1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
//! # Type Coercion
//!
//! Under certain circumstances we will coerce from one type to another,
//! for example by auto-borrowing. This occurs in situations where the
//! compiler has a firm 'expected type' that was supplied from the user,
//! and where the actual type is similar to that expected type in purpose
//! but not in representation (so actual subtyping is inappropriate).
//!
//! ## Reborrowing
//!
//! Note that if we are expecting a reference, we will *reborrow*
//! even if the argument provided was already a reference. This is
//! useful for freezing mut things (that is, when the expected type is &T
//! but you have &mut T) and also for avoiding the linearity
//! of mut things (when the expected is &mut T and you have &mut T). See
//! the various `src/test/ui/coerce/*.rs` tests for
//! examples of where this is useful.
//!
//! ## Subtle note
//!
//! When infering the generic arguments of functions, the argument
//! order is relevant, which can lead to the following edge case:
//!
//! ```rust
//! fn foo<T>(a: T, b: T) {
//!     // ...
//! }
//!
//! foo(&7i32, &mut 7i32);
//! // This compiles, as we first infer `T` to be `&i32`,
//! // and then coerce `&mut 7i32` to `&7i32`.
//!
//! foo(&mut 7i32, &7i32);
//! // This does not compile, as we first infer `T` to be `&mut i32`
//! // and are then unable to coerce `&7i32` to `&mut i32`.
//! ```

use crate::astconv::AstConv;
use crate::check::FnCtxt;
use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::{Coercion, InferOk, InferResult};
use rustc_infer::traits::{Obligation, TraitEngine, TraitEngineExt};
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty::adjustment::{
    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCast,
};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::relate::RelateResult;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, ToPredicate, Ty, TypeAndMut};
use rustc_session::parse::feature_err;
use rustc_span::symbol::sym;
use rustc_span::{self, BytePos, DesugaringKind, Span};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode};

use smallvec::{smallvec, SmallVec};
use std::ops::Deref;

struct Coerce<'a, 'tcx> {
    fcx: &'a FnCtxt<'a, 'tcx>,
    cause: ObligationCause<'tcx>,
    use_lub: bool,
    /// Determines whether or not allow_two_phase_borrow is set on any
    /// autoref adjustments we create while coercing. We don't want to
    /// allow deref coercions to create two-phase borrows, at least initially,
    /// but we do need two-phase borrows for function argument reborrows.
    /// See #47489 and #48598
    /// See docs on the "AllowTwoPhase" type for a more detailed discussion
    allow_two_phase: AllowTwoPhase,
}

impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
    type Target = FnCtxt<'a, 'tcx>;
    fn deref(&self) -> &Self::Target {
        &self.fcx
    }
}

type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;

/// Coercing a mutable reference to an immutable works, while
/// coercing `&T` to `&mut T` should be forbidden.
fn coerce_mutbls<'tcx>(
    from_mutbl: hir::Mutability,
    to_mutbl: hir::Mutability,
) -> RelateResult<'tcx, ()> {
    match (from_mutbl, to_mutbl) {
        (hir::Mutability::Mut, hir::Mutability::Mut | hir::Mutability::Not)
        | (hir::Mutability::Not, hir::Mutability::Not) => Ok(()),
        (hir::Mutability::Not, hir::Mutability::Mut) => Err(TypeError::Mutability),
    }
}

/// Do not require any adjustments, i.e. coerce `x -> x`.
fn identity(_: Ty<'_>) -> Vec<Adjustment<'_>> {
    vec![]
}

fn simple(kind: Adjust<'tcx>) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>> {
    move |target| vec![Adjustment { kind, target }]
}

/// This always returns `Ok(...)`.
fn success<'tcx>(
    adj: Vec<Adjustment<'tcx>>,
    target: Ty<'tcx>,
    obligations: traits::PredicateObligations<'tcx>,
) -> CoerceResult<'tcx> {
    Ok(InferOk { value: (adj, target), obligations })
}

impl<'f, 'tcx> Coerce<'f, 'tcx> {
    fn new(
        fcx: &'f FnCtxt<'f, 'tcx>,
        cause: ObligationCause<'tcx>,
        allow_two_phase: AllowTwoPhase,
    ) -> Self {
        Coerce { fcx, cause, allow_two_phase, use_lub: false }
    }

    fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
        debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
        self.commit_if_ok(|_| {
            if self.use_lub {
                self.at(&self.cause, self.fcx.param_env).lub(b, a)
            } else {
                self.at(&self.cause, self.fcx.param_env)
                    .sup(b, a)
                    .map(|InferOk { value: (), obligations }| InferOk { value: a, obligations })
            }
        })
    }

    /// Unify two types (using sub or lub) and produce a specific coercion.
    fn unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx>
    where
        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
    {
        self.unify(&a, &b)
            .and_then(|InferOk { value: ty, obligations }| success(f(ty), ty, obligations))
    }

    #[instrument(skip(self))]
    fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
        // First, remove any resolved type variables (at the top level, at least):
        let a = self.shallow_resolve(a);
        let b = self.shallow_resolve(b);
        debug!("Coerce.tys({:?} => {:?})", a, b);

        // Just ignore error types.
        if a.references_error() || b.references_error() {
            return success(vec![], self.fcx.tcx.ty_error(), vec![]);
        }

        // Coercing from `!` to any type is allowed:
        if a.is_never() {
            return success(simple(Adjust::NeverToAny)(b), b, vec![]);
        }

