ast_region_to_region(lifetime, None);
                    bounds
                        .region_bounds
                        .push((ty::Binder::bind_with_vars(region, bound_vars), lifetime.span));
                }
            }
        }
    }

    /// Translates a list of bounds from the HIR into the `Bounds` data structure.
    /// The self-type for the bounds is given by `param_ty`.
    ///
    /// Example:
    ///
    /// ```
    /// fn foo<T: Bar + Baz>() { }
    ///        ^  ^^^^^^^^^ ast_bounds
    ///        param_ty
    /// ```
    ///
    /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
    /// considered `Sized` unless there is an explicit `?Sized` bound.  This would be true in the
    /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
    ///
    /// `span` should be the declaration size of the parameter.
    pub(crate) fn compute_bounds(
        &self,
        param_ty: Ty<'tcx>,
        ast_bounds: &[hir::GenericBound<'_>],
    ) -> Bounds<'tcx> {
        self.compute_bounds_inner(param_ty, ast_bounds)
    }

    /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
    /// named `assoc_name` into ty::Bounds. Ignore the rest.
    pub(crate) fn compute_bounds_that_match_assoc_type(
        &self,
        param_ty: Ty<'tcx>,
        ast_bounds: &[hir::GenericBound<'_>],
        assoc_name: Ident,
    ) -> Bounds<'tcx> {
        let mut result = Vec::new();

        for ast_bound in ast_bounds {
            if let Some(trait_ref) = ast_bound.trait_ref() {
                if let Some(trait_did) = trait_ref.trait_def_id() {
                    if self.tcx().trait_may_define_assoc_type(trait_did, assoc_name) {
                        result.push(ast_bound.clone());
                    }
                }
            }
        }

        self.compute_bounds_inner(param_ty, &result)
    }

    fn compute_bounds_inner(
        &self,
        param_ty: Ty<'tcx>,
        ast_bounds: &[hir::GenericBound<'_>],
    ) -> Bounds<'tcx> {
        let mut bounds = Bounds::default();

        self.add_bounds(param_ty, ast_bounds.iter(), &mut bounds, ty::List::empty());

        bounds
    }

    /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
    /// onto `bounds`.
    ///
    /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
    /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
    /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
    #[tracing::instrument(
        level = "debug",
        skip(self, bounds, speculative, dup_bindings, path_span)
    )]
    fn add_predicates_for_ast_type_binding(
        &self,
        hir_ref_id: hir::HirId,
        trait_ref: ty::PolyTraitRef<'tcx>,
        binding: &ConvertedBinding<'_, 'tcx>,
        bounds: &mut Bounds<'tcx>,
        speculative: bool,
        dup_bindings: &mut FxHashMap<DefId, Span>,
        path_span: Span,
    ) -> Result<(), ErrorReported> {
        // Given something like `U: SomeTrait<T = X>`, we want to produce a
        // predicate like `<U as SomeTrait>::T = X`. This is somewhat
        // subtle in the event that `T` is defined in a supertrait of
        // `SomeTrait`, because in that case we need to upcast.
        //
        // That is, consider this case:
        //
        // ```
        // trait SubTrait: SuperTrait<i32> { }
        // trait SuperTrait<A> { type T; }
        //
        // ... B: SubTrait<T = foo> ...
        // ```
        //
        // We want to produce `<B as SuperTrait<i32>>::T == foo`.

        let tcx = self.tcx();

        let candidate =
            if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
                // Simple case: X is defined in the current trait.
                trait_ref
            } else {
                // Otherwise, we have to walk through the supertraits to find
                // those that do.
                self.one_bound_for_assoc_type(
                    || traits::supertraits(tcx, trait_ref),
                    || trait_ref.print_only_trait_path().to_string(),
                    binding.item_name,
                    path_span,
                    || match binding.kind {
                        ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
                        _ => None,
                    },
                )?
            };

        let (assoc_ident, def_scope) =
            tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);

        // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
        // of calling `filter_by_name_and_kind`.
        let assoc_ty = tcx
            .associated_items(candidate.def_id())
            .filter_by_name_unhygienic(assoc_ident.name)
            .find(|i| {
                i.kind == ty::AssocKind::Type && i.ident.normalize_to_macros_2_0() == assoc_ident
            })
            .expect("missing associated type");

        if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
            tcx.sess
                .struct_span_err(
                    binding.span,
                    &format!("associated type `{}` is private", binding.item_name),
                )
                .span_label(binding.span, "private associated type")
                .emit();
        }
        tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span, None);

        if !speculative {
            dup_bindings
                .entry(assoc_ty.def_id)
                .and_modify(|prev_span| {
                    self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
                        span: binding.span,
                        prev_span: *prev_span,
                        item_name: binding.item_name,
                        def_path: tcx.def_path_str(assoc_ty.container.id()),
                    });
                })
                .or_insert(binding.span);
        }

        // Include substitutions for generic parameters of associated types
        let projection_ty = candidate.map_bound(|trait_ref| {
            let ident = Ident::new(assoc_ty.ident.name, binding.item_name.span);
            let item_segment = hir::PathSegment {
                ident,
                hir_id: Some(binding.hir_id),
                res: None,
                args: Some(binding.gen_args),
                infer_args: false,
            };

            let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
                tcx,
                path_span,
                assoc_ty.def_id,
                &item_segment,
                trait_ref.substs,
            );

            debug!(
                "add_predicates_for_ast_type_binding: substs for trait-ref and assoc_item: {:?}",
                substs_trait_ref_and_assoc_item
            );

            ty::ProjectionTy {
                item_def_id: assoc_ty.def_id,
                substs: substs_trait_ref_and_assoc_item,
            }
        });

        if !speculative {
            // Find any late-bound regions declared in `ty` that are not
            // declared in the trait-ref or assoc_ty. These are not well-formed.
            //
            // Example:
            //
            //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
            //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
            if let ConvertedBindingKind::Equality(ty) = binding.kind {
                let late_bound_in_trait_ref =
                    tcx.collect_constrained_late_bound_regions(&projection_ty);
                let late_bound_in_ty =
                    tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
                debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
                debug!("late_bound_in_ty = {:?}", late_bound_in_ty);

                // FIXME: point at the type params that don't have appropriate lifetimes:
                // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
                //                         ----  ----     ^^^^^^^
                self.validate_late_bound_regions(
                    late_bound_in_trait_ref,
                    late_bound_in_ty,
                    |br_name| {
                        struct_span_err!(
                            tcx.sess,
                            binding.span,
                            E0582,
                            "binding for associated type `{}` references {}, \
                             which does not appear in the trait input types",
                            binding.item_name,
                            br_name
                        )
                    },
                );
            }
        }

        match binding.kind {
            ConvertedBindingKind::Equality(ty) => {
                // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
                // the "projection predicate" for:
                //
                // `<T as Iterator>::Item = u32`
                bounds.projection_bounds.push((
                    projection_ty.map_bound(|projection_ty| {
                        debug!(
                            "add_predicates_for_ast_type_binding: projection_ty {:?}, substs: {:?}",
                            projection_ty, projection_ty.substs
                        );
                        ty::ProjectionPredicate { projection_ty, ty }
                    }),
                    binding.span,
                ));
            }
            ConvertedBindingKind::Constraint(ast_bounds) => {
                // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
                //
                // `<T as Iterator>::Item: Debug`
                //
                // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
                // parameter to have a skipped binder.
                let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
                self.add_bounds(param_ty, ast_bounds.iter(), bounds, candidate.bound_vars());
            }
        }
        Ok(())
    }

    fn ast_path_to_ty(
        &self,
        span: Span,
        did: DefId,
        item_segment: &hir::PathSegment<'_>,
    ) -> Ty<'tcx> {
        let substs = self.ast_path_substs_for_ty(span, did, item_segment);
        self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
    }

    fn conv_object_ty_poly_trait_ref(
        &self,
        span: Span,
        trait_bounds: &[hir::PolyTraitRef<'_>],
        lifetime: &hir::Lifetime,
        borrowed: bool,
    ) -> Ty<'tcx> {
        let tcx = self.tcx();

        let mut bounds = Bounds::default();
        let mut potential_assoc_types = Vec::new();
        let dummy_self = self.tcx().types.trait_object_dummy_self;
        for trait_bound in trait_bounds.iter().rev() {
            if let GenericArgCountResult {
                correct:
                    Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
                ..
            } = self.instantiate_poly_trait_ref(
                &trait_bound.trait_ref,
                trait_bound.span,
                ty::BoundConstness::NotConst,
                dummy_self,
                &mut bounds,
                false,
            ) {
                potential_assoc_types.extend(cur_potential_assoc_types);
            }
        }

        // Expand trait aliases recursively and check that only one regular (non-auto) trait
        // is used and no 'maybe' bounds are used.
        let expanded_traits =
            traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
        let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
            expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
        if regular_traits.len() > 1 {
            let first_trait = &regular_traits[0];
            let additional_trait = &regular_traits[1];
            let mut err = struct_span_err!(
                tcx.sess,
                additional_trait.bottom().1,
                E0225,
                "only auto traits can be used as additional traits in a trait object"
            );
            additional_trait.label_with_exp_info(
                &mut err,
                "additional non-auto trait",
                "additional use",
            );
            first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
            err.help(&format!(
                "consider creating a new trait with all of these as supertraits and using that \
                 trait here instead: `trait NewTrait: {} {{}}`",
                regular_traits
                    .iter()
                    .map(|t| t.trait_ref().print_only_trait_path().to_string())
                    .collect::<Vec<_>>()
                    .join(" + "),
            ));
            err.note(
                "auto-traits like `Send` and `Sync` are traits that have special properties; \
                 for more information on them, visit \
                 <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
            );
            err.emit();
        }

        if regular_traits.is_empty() && auto_traits.is_empty() {
            tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span });
            return tcx.ty_error();
        }

        // Check that there are no gross object safety violations;
        // most importantly, that the supertraits don't contain `Self`,
        // to avoid ICEs.
        for item in &regular_traits {
            let object_safety_violations =
                astconv_object_safety_violations(tcx, item.trait_ref().def_id());
            if !object_safety_violations.is_empty() {
                report_object_safety_error(
                    tcx,
                    span,
                    item.trait_ref().def_id(),
                    &object_safety_violations[..],
                )
                .emit();
                return tcx.ty_error();
            }
        }

        // Use a `BTreeSet` to keep output in a more consistent order.
        let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();

        let regular_traits_refs_spans = bounds
            .trait_bounds
            .into_iter()
            .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));

        for (base_trait_ref, span, constness) in regular_traits_refs_spans {
            assert_eq!(constness, ty::BoundConstness::NotConst);

            for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
                debug!(
                    "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
                    obligation.predicate
                );

                let bound_predicate = obligation.predicate.kind();
                match bound_predicate.skip_binder() {
                    ty::PredicateKind::Trait(pred) => {
                        let pred = bound_predicate.rebind(pred);
                        associated_types.entry(span).or_default().extend(
                            tcx.associated_items(pred.def_id())
                                .in_definition_order()
                                .filter(|item| item.kind == ty::AssocKind::Type)
                                .map(|item| item.def_id),
                        );
                    }
                    ty::PredicateKind::Projection(pred) => {
                        let pred = bound_predicate.rebind(pred);
                        // A `Self` within the original bound will be substituted with a
                        // `trait_object_dummy_self`, so check for that.
                        let references_self =
                            pred.skip_binder().ty.walk(tcx).any(|arg| arg == dummy_self.into());