        // Coercing *from* an unresolved inference variable means that
        // we have no information about the source type. This will always
        // ultimately fall back to some form of subtyping.
        if a.is_ty_var() {
            return self.coerce_from_inference_variable(a, b, identity);
        }

        // Consider coercing the subtype to a DST
        //
        // NOTE: this is wrapped in a `commit_if_ok` because it creates
        // a "spurious" type variable, and we don't want to have that
        // type variable in memory if the coercion fails.
        let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
        match unsize {
            Ok(_) => {
                debug!("coerce: unsize successful");
                return unsize;
            }
            Err(TypeError::ObjectUnsafeCoercion(did)) => {
                debug!("coerce: unsize not object safe");
                return Err(TypeError::ObjectUnsafeCoercion(did));
            }
            Err(_) => {}
        }
        debug!("coerce: unsize failed");

        // Examine the supertype and consider auto-borrowing.
        match *b.kind() {
            ty::RawPtr(mt_b) => {
                return self.coerce_unsafe_ptr(a, b, mt_b.mutbl);
            }
            ty::Ref(r_b, _, mutbl_b) => {
                return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
            }
            _ => {}
        }

        match *a.kind() {
            ty::FnDef(..) => {
                // Function items are coercible to any closure
                // type; function pointers are not (that would
                // require double indirection).
                // Additionally, we permit coercion of function
                // items to drop the unsafe qualifier.
                self.coerce_from_fn_item(a, b)
            }
            ty::FnPtr(a_f) => {
                // We permit coercion of fn pointers to drop the
                // unsafe qualifier.
                self.coerce_from_fn_pointer(a, a_f, b)
            }
            ty::Closure(closure_def_id_a, substs_a) => {
                // Non-capturing closures are coercible to
                // function pointers or unsafe function pointers.
                // It cannot convert closures that require unsafe.
                self.coerce_closure_to_fn(a, closure_def_id_a, substs_a, b)
            }
            _ => {
                // Otherwise, just use unification rules.
                self.unify_and(a, b, identity)
            }
        }
    }

    /// Coercing *from* an inference variable. In this case, we have no information
    /// about the source type, so we can't really do a true coercion and we always
    /// fall back to subtyping (`unify_and`).
    fn coerce_from_inference_variable(
        &self,
        a: Ty<'tcx>,
        b: Ty<'tcx>,
        make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
    ) -> CoerceResult<'tcx> {
        debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
        assert!(a.is_ty_var() && self.infcx.shallow_resolve(a) == a);
        assert!(self.infcx.shallow_resolve(b) == b);

        if b.is_ty_var() {
            // Two unresolved type variables: create a `Coerce` predicate.
            let target_ty = if self.use_lub {
                self.infcx.next_ty_var(TypeVariableOrigin {
                    kind: TypeVariableOriginKind::LatticeVariable,
                    span: self.cause.span,
                })
            } else {
                b
            };

            let mut obligations = Vec::with_capacity(2);
            for &source_ty in &[a, b] {
                if source_ty != target_ty {
                    obligations.push(Obligation::new(
                        self.cause.clone(),
                        self.param_env,
                        ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
                            a: source_ty,
                            b: target_ty,
                        }))
                        .to_predicate(self.tcx()),
                    ));
                }
            }

            debug!(
                "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
                target_ty, obligations
            );
            let adjustments = make_adjustments(target_ty);
            InferResult::Ok(InferOk { value: (adjustments, target_ty), obligations })
        } else {
            // One unresolved type variable: just apply subtyping, we may be able
            // to do something useful.
            self.unify_and(a, b, make_adjustments)
        }
    }

    /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
    /// To match `A` with `B`, autoderef will be performed,
    /// calling `deref`/`deref_mut` where necessary.
    fn coerce_borrowed_pointer(
        &self,
        a: Ty<'tcx>,
        b: Ty<'tcx>,
        r_b: ty::Region<'tcx>,
        mutbl_b: hir::Mutability,
    ) -> CoerceResult<'tcx> {
        debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);

        // If we have a parameter of type `&M T_a` and the value
        // provided is `expr`, we will be adding an implicit borrow,
        // meaning that we convert `f(expr)` to `f(&M *expr)`.  Therefore,
        // to type check, we will construct the type that `&M*expr` would
        // yield.

        let (r_a, mt_a) = match *a.kind() {
            ty::Ref(r_a, ty, mutbl) => {
                let mt_a = ty::TypeAndMut { ty, mutbl };
                coerce_mutbls(mt_a.mutbl, mutbl_b)?;
                (r_a, mt_a)
            }
            _ => return self.unify_and(a, b, identity),
        };

        let span = self.cause.span;

        let mut first_error = None;
        let mut r_borrow_var = None;
        let mut autoderef = self.autoderef(span, a);
        let mut found = None;

        for (referent_ty, autoderefs) in autoderef.by_ref() {
            if autoderefs == 0 {
                // Don't let this pass, otherwise it would cause
                // &T to autoref to &&T.
                continue;
            }