                        // If the projection output contains `Self`, force the user to
                        // elaborate it explicitly to avoid a lot of complexity.
                        //
                        // The "classicaly useful" case is the following:
                        // ```
                        //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
                        //         type MyOutput;
                        //     }
                        // ```
                        //
                        // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
                        // but actually supporting that would "expand" to an infinitely-long type
                        // `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
                        //
                        // Instead, we force the user to write
                        // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
                        // the discussion in #56288 for alternatives.
                        if !references_self {
                            // Include projections defined on supertraits.
                            bounds.projection_bounds.push((pred, span));
                        }
                    }
                    _ => (),
                }
            }
        }

        for (projection_bound, _) in &bounds.projection_bounds {
            for def_ids in associated_types.values_mut() {
                def_ids.remove(&projection_bound.projection_def_id());
            }
        }

        self.complain_about_missing_associated_types(
            associated_types,
            potential_assoc_types,
            trait_bounds,
        );

        // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
        // `dyn Trait + Send`.
        // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
        // the bounds
        let mut duplicates = FxHashSet::default();
        auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
        debug!("regular_traits: {:?}", regular_traits);
        debug!("auto_traits: {:?}", auto_traits);

        // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
        let existential_trait_refs = regular_traits.iter().map(|i| {
            i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
                if trait_ref.self_ty() != dummy_self {
                    // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
                    // which picks up non-supertraits where clauses - but also, the object safety
                    // completely ignores trait aliases, which could be object safety hazards. We
                    // `delay_span_bug` here to avoid an ICE in stable even when the feature is
                    // disabled. (#66420)
                    tcx.sess.delay_span_bug(
                        DUMMY_SP,
                        &format!(
                            "trait_ref_to_existential called on {:?} with non-dummy Self",
                            trait_ref,
                        ),
                    );
                }
                ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
            })
        });
        let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
            bound.map_bound(|b| {
                if b.projection_ty.self_ty() != dummy_self {
                    tcx.sess.delay_span_bug(
                        DUMMY_SP,
                        &format!("trait_ref_to_existential called on {:?} with non-dummy Self", b),
                    );
                }
                ty::ExistentialProjection::erase_self_ty(tcx, b)
            })
        });

        let regular_trait_predicates = existential_trait_refs
            .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
        let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
            ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
        });
        // N.b. principal, projections, auto traits
        // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
        let mut v = regular_trait_predicates
            .chain(
                existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
            )
            .chain(auto_trait_predicates)
            .collect::<SmallVec<[_; 8]>>();
        v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
        v.dedup();
        let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());

        // Use explicitly-specified region bound.
        let region_bound = if !lifetime.is_elided() {
            self.ast_region_to_region(lifetime, None)
        } else {
            self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
                if tcx.named_region(lifetime.hir_id).is_some() {
                    self.ast_region_to_region(lifetime, None)
                } else {
                    self.re_infer(None, span).unwrap_or_else(|| {
                        let mut err = struct_span_err!(
                            tcx.sess,
                            span,
                            E0228,
                            "the lifetime bound for this object type cannot be deduced \
                             from context; please supply an explicit bound"
                        );
                        if borrowed {
                            // We will have already emitted an error E0106 complaining about a
                            // missing named lifetime in `&dyn Trait`, so we elide this one.
                            err.delay_as_bug();
                        } else {
                            err.emit();
                        }
                        tcx.lifetimes.re_static
                    })
                }
            })
        };
        debug!("region_bound: {:?}", region_bound);

        let ty = tcx.mk_dynamic(existential_predicates, region_bound);
        debug!("trait_object_type: {:?}", ty);
        ty
    }

    fn report_ambiguous_associated_type(
        &self,
        span: Span,
        type_str: &str,
        trait_str: &str,
        name: Symbol,
    ) {
        let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
        if let (true, Ok(snippet)) = (
            self.tcx()
                .resolutions(())
                .confused_type_with_std_module
                .keys()
                .any(|full_span| full_span.contains(span)),
            self.tcx().sess.source_map().span_to_snippet(span),
        ) {
            err.span_suggestion(
                span,
                "you are looking for the module in `std`, not the primitive type",
                format!("std::{}", snippet),
                Applicability::MachineApplicable,
            );
        } else {
            err.span_suggestion(
                span,
                "use fully-qualified syntax",
                format!("<{} as {}>::{}", type_str, trait_str, name),
                Applicability::HasPlaceholders,
            );
        }
        err.emit();
    }

    // Search for a bound on a type parameter which includes the associated item
    // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
    // This function will fail if there are no suitable bounds or there is
    // any ambiguity.
    fn find_bound_for_assoc_item(
        &self,
        ty_param_def_id: LocalDefId,
        assoc_name: Ident,
        span: Span,
    ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
        let tcx = self.tcx();

        debug!(
            "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
            ty_param_def_id, assoc_name, span,
        );

        let predicates = &self
            .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
            .predicates;

        debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);

        let param_hir_id = tcx.hir().local_def_id_to_hir_id(ty_param_def_id);
        let param_name = tcx.hir().ty_param_name(param_hir_id);
        self.one_bound_for_assoc_type(
            || {
                traits::transitive_bounds_that_define_assoc_type(
                    tcx,
                    predicates.iter().filter_map(|(p, _)| {
                        p.to_opt_poly_trait_ref().map(|trait_ref| trait_ref.value)
                    }),
                    assoc_name,
                )
            },
            || param_name.to_string(),
            assoc_name,
            span,
            || None,
        )
    }

    // Checks that `bounds` contains exactly one element and reports appropriate
    // errors otherwise.
    fn one_bound_for_assoc_type<I>(
        &self,
        all_candidates: impl Fn() -> I,
        ty_param_name: impl Fn() -> String,
        assoc_name: Ident,
        span: Span,
        is_equality: impl Fn() -> Option<String>,
    ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
    where
        I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
    {
        let mut matching_candidates = all_candidates()
            .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));

        let bound = match matching_candidates.next() {
            Some(bound) => bound,
            None => {
                self.complain_about_assoc_type_not_found(
                    all_candidates,
                    &ty_param_name(),
                    assoc_name,
                    span,
                );
                return Err(ErrorReported);
            }
        };

        debug!("one_bound_for_assoc_type: bound = {:?}", bound);

        if let Some(bound2) = matching_candidates.next() {
            debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);

            let is_equality = is_equality();
            let bounds = array::IntoIter::new([bound, bound2]).chain(matching_candidates);
            let mut err = if is_equality.is_some() {
                // More specific Error Index entry.
                struct_span_err!(
                    self.tcx().sess,
                    span,
                    E0222,
                    "ambiguous associated type `{}` in bounds of `{}`",
                    assoc_name,
                    ty_param_name()
                )
            } else {
                struct_span_err!(
                    self.tcx().sess,
                    span,
                    E0221,
                    "ambiguous associated type `{}` in bounds of `{}`",
                    assoc_name,
                    ty_param_name()
                )
            };
            err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));

            let mut where_bounds = vec![];
            for bound in bounds {
                let bound_id = bound.def_id();
                let bound_span = self
                    .tcx()
                    .associated_items(bound_id)
                    .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
                    .and_then(|item| self.tcx().hir().span_if_local(item.def_id));

                if let Some(bound_span) = bound_span {
                    err.span_label(
                        bound_span,
                        format!(
                            "ambiguous `{}` from `{}`",
                            assoc_name,
                            bound.print_only_trait_path(),
                        ),
                    );
                    if let Some(constraint) = &is_equality {
                        where_bounds.push(format!(
                            "        T: {trait}::{assoc} = {constraint}",
                            trait=bound.print_only_trait_path(),
                            assoc=assoc_name,
                            constraint=constraint,
                        ));
                    } else {
                        err.span_suggestion_verbose(
                            span.with_hi(assoc_name.span.lo()),
                            "use fully qualified syntax to disambiguate",
                            format!(
                                "<{} as {}>::",
                                ty_param_name(),
                                bound.print_only_trait_path(),
                            ),
                            Applicability::MaybeIncorrect,
                        );
                    }
                } else {
                    err.note(&format!(
                        "associated type `{}` could derive from `{}`",
                        ty_param_name(),
                        bound.print_only_trait_path(),
                    ));
                }
            }
            if !where_bounds.is_empty() {
                err.help(&format!(
                    "consider introducing a new type parameter `T` and adding `where` constraints:\
                     \n    where\n        T: {},\n{}",
                    ty_param_name(),
                    where_bounds.join(",\n"),
                ));
            }
            err.emit();
            if !where_bounds.is_empty() {
                return Err(ErrorReported);
            }
        }
        Ok(bound)
    }

    // Create a type from a path to an associated type.
    // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
    // and item_segment is the path segment for `D`. We return a type and a def for
    // the whole path.
    // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
    // parameter or `Self`.
    // NOTE: When this function starts resolving `Trait::AssocTy` successfully
    // it should also start reportint the `BARE_TRAIT_OBJECTS` lint.
    pub fn associated_path_to_ty(
        &self,
        hir_ref_id: hir::HirId,
        span: Span,
        qself_ty: Ty<'tcx>,
        qself_res: Res,
        assoc_segment: &hir::PathSegment<'_>,
        permit_variants: bool,
    ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
        let tcx = self.tcx();
        let assoc_ident = assoc_segment.ident;

        debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);

        // Check if we have an enum variant.
        let mut variant_resolution = None;
        if let ty::Adt(adt_def, _) = qself_ty.kind() {
            if adt_def.is_enum() {
                let variant_def = adt_def
                    .variants
                    .iter()
                    .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
                if let Some(variant_def) = variant_def {
                    if permit_variants {
                        tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
                        self.prohibit_generics(slice::from_ref(assoc_segment));
                        return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
                    } else {
                        variant_resolution = Some(variant_def.def_id);
                    }
                }
            }
        }

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (&qself_ty.kind(), qself_res) {
            (_, Res::SelfTy(Some(_), Some((impl_def_id, _)))) => {
                // `Self` in an impl of a trait -- we have a concrete self type and a
                // trait reference.
                let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
                    Some(trait_ref) => trait_ref,
                    None => {
                        // A cycle error occurred, most likely.
                        return Err(ErrorReported);
                    }
                };

                self.one_bound_for_assoc_type(
                    || traits::supertraits(tcx, ty::Binder::dummy(trait_ref)),
                    || "Self".to_string(),
                    assoc_ident,
                    span,
                    || None,
                )?
            }
            (
                &ty::Param(_),
                Res::SelfTy(Some(param_did), None) | Res::Def(DefKind::TyParam, param_did),
            ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
            _ => {
                if variant_resolution.is_some() {
                    // Variant in type position
                    let msg = format!("expected type, found variant `{}`", assoc_ident);
                    tcx.sess.span_err(span, &msg);
                } else if qself_ty.is_enum() {
                    let mut err = struct_span_err!(
                        tcx.sess,
                        assoc_ident.span,
                        E0599,
                        "no variant named `{}` found for enum `{}`",
                        assoc_ident,
                        qself_ty,
                    );