            // At this point, we have deref'd `a` to `referent_ty`.  So
            // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
            // In the autoderef loop for `&'a mut Vec<T>`, we would get
            // three callbacks:
            //
            // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
            // - `Vec<T>` -- 1 deref
            // - `[T]` -- 2 deref
            //
            // At each point after the first callback, we want to
            // check to see whether this would match out target type
            // (`&'b mut [T]`) if we autoref'd it. We can't just
            // compare the referent types, though, because we still
            // have to consider the mutability. E.g., in the case
            // we've been considering, we have an `&mut` reference, so
            // the `T` in `[T]` needs to be unified with equality.
            //
            // Therefore, we construct reference types reflecting what
            // the types will be after we do the final auto-ref and
            // compare those. Note that this means we use the target
            // mutability [1], since it may be that we are coercing
            // from `&mut T` to `&U`.
            //
            // One fine point concerns the region that we use. We
            // choose the region such that the region of the final
            // type that results from `unify` will be the region we
            // want for the autoref:
            //
            // - if in sub mode, that means we want to use `'b` (the
            //   region from the target reference) for both
            //   pointers [2]. This is because sub mode (somewhat
            //   arbitrarily) returns the subtype region.  In the case
            //   where we are coercing to a target type, we know we
            //   want to use that target type region (`'b`) because --
            //   for the program to type-check -- it must be the
            //   smaller of the two.
            //   - One fine point. It may be surprising that we can
            //     use `'b` without relating `'a` and `'b`. The reason
            //     that this is ok is that what we produce is
            //     effectively a `&'b *x` expression (if you could
            //     annotate the region of a borrow), and regionck has
            //     code that adds edges from the region of a borrow
            //     (`'b`, here) into the regions in the borrowed
            //     expression (`*x`, here).  (Search for "link".)
            // - if in lub mode, things can get fairly complicated. The
            //   easiest thing is just to make a fresh
            //   region variable [4], which effectively means we defer
            //   the decision to region inference (and regionck, which will add
            //   some more edges to this variable). However, this can wind up
            //   creating a crippling number of variables in some cases --
            //   e.g., #32278 -- so we optimize one particular case [3].
            //   Let me try to explain with some examples:
            //   - The "running example" above represents the simple case,
            //     where we have one `&` reference at the outer level and
            //     ownership all the rest of the way down. In this case,
            //     we want `LUB('a, 'b)` as the resulting region.
            //   - However, if there are nested borrows, that region is
            //     too strong. Consider a coercion from `&'a &'x Rc<T>` to
            //     `&'b T`. In this case, `'a` is actually irrelevant.
            //     The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
            //     we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
            //     (The errors actually show up in borrowck, typically, because
            //     this extra edge causes the region `'a` to be inferred to something
            //     too big, which then results in borrowck errors.)
            //   - We could track the innermost shared reference, but there is already
            //     code in regionck that has the job of creating links between
            //     the region of a borrow and the regions in the thing being
            //     borrowed (here, `'a` and `'x`), and it knows how to handle
            //     all the various cases. So instead we just make a region variable
            //     and let regionck figure it out.
            let r = if !self.use_lub {
                r_b // [2] above
            } else if autoderefs == 1 {
                r_a // [3] above
            } else {
                if r_borrow_var.is_none() {
                    // create var lazily, at most once
                    let coercion = Coercion(span);
                    let r = self.next_region_var(coercion);
                    r_borrow_var = Some(r); // [4] above
                }
                r_borrow_var.unwrap()
            };
            let derefd_ty_a = self.tcx.mk_ref(
                r,
                TypeAndMut {
                    ty: referent_ty,
                    mutbl: mutbl_b, // [1] above
                },
            );
            match self.unify(derefd_ty_a, b) {
                Ok(ok) => {
                    found = Some(ok);
                    break;
                }
                Err(err) => {
                    if first_error.is_none() {
                        first_error = Some(err);
                    }
                }
            }
        }

        // Extract type or return an error. We return the first error
        // we got, which should be from relating the "base" type
        // (e.g., in example above, the failure from relating `Vec<T>`
        // to the target type), since that should be the least
        // confusing.
        let InferOk { value: ty, mut obligations } = match found {
            Some(d) => d,
            None => {
                let err = first_error.expect("coerce_borrowed_pointer had no error");
                debug!("coerce_borrowed_pointer: failed with err = {:?}", err);
                return Err(err);
            }
        };

        if ty == a && mt_a.mutbl == hir::Mutability::Not && autoderef.step_count() == 1 {
            // As a special case, if we would produce `&'a *x`, that's
            // a total no-op. We end up with the type `&'a T` just as
            // we started with.  In that case, just skip it
            // altogether. This is just an optimization.
            //
            // Note that for `&mut`, we DO want to reborrow --
            // otherwise, this would be a move, which might be an
            // error. For example `foo(self.x)` where `self` and
            // `self.x` both have `&mut `type would be a move of
            // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
            // which is a borrow.
            assert_eq!(mutbl_b, hir::Mutability::Not); // can only coerce &T -> &U
            return success(vec![], ty, obligations);
        }

        let InferOk { value: mut adjustments, obligations: o } =
            self.adjust_steps_as_infer_ok(&autoderef);
        obligations.extend(o);
        obligations.extend(autoderef.into_obligations());

        // Now apply the autoref. We have to extract the region out of
        // the final ref type we got.
        let r_borrow = match ty.kind() {
            ty::Ref(r_borrow, _, _) => r_borrow,
            _ => span_bug!(span, "expected a ref type, got {:?}", ty),
        };
        let mutbl = match mutbl_b {
            hir::Mutability::Not => AutoBorrowMutability::Not,
            hir::Mutability::Mut => {
                AutoBorrowMutability::Mut { allow_two_phase_borrow: self.allow_two_phase }
            }
        };
        adjustments.push(Adjustment {
            kind: Adjust::Borrow(AutoBorrow::Ref(r_borrow, mutbl)),
            target: ty,
        });

        debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);

        success(adjustments, ty, obligations)
    }

    // &[T; n] or &mut [T; n] -> &[T]
    // or &mut [T; n] -> &mut [T]
    // or &Concrete -> &Trait, etc.
    #[instrument(skip(self), level = "debug")]
    fn coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx> {
        source = self.shallow_resolve(source);
        target = self.shallow_resolve(target);
        debug!(?source, ?target);