                    let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
                    if let Some(suggested_name) = find_best_match_for_name(
                        &adt_def
                            .variants
                            .iter()
                            .map(|variant| variant.ident.name)
                            .collect::<Vec<Symbol>>(),
                        assoc_ident.name,
                        None,
                    ) {
                        err.span_suggestion(
                            assoc_ident.span,
                            "there is a variant with a similar name",
                            suggested_name.to_string(),
                            Applicability::MaybeIncorrect,
                        );
                    } else {
                        err.span_label(
                            assoc_ident.span,
                            format!("variant not found in `{}`", qself_ty),
                        );
                    }

                    if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
                        let sp = tcx.sess.source_map().guess_head_span(sp);
                        err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
                    }

                    err.emit();
                } else if !qself_ty.references_error() {
                    // Don't print `TyErr` to the user.
                    self.report_ambiguous_associated_type(
                        span,
                        &qself_ty.to_string(),
                        "Trait",
                        assoc_ident.name,
                    );
                }
                return Err(ErrorReported);
            }
        };

        let trait_did = bound.def_id();
        let (assoc_ident, def_scope) =
            tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);

        // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
        // of calling `filter_by_name_and_kind`.
        let item = tcx
            .associated_items(trait_did)
            .in_definition_order()
            .find(|i| {
                i.kind.namespace() == Namespace::TypeNS
                    && i.ident.normalize_to_macros_2_0() == assoc_ident
            })
            .expect("missing associated type");

        let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
        let ty = self.normalize_ty(span, ty);

        let kind = DefKind::AssocTy;
        if !item.vis.is_accessible_from(def_scope, tcx) {
            let kind = kind.descr(item.def_id);
            let msg = format!("{} `{}` is private", kind, assoc_ident);
            tcx.sess
                .struct_span_err(span, &msg)
                .span_label(span, &format!("private {}", kind))
                .emit();
        }
        tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);

        if let Some(variant_def_id) = variant_resolution {
            tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
                let mut err = lint.build("ambiguous associated item");
                let mut could_refer_to = |kind: DefKind, def_id, also| {
                    let note_msg = format!(
                        "`{}` could{} refer to the {} defined here",
                        assoc_ident,
                        also,
                        kind.descr(def_id)
                    );
                    err.span_note(tcx.def_span(def_id), &note_msg);
                };

                could_refer_to(DefKind::Variant, variant_def_id, "");
                could_refer_to(kind, item.def_id, " also");

                err.span_suggestion(
                    span,
                    "use fully-qualified syntax",
                    format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
                    Applicability::MachineApplicable,
                );

                err.emit();
            });
        }
        Ok((ty, kind, item.def_id))
    }

    fn qpath_to_ty(
        &self,
        span: Span,
        opt_self_ty: Option<Ty<'tcx>>,
        item_def_id: DefId,
        trait_segment: &hir::PathSegment<'_>,
        item_segment: &hir::PathSegment<'_>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx();

        let trait_def_id = tcx.parent(item_def_id).unwrap();

        debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);

        let Some(self_ty) = opt_self_ty else {
            let path_str = tcx.def_path_str(trait_def_id);

            let def_id = self.item_def_id();

            debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);

            let parent_def_id = def_id
                .and_then(|def_id| {
                    def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
                })
                .map(|hir_id| tcx.hir().get_parent_did(hir_id).to_def_id());

            debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);

            // If the trait in segment is the same as the trait defining the item,
            // use the `<Self as ..>` syntax in the error.
            let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
            let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);

            let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
                "Self"
            } else {
                "Type"
            };

            self.report_ambiguous_associated_type(
                span,
                type_name,
                &path_str,
                item_segment.ident.name,
            );
            return tcx.ty_error();
        };

        debug!("qpath_to_ty: self_type={:?}", self_ty);

        let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);

        let item_substs = self.create_substs_for_associated_item(
            tcx,
            span,
            item_def_id,
            item_segment,
            trait_ref.substs,
        );

        debug!("qpath_to_ty: trait_ref={:?}", trait_ref);

        self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
    }

    pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
        &self,
        segments: T,
    ) -> bool {
        let mut has_err = false;
        for segment in segments {
            let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
            for arg in segment.args().args {
                let (span, kind) = match arg {
                    hir::GenericArg::Lifetime(lt) => {
                        if err_for_lt {
                            continue;
                        }
                        err_for_lt = true;
                        has_err = true;
                        (lt.span, "lifetime")
                    }
                    hir::GenericArg::Type(ty) => {
                        if err_for_ty {
                            continue;
                        }
                        err_for_ty = true;
                        has_err = true;
                        (ty.span, "type")
                    }
                    hir::GenericArg::Const(ct) => {
                        if err_for_ct {
                            continue;
                        }
                        err_for_ct = true;
                        has_err = true;
                        (ct.span, "const")
                    }
                    hir::GenericArg::Infer(inf) => {
                        if err_for_ty {
                            continue;
                        }
                        has_err = true;
                        err_for_ty = true;
                        (inf.span, "generic")
                    }
                };
                let mut err = struct_span_err!(
                    self.tcx().sess,
                    span,
                    E0109,
                    "{} arguments are not allowed for this type",
                    kind,
                );
                err.span_label(span, format!("{} argument not allowed", kind));
                err.emit();
                if err_for_lt && err_for_ty && err_for_ct {
                    break;
                }
            }

            // Only emit the first error to avoid overloading the user with error messages.
            if let [binding, ..] = segment.args().bindings {
                has_err = true;
                Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
            }
        }
        has_err
    }

    // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
    pub fn def_ids_for_value_path_segments(
        &self,
        segments: &[hir::PathSegment<'_>],
        self_ty: Option<Ty<'tcx>>,
        kind: DefKind,
        def_id: DefId,
    ) -> Vec<PathSeg> {
        // We need to extract the type parameters supplied by the user in
        // the path `path`. Due to the current setup, this is a bit of a
        // tricky-process; the problem is that resolve only tells us the
        // end-point of the path resolution, and not the intermediate steps.
        // Luckily, we can (at least for now) deduce the intermediate steps
        // just from the end-point.
        //
        // There are basically five cases to consider:
        //
        // 1. Reference to a constructor of a struct:
        //
        //        struct Foo<T>(...)
        //
        //    In this case, the parameters are declared in the type space.
        //
        // 2. Reference to a constructor of an enum variant:
        //
        //        enum E<T> { Foo(...) }
        //
        //    In this case, the parameters are defined in the type space,
        //    but may be specified either on the type or the variant.
        //
        // 3. Reference to a fn item or a free constant:
        //
        //        fn foo<T>() { }
        //
        //    In this case, the path will again always have the form
        //    `a::b::foo::<T>` where only the final segment should have
        //    type parameters. However, in this case, those parameters are
        //    declared on a value, and hence are in the `FnSpace`.
        //
        // 4. Reference to a method or an associated constant:
        //
        //        impl<A> SomeStruct<A> {
        //            fn foo<B>(...)
        //        }
        //
        //    Here we can have a path like
        //    `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
        //    may appear in two places. The penultimate segment,
        //    `SomeStruct::<A>`, contains parameters in TypeSpace, and the
        //    final segment, `foo::<B>` contains parameters in fn space.
        //
        // The first step then is to categorize the segments appropriately.

        let tcx = self.tcx();

        assert!(!segments.is_empty());
        let last = segments.len() - 1;

        let mut path_segs = vec![];

        match kind {
            // Case 1. Reference to a struct constructor.
            DefKind::Ctor(CtorOf::Struct, ..) => {
                // Everything but the final segment should have no
                // parameters at all.
                let generics = tcx.generics_of(def_id);
                // Variant and struct constructors use the
                // generics of their parent type definition.
                let generics_def_id = generics.parent.unwrap_or(def_id);
                path_segs.push(PathSeg(generics_def_id, last));
            }

            // Case 2. Reference to a variant constructor.
            DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
                let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
                let (generics_def_id, index) = if let Some(adt_def) = adt_def {
                    debug_assert!(adt_def.is_enum());
                    (adt_def.did, last)
                } else if last >= 1 && segments[last - 1].args.is_some() {
                    // Everything but the penultimate segment should have no
                    // parameters at all.
                    let mut def_id = def_id;

                    // `DefKind::Ctor` -> `DefKind::Variant`
                    if let DefKind::Ctor(..) = kind {
                        def_id = tcx.parent(def_id).unwrap()
                    }

                    // `DefKind::Variant` -> `DefKind::Enum`
                    let enum_def_id = tcx.parent(def_id).unwrap();
                    (enum_def_id, last - 1)
                } else {
                    // FIXME: lint here recommending `Enum::<...>::Variant` form
                    // instead of `Enum::Variant::<...>` form.

                    // Everything but the final segment should have no
                    // parameters at all.
                    let generics = tcx.generics_of(def_id);
                    // Variant and struct constructors use the
                    // generics of their parent type definition.
                    (generics.parent.unwrap_or(def_id), last)
                };
                path_segs.push(PathSeg(generics_def_id, index));
            }

            // Case 3. Reference to a top-level value.
            DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
                path_segs.push(PathSeg(def_id, last));
            }

            // Case 4. Reference to a method or associated const.
            DefKind::AssocFn | DefKind::AssocConst => {
                if segments.len() >= 2 {
                    let generics = tcx.generics_of(def_id);
                    path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
                }
                path_segs.push(PathSeg(def_id, last));
            }

            kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
        }

        debug!("path_segs = {:?}", path_segs);

        path_segs
    }

    // Check a type `Path` and convert it to a `Ty`.
    pub fn res_to_ty(
        &self,
        opt_self_ty: Option<Ty<'tcx>>,
        path: &hir::Path<'_>,
        permit_variants: bool,
    ) -> Ty<'tcx> {
        let tcx = self.tcx();

        debug!(
            "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
            path.res, opt_self_ty, path.segments
        );

        let span = path.span;
        match path.res {
            Res::Def(DefKind::OpaqueTy, did) => {
                // Check for desugared `impl Trait`.
                assert!(ty::is_impl_trait_defn(tcx, did).is_none());
                let item_segment = path.segments.split_last().unwrap();
                self.prohibit_generics(item_segment.1);
                let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
                self.normalize_ty(span, tcx.mk_opaque(did, substs))
            }
            Res::Def(
                DefKind::Enum
                | DefKind::TyAlias
                | DefKind::Struct
                | DefKind::Union
                | DefKind::ForeignTy,
                did,
            ) => {
                assert_eq!(opt_self_ty, None);
                self.prohibit_generics(path.segments.split_last().unwrap().1);
                self.ast_path_to_ty(span, did, path.segments.last().unwrap())
            }
            Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
                // Convert "variant type" as if it were a real type.
                // The resulting `Ty` is type of the variant's enum for now.
                assert_eq!(opt_self_ty, None);

                let path_segs =
                    self.def_ids_for_value_path_segments(path.segments, None, kind, def_id);
                let generic_segs: FxHashSet<_> =
                    path_segs.iter().map(|PathSeg(_, index)| index).collect();
                self.prohibit_generics(path.segments.iter().enumerate().filter_map(
                    |(index, seg)| {
                        if !generic_segs.contains(&index) { Some(seg) } else { None }
                    },
                ));