        // These 'if' statements require some explanation.
        // The `CoerceUnsized` trait is special - it is only
        // possible to write `impl CoerceUnsized<B> for A` where
        // A and B have 'matching' fields. This rules out the following
        // two types of blanket impls:
        //
        // `impl<T> CoerceUnsized<T> for SomeType`
        // `impl<T> CoerceUnsized<SomeType> for T`
        //
        // Both of these trigger a special `CoerceUnsized`-related error (E0376)
        //
        // We can take advantage of this fact to avoid performing unnecessary work.
        // If either `source` or `target` is a type variable, then any applicable impl
        // would need to be generic over the self-type (`impl<T> CoerceUnsized<SomeType> for T`)
        // or generic over the `CoerceUnsized` type parameter (`impl<T> CoerceUnsized<T> for
        // SomeType`).
        //
        // However, these are exactly the kinds of impls which are forbidden by
        // the compiler! Therefore, we can be sure that coercion will always fail
        // when either the source or target type is a type variable. This allows us
        // to skip performing any trait selection, and immediately bail out.
        if source.is_ty_var() {
            debug!("coerce_unsized: source is a TyVar, bailing out");
            return Err(TypeError::Mismatch);
        }
        if target.is_ty_var() {
            debug!("coerce_unsized: target is a TyVar, bailing out");
            return Err(TypeError::Mismatch);
        }

        let traits =
            (self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
        let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
            debug!("missing Unsize or CoerceUnsized traits");
            return Err(TypeError::Mismatch);
        };

        // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
        // a DST unless we have to. This currently comes out in the wash since
        // we can't unify [T] with U. But to properly support DST, we need to allow
        // that, at which point we will need extra checks on the target here.

        // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
        let reborrow = match (source.kind(), target.kind()) {
            (&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
                coerce_mutbls(mutbl_a, mutbl_b)?;

                let coercion = Coercion(self.cause.span);
                let r_borrow = self.next_region_var(coercion);
                let mutbl = match mutbl_b {
                    hir::Mutability::Not => AutoBorrowMutability::Not,
                    hir::Mutability::Mut => AutoBorrowMutability::Mut {
                        // We don't allow two-phase borrows here, at least for initial
                        // implementation. If it happens that this coercion is a function argument,
                        // the reborrow in coerce_borrowed_ptr will pick it up.
                        allow_two_phase_borrow: AllowTwoPhase::No,
                    },
                };
                Some((
                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
                    Adjustment {
                        kind: Adjust::Borrow(AutoBorrow::Ref(r_borrow, mutbl)),
                        target: self
                            .tcx
                            .mk_ref(r_borrow, ty::TypeAndMut { mutbl: mutbl_b, ty: ty_a }),
                    },
                ))
            }
            (&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(ty::TypeAndMut { mutbl: mt_b, .. })) => {
                coerce_mutbls(mt_a, mt_b)?;

                Some((
                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
                    Adjustment {
                        kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
                        target: self.tcx.mk_ptr(ty::TypeAndMut { mutbl: mt_b, ty: ty_a }),
                    },
                ))
            }
            _ => None,
        };
        let coerce_source = reborrow.as_ref().map_or(source, |&(_, ref r)| r.target);

        // Setup either a subtyping or a LUB relationship between
        // the `CoerceUnsized` target type and the expected type.
        // We only have the latter, so we use an inference variable
        // for the former and let type inference do the rest.
        let origin = TypeVariableOrigin {
            kind: TypeVariableOriginKind::MiscVariable,
            span: self.cause.span,
        };
        let coerce_target = self.next_ty_var(origin);
        let mut coercion = self.unify_and(coerce_target, target, |target| {
            let unsize = Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target };
            match reborrow {
                None => vec![unsize],
                Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
            }
        })?;

        let mut selcx = traits::SelectionContext::new(self);

        // Create an obligation for `Source: CoerceUnsized<Target>`.
        let cause = ObligationCause::new(
            self.cause.span,
            self.body_id,
            ObligationCauseCode::Coercion { source, target },
        );

        // Use a FIFO queue for this custom fulfillment procedure.
        //
        // A Vec (or SmallVec) is not a natural choice for a queue. However,
        // this code path is hot, and this queue usually has a max length of 1
        // and almost never more than 3. By using a SmallVec we avoid an
        // allocation, at the (very small) cost of (occasionally) having to
        // shift subsequent elements down when removing the front element.
        let mut queue: SmallVec<[_; 4]> = smallvec![traits::predicate_for_trait_def(
            self.tcx,
            self.fcx.param_env,
            cause,
            coerce_unsized_did,
            0,
            coerce_source,
            &[coerce_target.into()]
        )];

        let mut has_unsized_tuple_coercion = false;
        let mut has_trait_upcasting_coercion = false;

        // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
        // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
        // inference might unify those two inner type variables later.
        let traits = [coerce_unsized_did, unsize_did];
        while !queue.is_empty() {
            let obligation = queue.remove(0);
            debug!("coerce_unsized resolve step: {:?}", obligation);
            let bound_predicate = obligation.predicate.kind();
            let trait_pred = match bound_predicate.skip_binder() {
                ty::PredicateKind::Trait(trait_pred) if traits.contains(&trait_pred.def_id()) => {
                    if unsize_did == trait_pred.def_id() {
                        let self_ty = trait_pred.self_ty();
                        let unsize_ty = trait_pred.trait_ref.substs[1].expect_ty();
                        if let (ty::Dynamic(ref data_a, ..), ty::Dynamic(ref data_b, ..)) =
                            (self_ty.kind(), unsize_ty.kind())
                        {
                            if data_a.principal_def_id() != data_b.principal_def_id() {
                                debug!("coerce_unsized: found trait upcasting coercion");
                                has_trait_upcasting_coercion = true;
                            }
                        }
                        if let ty::Tuple(..) = unsize_ty.kind() {
                            debug!("coerce_unsized: found unsized tuple coercion");
                            has_unsized_tuple_coercion = true;
                        }
                    }
                    bound_predicate.rebind(trait_pred)
                }
                _ => {
                    coercion.obligations.push(obligation);
                    continue;
                }
            };
            match selcx.select(&obligation.with(trait_pred)) {
                // Uncertain or unimplemented.
                Ok(None) => {
                    if trait_pred.def_id() == unsize_did {
                        let trait_pred = self.resolve_vars_if_possible(trait_pred);
                        let self_ty = trait_pred.skip_binder().self_ty();
                        let unsize_ty = trait_pred.skip_binder().trait_ref.substs[1].expect_ty();
                        debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
                        match (&self_ty.kind(), &unsize_ty.kind()) {
                            (ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
                                if self.type_var_is_sized(*v) =>
                            {
                                debug!("coerce_unsized: have sized infer {:?}", v);
                                coercion.obligations.push(obligation);
                                // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
                                // for unsizing.
                            }
                            _ => {
                                // Some other case for `$0: Unsize<Something>`. Note that we
                                // hit this case even if `Something` is a sized type, so just
                                // don't do the coercion.
                                debug!("coerce_unsized: ambiguous unsize");
                                return Err(TypeError::Mismatch);
                            }
                        }
                    } else {
                        debug!("coerce_unsized: early return - ambiguous");
                        return Err(TypeError::Mismatch);
                    }
                }
                Err(traits::Unimplemented) => {
                    debug!("coerce_unsized: early return - can't prove obligation");
                    return Err(TypeError::Mismatch);
                }

                // Object safety violations or miscellaneous.
                Err(err) => {
                    self.report_selection_error(obligation.clone(), &obligation, &err, false);
                    // Treat this like an obligation and follow through
                    // with the unsizing - the lack of a coercion should
                    // be silent, as it causes a type mismatch later.
                }

                Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
            }
        }

        if has_unsized_tuple_coercion && !self.tcx.features().unsized_tuple_coercion {
            feature_err(
                &self.tcx.sess.parse_sess,
                sym::unsized_tuple_coercion,
                self.cause.span,
                "unsized tuple coercion is not stable enough for use and is subject to change",
            )
            .emit();
        }

        if has_trait_upcasting_coercion && !self.tcx().features().trait_upcasting {
            feature_err(
                &self.tcx.sess.parse_sess,
                sym::trait_upcasting,
                self.cause.span,
                "trait upcasting coercion is experimental",
            )
            .emit();
        }

        Ok(coercion)
    }

    fn coerce_from_safe_fn<F, G>(
        &self,
        a: Ty<'tcx>,
        fn_ty_a: ty::PolyFnSig<'tcx>,
        b: Ty<'tcx>,
        to_unsafe: F,
        normal: G,
    ) -> CoerceResult<'tcx>
    where
        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
        G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
    {
        if let ty::FnPtr(fn_ty_b) = b.kind() {
            if let (hir::Unsafety::Normal, hir::Unsafety::Unsafe) =
                (fn_ty_a.unsafety(), fn_ty_b.unsafety())
            {
                let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
                return self.unify_and(unsafe_a, b, to_unsafe);
            }
        }
        self.unify_and(a, b, normal)
    }

    fn coerce_from_fn_pointer(
        &self,
        a: Ty<'tcx>,
        fn_ty_a: ty::PolyFnSig<'tcx>,
        b: Ty<'tcx>,
    ) -> CoerceResult<'tcx> {
        //! Attempts to coerce from the type of a Rust function item
        //! into a closure or a `proc`.
        //!

        let b = self.shallow_resolve(b);
        debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);

        self.coerce_from_safe_fn(
            a,
            fn_ty_a,
            b,
            simple(Adjust::Pointer(PointerCast::UnsafeFnPointer)),
            identity,
        )
    }

    fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
        //! Attempts to coerce from the type of a Rust function item
        //! into a closure or a `proc`.

        let b = self.shallow_resolve(b);
        let InferOk { value: b, mut obligations } =
            self.normalize_associated_types_in_as_infer_ok(self.cause.span, b);
        debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);

        match b.kind() {
            ty::FnPtr(b_sig) => {
                let a_sig = a.fn_sig(self.tcx);
                // Intrinsics are not coercible to function pointers
                if a_sig.abi() == Abi::RustIntrinsic || a_sig.abi() == Abi::PlatformIntrinsic {
                    return Err(TypeError::IntrinsicCast);
                }

                // Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396).
                if let ty::FnDef(def_id, _) = *a.kind() {
                    if b_sig.unsafety() == hir::Unsafety::Normal
                        && !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
                    {
                        return Err(TypeError::TargetFeatureCast(def_id));
                    }
                }

                let InferOk { value: a_sig, obligations: o1 } =
                    self.normalize_associated_types_in_as_infer_ok(self.cause.span, a_sig);
                obligations.extend(o1);

                let a_fn_pointer = self.tcx.mk_fn_ptr(a_sig);
                let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
                    a_fn_pointer,
                    a_sig,
                    b,
                    |unsafe_ty| {
                        vec![
                            Adjustment {
                                kind: Adjust::Pointer(PointerCast::ReifyFnPointer),
                                target: a_fn_pointer,
                            },
                            Adjustment {
                                kind: Adjust::Pointer(PointerCast::UnsafeFnPointer),
                                target: unsafe_ty,
                            },
                        ]
                    },
                    simple(Adjust::Pointer(PointerCast::ReifyFnPointer)),
                )?;

                obligations.extend(o2);
                Ok(InferOk { value, obligations })
            }
            _ => self.unify_and(a, b, identity),
        }
    }

    fn coerce_closure_to_fn(
        &self,
        a: Ty<'tcx>,
        closure_def_id_a: DefId,
        substs_a: SubstsRef<'tcx>,
        b: Ty<'tcx>,
    ) -> CoerceResult<'tcx> {
        //! Attempts to coerce from the type of a non-capturing closure
        //! into a function pointer.
        //!

        let b = self.shallow_resolve(b);

        match b.kind() {
            // At this point we haven't done capture analysis, which means
            // that the ClosureSubsts just contains an inference variable instead
            // of tuple of captured types.
            //
            // All we care here is if any variable is being captured and not the exact paths,
            // so we check `upvars_mentioned` for root variables being captured.
            ty::FnPtr(fn_ty)
                if self
                    .tcx
                    .upvars_mentioned(closure_def_id_a.expect_local())
                    .map_or(true, |u| u.is_empty()) =>
            {
                // We coerce the closure, which has fn type
                //     `extern "rust-call" fn((arg0,arg1,...)) -> _`
                // to
                //     `fn(arg0,arg1,...) -> _`
                // or
                //     `unsafe fn(arg0,arg1,...) -> _`
                let closure_sig = substs_a.as_closure().sig();
                let unsafety = fn_ty.unsafety();
                let pointer_ty =
                    self.tcx.mk_fn_ptr(self.tcx.signature_unclosure(closure_sig, unsafety));
                debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
                self.unify_and(
                    pointer_ty,
                    b,
                    simple(Adjust::Pointer(PointerCast::ClosureFnPointer(unsafety))),
                )
            }
            _ => self.unify_and(a, b, identity),
        }
    }

    fn coerce_unsafe_ptr(
        &self,
        a: Ty<'tcx>,
        b: Ty<'tcx>,
        mutbl_b: hir::Mutability,
    ) -> CoerceResult<'tcx> {
        debug!("coerce_unsafe_ptr(a={:?}, b={:?})", a, b);

        let (is_ref, mt_a) = match *a.kind() {
            ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
            ty::RawPtr(mt) => (false, mt),
            _ => return self.unify_and(a, b, identity),
        };
        coerce_mutbls(mt_a.mutbl, mutbl_b)?;

        // Check that the types which they point at are compatible.
        let a_unsafe = self.tcx.mk_ptr(ty::TypeAndMut { mutbl: mutbl_b, ty: mt_a.ty });
        // Although references and unsafe ptrs have the same
        // representation, we still register an Adjust::DerefRef so that
        // regionck knows that the region for `a` must be valid here.
        if is_ref {
            self.unify_and(a_unsafe, b, |target| {
                vec![
                    Adjustment { kind: Adjust::Deref(None), target: mt_a.ty },
                    Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)), target },
                ]
            })
        } else if mt_a.mutbl != mutbl_b {
            self.unify_and(a_unsafe, b, simple(Adjust::Pointer(PointerCast::MutToConstPointer)))
        } else {
            self.unify_and(a_unsafe, b, identity)
        }
    }
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    /// Attempt to coerce an expression to a type, and return the
    /// adjusted type of the expression, if successful.
    /// Adjustments are only recorded if the coercion succeeded.
    /// The expressions *must not* have any pre-existing adjustments.
    pub fn try_coerce(
        &self,
        expr: &hir::Expr<'_>,
        expr_ty: Ty<'tcx>,
        target: Ty<'tcx>,
        allow_two_phase: AllowTwoPhase,
        cause: Option<ObligationCause<'tcx>>,
    ) -> RelateResult<'tcx, Ty<'tcx>> {
        let source = self.resolve_vars_with_obligations(expr_ty);
        debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);

        let cause =
            cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
        let coerce = Coerce::new(self, cause, allow_two_phase);
        let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;

        let (adjustments, _) = self.register_infer_ok_obligations(ok);
        self.apply_adjustments(expr, adjustments);
        Ok(if expr_ty.references_error() { self.tcx.ty_error() } else { target })
    }

    /// Same as `try_coerce()`, but without side-effects.
    ///
    /// Returns false if the coercion creates any obligations that result in
    /// errors.
    pub fn can_coerce(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> bool {
        let source = self.resolve_vars_with_obligations(expr_ty);
        debug!("coercion::can_with_predicates({:?} -> {:?})", source, target);

        let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
        // We don't ever need two-phase here since we throw out the result of the coercion
        let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
        self.probe(|_| {
            let ok = match coerce.coerce(source, target) {
                Ok(ok) => ok,
                _ => return false,
            };
            let mut fcx = traits::FulfillmentContext::new_in_snapshot();
            fcx.register_predicate_obligations(self, ok.obligations);
            fcx.select_where_possible(&self).is_ok()
        })
    }