                let PathSeg(def_id, index) = path_segs.last().unwrap();
                self.ast_path_to_ty(span, *def_id, &path.segments[*index])
            }
            Res::Def(DefKind::TyParam, def_id) => {
                assert_eq!(opt_self_ty, None);
                self.prohibit_generics(path.segments);

                let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
                let item_id = tcx.hir().get_parent_node(hir_id);
                let item_def_id = tcx.hir().local_def_id(item_id);
                let generics = tcx.generics_of(item_def_id);
                let index = generics.param_def_id_to_index[&def_id];
                tcx.mk_ty_param(index, tcx.hir().name(hir_id))
            }
            Res::SelfTy(Some(_), None) => {
                // `Self` in trait or type alias.
                assert_eq!(opt_self_ty, None);
                self.prohibit_generics(path.segments);
                tcx.types.self_param
            }
            Res::SelfTy(_, Some((def_id, forbid_generic))) => {
                // `Self` in impl (we know the concrete type).
                assert_eq!(opt_self_ty, None);
                self.prohibit_generics(path.segments);
                // Try to evaluate any array length constants.
                let normalized_ty = self.normalize_ty(span, tcx.at(span).type_of(def_id));
                if forbid_generic && normalized_ty.definitely_needs_subst(tcx) {
                    let mut err = tcx.sess.struct_span_err(
                        path.span,
                        "generic `Self` types are currently not permitted in anonymous constants",
                    );
                    if let Some(hir::Node::Item(&hir::Item {
                        kind: hir::ItemKind::Impl(ref impl_),
                        ..
                    })) = tcx.hir().get_if_local(def_id)
                    {
                        err.span_note(impl_.self_ty.span, "not a concrete type");
                    }
                    err.emit();
                    tcx.ty_error()
                } else {
                    normalized_ty
                }
            }
            Res::Def(DefKind::AssocTy, def_id) => {
                debug_assert!(path.segments.len() >= 2);
                self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
                self.qpath_to_ty(
                    span,
                    opt_self_ty,
                    def_id,
                    &path.segments[path.segments.len() - 2],
                    path.segments.last().unwrap(),
                )
            }
            Res::PrimTy(prim_ty) => {
                assert_eq!(opt_self_ty, None);
                self.prohibit_generics(path.segments);
                match prim_ty {
                    hir::PrimTy::Bool => tcx.types.bool,
                    hir::PrimTy::Char => tcx.types.char,
                    hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
                    hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
                    hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
                    hir::PrimTy::Str => tcx.types.str_,
                }
            }
            Res::Err => {
                self.set_tainted_by_errors();
                self.tcx().ty_error()
            }
            _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
        }
    }

    /// Parses the programmer's textual representation of a type into our
    /// internal notion of a type.
    pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
        self.ast_ty_to_ty_inner(ast_ty, false)
    }

    /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
    /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
    #[tracing::instrument(level = "debug", skip(self))]
    fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool) -> Ty<'tcx> {
        let tcx = self.tcx();

        let result_ty = match ast_ty.kind {
            hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(ty)),
            hir::TyKind::Ptr(ref mt) => {
                tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(mt.ty), mutbl: mt.mutbl })
            }
            hir::TyKind::Rptr(ref region, ref mt) => {
                let r = self.ast_region_to_region(region, None);
                debug!(?r);
                let t = self.ast_ty_to_ty_inner(mt.ty, true);
                tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
            }
            hir::TyKind::Never => tcx.types.never,
            hir::TyKind::Tup(fields) => tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(t))),
            hir::TyKind::BareFn(bf) => {
                require_c_abi_if_c_variadic(tcx, bf.decl, bf.abi, ast_ty.span);

                tcx.mk_fn_ptr(self.ty_of_fn(
                    ast_ty.hir_id,
                    bf.unsafety,
                    bf.abi,
                    bf.decl,
                    &hir::Generics::empty(),
                    None,
                    Some(ast_ty),
                ))
            }
            hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
                self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed)
            }
            hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
                debug!(?maybe_qself, ?path);
                let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
                self.res_to_ty(opt_self_ty, path, false)
            }
            hir::TyKind::OpaqueDef(item_id, lifetimes) => {
                let opaque_ty = tcx.hir().item(item_id);
                let def_id = item_id.def_id.to_def_id();

                match opaque_ty.kind {
                    hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
                        self.impl_trait_ty_to_ty(def_id, lifetimes, impl_trait_fn.is_some())
                    }
                    ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
                }
            }
            hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
                debug!(?qself, ?segment);
                let ty = self.ast_ty_to_ty(qself);

                let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = qself.kind {
                    path.res
                } else {
                    Res::Err
                };
                self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
                    .map(|(ty, _, _)| ty)
                    .unwrap_or_else(|_| tcx.ty_error())
            }
            hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
                let def_id = tcx.require_lang_item(lang_item, Some(span));
                let (substs, _) = self.create_substs_for_ast_path(
                    span,
                    def_id,
                    &[],
                    &hir::PathSegment::invalid(),
                    &GenericArgs::none(),
                    true,
                    None,
                );
                self.normalize_ty(span, tcx.at(span).type_of(def_id).subst(tcx, substs))
            }
            hir::TyKind::Array(ref ty, ref length) => {
                let length_def_id = tcx.hir().local_def_id(length.hir_id);
                let length = ty::Const::from_anon_const(tcx, length_def_id);
                let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(ty), length));
                self.normalize_ty(ast_ty.span, array_ty)
            }
            hir::TyKind::Typeof(ref e) => {
                tcx.sess.emit_err(TypeofReservedKeywordUsed { span: ast_ty.span });
                tcx.type_of(tcx.hir().local_def_id(e.hir_id))
            }
            hir::TyKind::Infer => {
                // Infer also appears as the type of arguments or return
                // values in an ExprKind::Closure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
                self.ty_infer(None, ast_ty.span)
            }
            hir::TyKind::Err => tcx.ty_error(),
        };