    /// Given a type and a target type, this function will calculate and return
    /// how many dereference steps needed to achieve `expr_ty <: target`. If
    /// it's not possible, return `None`.
    pub fn deref_steps(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> Option<usize> {
        let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
        // We don't ever need two-phase here since we throw out the result of the coercion
        let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
        coerce
            .autoderef(rustc_span::DUMMY_SP, expr_ty)
            .find_map(|(ty, steps)| self.probe(|_| coerce.unify(ty, target)).ok().map(|_| steps))
    }

    /// Given some expressions, their known unified type and another expression,
    /// tries to unify the types, potentially inserting coercions on any of the
    /// provided expressions and returns their LUB (aka "common supertype").
    ///
    /// This is really an internal helper. From outside the coercion
    /// module, you should instantiate a `CoerceMany` instance.
    fn try_find_coercion_lub<E>(
        &self,
        cause: &ObligationCause<'tcx>,
        exprs: &[E],
        prev_ty: Ty<'tcx>,
        new: &hir::Expr<'_>,
        new_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, Ty<'tcx>>
    where
        E: AsCoercionSite,
    {
        let prev_ty = self.resolve_vars_with_obligations(prev_ty);
        let new_ty = self.resolve_vars_with_obligations(new_ty);
        debug!(
            "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
            prev_ty,
            new_ty,
            exprs.len()
        );

        // The following check fixes #88097, where the compiler erroneously
        // attempted to coerce a closure type to itself via a function pointer.
        if prev_ty == new_ty {
            return Ok(prev_ty);
        }

        // Special-case that coercion alone cannot handle:
        // Function items or non-capturing closures of differing IDs or InternalSubsts.
        let (a_sig, b_sig) = {
            let is_capturing_closure = |ty| {
                if let &ty::Closure(closure_def_id, _substs) = ty {
                    self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
                } else {
                    false
                }
            };
            if is_capturing_closure(prev_ty.kind()) || is_capturing_closure(new_ty.kind()) {
                (None, None)
            } else {
                match (prev_ty.kind(), new_ty.kind()) {
                    (ty::FnDef(..), ty::FnDef(..)) => {
                        // Don't reify if the function types have a LUB, i.e., they
                        // are the same function and their parameters have a LUB.
                        match self
                            .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
                        {
                            // We have a LUB of prev_ty and new_ty, just return it.
                            Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
                            Err(_) => {
                                (Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
                            }
                        }
                    }
                    (ty::Closure(_, substs), ty::FnDef(..)) => {
                        let b_sig = new_ty.fn_sig(self.tcx);
                        let a_sig = self
                            .tcx
                            .signature_unclosure(substs.as_closure().sig(), b_sig.unsafety());
                        (Some(a_sig), Some(b_sig))
                    }
                    (ty::FnDef(..), ty::Closure(_, substs)) => {
                        let a_sig = prev_ty.fn_sig(self.tcx);
                        let b_sig = self
                            .tcx
                            .signature_unclosure(substs.as_closure().sig(), a_sig.unsafety());
                        (Some(a_sig), Some(b_sig))
                    }
                    (ty::Closure(_, substs_a), ty::Closure(_, substs_b)) => (
                        Some(self.tcx.signature_unclosure(
                            substs_a.as_closure().sig(),
                            hir::Unsafety::Normal,
                        )),
                        Some(self.tcx.signature_unclosure(
                            substs_b.as_closure().sig(),
                            hir::Unsafety::Normal,
                        )),
                    ),
                    _ => (None, None),
                }
            }
        };
        if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
            // Intrinsics are not coercible to function pointers.
            if a_sig.abi() == Abi::RustIntrinsic
                || a_sig.abi() == Abi::PlatformIntrinsic
                || b_sig.abi() == Abi::RustIntrinsic
                || b_sig.abi() == Abi::PlatformIntrinsic
            {
                return Err(TypeError::IntrinsicCast);
            }
            // The signature must match.
            let a_sig = self.normalize_associated_types_in(new.span, a_sig);
            let b_sig = self.normalize_associated_types_in(new.span, b_sig);
            let sig = self
                .at(cause, self.param_env)
                .trace(prev_ty, new_ty)
                .lub(a_sig, b_sig)
                .map(|ok| self.register_infer_ok_obligations(ok))?;

            // Reify both sides and return the reified fn pointer type.
            let fn_ptr = self.tcx.mk_fn_ptr(sig);
            let prev_adjustment = match prev_ty.kind() {
                ty::Closure(..) => Adjust::Pointer(PointerCast::ClosureFnPointer(a_sig.unsafety())),
                ty::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
                _ => unreachable!(),
            };
            let next_adjustment = match new_ty.kind() {
                ty::Closure(..) => Adjust::Pointer(PointerCast::ClosureFnPointer(b_sig.unsafety())),
                ty::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
                _ => unreachable!(),
            };
            for expr in exprs.iter().map(|e| e.as_coercion_site()) {
                self.apply_adjustments(
                    expr,
                    vec![Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }],
                );
            }
            self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
            return Ok(fn_ptr);
        }

        // Configure a Coerce instance to compute the LUB.
        // We don't allow two-phase borrows on any autorefs this creates since we
        // probably aren't processing function arguments here and even if we were,
        // they're going to get autorefed again anyway and we can apply 2-phase borrows
        // at that time.
        let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No);
        coerce.use_lub = true;