        debug!(?result_ty);

        self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
        result_ty
    }

    fn impl_trait_ty_to_ty(
        &self,
        def_id: DefId,
        lifetimes: &[hir::GenericArg<'_>],
        replace_parent_lifetimes: bool,
    ) -> Ty<'tcx> {
        debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
        let tcx = self.tcx();

        let generics = tcx.generics_of(def_id);

        debug!("impl_trait_ty_to_ty: generics={:?}", generics);
        let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
            if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
                // Our own parameters are the resolved lifetimes.
                if let GenericParamDefKind::Lifetime = param.kind {
                    if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
                        self.ast_region_to_region(lifetime, None).into()
                    } else {
                        bug!()
                    }
                } else {
                    bug!()
                }
            } else {
                match param.kind {
                    // For RPIT (return position impl trait), only lifetimes
                    // mentioned in the impl Trait predicate are captured by
                    // the opaque type, so the lifetime parameters from the
                    // parent item need to be replaced with `'static`.
                    //
                    // For `impl Trait` in the types of statics, constants,
                    // locals and type aliases. These capture all parent
                    // lifetimes, so they can use their identity subst.
                    GenericParamDefKind::Lifetime if replace_parent_lifetimes => {
                        tcx.lifetimes.re_static.into()
                    }
                    _ => tcx.mk_param_from_def(param),
                }
            }
        });
        debug!("impl_trait_ty_to_ty: substs={:?}", substs);

        let ty = tcx.mk_opaque(def_id, substs);
        debug!("impl_trait_ty_to_ty: {}", ty);
        ty
    }

    pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
        match ty.kind {
            hir::TyKind::Infer if expected_ty.is_some() => {
                self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
                expected_ty.unwrap()
            }
            _ => self.ast_ty_to_ty(ty),
        }
    }

    pub fn ty_of_fn(
        &self,
        hir_id: hir::HirId,
        unsafety: hir::Unsafety,
        abi: abi::Abi,
        decl: &hir::FnDecl<'_>,
        generics: &hir::Generics<'_>,
        ident_span: Option<Span>,
        hir_ty: Option<&hir::Ty<'_>>,
    ) -> ty::PolyFnSig<'tcx> {
        debug!("ty_of_fn");

        let tcx = self.tcx();
        let bound_vars = tcx.late_bound_vars(hir_id);
        debug!(?bound_vars);

        // We proactively collect all the inferred type params to emit a single error per fn def.
        let mut visitor = PlaceholderHirTyCollector::default();
        for ty in decl.inputs {
            visitor.visit_ty(ty);
        }
        walk_generics(&mut visitor, generics);

        let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
        let output_ty = match decl.output {
            hir::FnRetTy::Return(output) => {
                visitor.visit_ty(output);
                self.ast_ty_to_ty(output)
            }
            hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
        };

        debug!("ty_of_fn: output_ty={:?}", output_ty);

        let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi);
        let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);

        if !self.allow_ty_infer() {
            // We always collect the spans for placeholder types when evaluating `fn`s, but we
            // only want to emit an error complaining about them if infer types (`_`) are not
            // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
            // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.

            crate::collect::placeholder_type_error(
                tcx,
                ident_span.map(|sp| sp.shrink_to_hi()),
                generics.params,
                visitor.0,
                true,
                hir_ty,
                "function",
            );
        }

        // Find any late-bound regions declared in return type that do
        // not appear in the arguments. These are not well-formed.
        //
        // Example:
        //     for<'a> fn() -> &'a str <-- 'a is bad
        //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
        let inputs = bare_fn_ty.inputs();
        let late_bound_in_args =
            tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
        let output = bare_fn_ty.output();
        let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);

        self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
            struct_span_err!(
                tcx.sess,
                decl.output.span(),
                E0581,
                "return type references {}, which is not constrained by the fn input types",
                br_name
            )
        });

        bare_fn_ty
    }

    fn validate_late_bound_regions(
        &self,
        constrained_regions: FxHashSet<ty::BoundRegionKind>,
        referenced_regions: FxHashSet<ty::BoundRegionKind>,
        generate_err: impl Fn(&str) -> rustc_errors::DiagnosticBuilder<'tcx>,
    ) {
        for br in referenced_regions.difference(&constrained_regions) {
            let br_name = match *br {
                ty::BrNamed(_, name) => format!("lifetime `{}`", name),
                ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
            };

            let mut err = generate_err(&br_name);

            if let ty::BrAnon(_) = *br {
                // The only way for an anonymous lifetime to wind up
                // in the return type but **also** be unconstrained is
                // if it only appears in "associated types" in the
                // input. See #47511 and #62200 for examples. In this case,
                // though we can easily give a hint that ought to be
                // relevant.
                err.note(
                    "lifetimes appearing in an associated type are not considered constrained",
                );
            }

            err.emit();
        }
    }

    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type. The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    fn compute_object_lifetime_bound(
        &self,
        span: Span,
        existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
    ) -> Option<ty::Region<'tcx>> // if None, use the default
    {
        let tcx = self.tcx();

        debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);

        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds = object_region_bounds(tcx, existential_predicates);

        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }

        // If any of the derived region bounds are 'static, that is always
        // the best choice.
        if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
            return Some(tcx.lifetimes.re_static);
        }

        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            tcx.sess.emit_err(AmbiguousLifetimeBound { span });
        }
        Some(r)
    }
}