        // First try to coerce the new expression to the type of the previous ones,
        // but only if the new expression has no coercion already applied to it.
        let mut first_error = None;
        if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
            let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
            match result {
                Ok(ok) => {
                    let (adjustments, target) = self.register_infer_ok_obligations(ok);
                    self.apply_adjustments(new, adjustments);
                    debug!(
                        "coercion::try_find_coercion_lub: was able to coerce from previous type {:?} to new type {:?}",
                        prev_ty, new_ty,
                    );
                    return Ok(target);
                }
                Err(e) => first_error = Some(e),
            }
        }

        // Then try to coerce the previous expressions to the type of the new one.
        // This requires ensuring there are no coercions applied to *any* of the
        // previous expressions, other than noop reborrows (ignoring lifetimes).
        for expr in exprs {
            let expr = expr.as_coercion_site();
            let noop = match self.typeck_results.borrow().expr_adjustments(expr) {
                &[Adjustment { kind: Adjust::Deref(_), .. }, Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(_, mutbl_adj)), .. }] =>
                {
                    match *self.node_ty(expr.hir_id).kind() {
                        ty::Ref(_, _, mt_orig) => {
                            let mutbl_adj: hir::Mutability = mutbl_adj.into();
                            // Reborrow that we can safely ignore, because
                            // the next adjustment can only be a Deref
                            // which will be merged into it.
                            mutbl_adj == mt_orig
                        }
                        _ => false,
                    }
                }
                &[Adjustment { kind: Adjust::NeverToAny, .. }] | &[] => true,
                _ => false,
            };

            if !noop {
                debug!(
                    "coercion::try_find_coercion_lub: older expression {:?} had adjustments, requiring LUB",
                    expr,
                );

                return self
                    .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
                    .map(|ok| self.register_infer_ok_obligations(ok));
            }
        }

        match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
            Err(_) => {
                // Avoid giving strange errors on failed attempts.
                if let Some(e) = first_error {
                    Err(e)
                } else {
                    self.commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
                        .map(|ok| self.register_infer_ok_obligations(ok))
                }
            }
            Ok(ok) => {
                debug!(
                    "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?}",
                    prev_ty, new_ty,
                );
                let (adjustments, target) = self.register_infer_ok_obligations(ok);
                for expr in exprs {
                    let expr = expr.as_coercion_site();
                    self.apply_adjustments(expr, adjustments.clone());
                }
                Ok(target)
            }
        }
    }
}

/// CoerceMany encapsulates the pattern you should use when you have
/// many expressions that are all getting coerced to a common
/// type. This arises, for example, when you have a match (the result
/// of each arm is coerced to a common type). It also arises in less
/// obvious places, such as when you have many `break foo` expressions
/// that target the same loop, or the various `return` expressions in
/// a function.
///
/// The basic protocol is as follows:
///
/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
///   This will also serve as the "starting LUB". The expectation is
///   that this type is something which all of the expressions *must*
///   be coercible to. Use a fresh type variable if needed.
/// - For each expression whose result is to be coerced, invoke `coerce()` with.
///   - In some cases we wish to coerce "non-expressions" whose types are implicitly
///     unit. This happens for example if you have a `break` with no expression,
///     or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
///   - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
///     from you so that you don't have to worry your pretty head about it.
///     But if an error is reported, the final type will be `err`.
///   - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
///     previously coerced expressions.
/// - When all done, invoke `complete()`. This will return the LUB of
///   all your expressions.
///   - WARNING: I don't believe this final type is guaranteed to be
///     related to your initial `expected_ty` in any particular way,
///     although it will typically be a subtype, so you should check it.
///   - Invoking `complete()` may cause us to go and adjust the "adjustments" on
///     previously coerced expressions.
///
/// Example:
///
/// ```
/// let mut coerce = CoerceMany::new(expected_ty);
/// for expr in exprs {
///     let expr_ty = fcx.check_expr_with_expectation(expr, expected);
///     coerce.coerce(fcx, &cause, expr, expr_ty);
/// }
/// let final_ty = coerce.complete(fcx);
/// ```
pub struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
    expected_ty: Ty<'tcx>,
    final_ty: Option<Ty<'tcx>>,
    expressions: Expressions<'tcx, 'exprs, E>,
    pushed: usize,
}

/// The type of a `CoerceMany` that is storing up the expressions into
/// a buffer. We use this in `check/mod.rs` for things like `break`.
pub type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;

enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
    Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
    UpFront(&'exprs [E]),
}

impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
    /// The usual case; collect the set of expressions dynamically.
    /// If the full set of coercion sites is known before hand,
    /// consider `with_coercion_sites()` instead to avoid allocation.
    pub fn new(expected_ty: Ty<'tcx>) -> Self {
        Self::make(expected_ty, Expressions::Dynamic(vec![]))
    }

    /// As an optimization, you can create a `CoerceMany` with a
    /// pre-existing slice of expressions. In this case, you are
    /// expected to pass each element in the slice to `coerce(...)` in
    /// order. This is used with arrays in particular to avoid
    /// needlessly cloning the slice.
    pub fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
        Self::make(expected_ty, Expressions::UpFront(coercion_sites))
    }

    fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
        CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
    }

    /// Returns the "expected type" with which this coercion was
    /// constructed. This represents the "downward propagated" type
    /// that was given to us at the start of typing whatever construct
    /// we are typing (e.g., the match expression).
    ///
    /// Typically, this is used as the expected type when
    /// type-checking each of the alternative expressions whose types
    /// we are trying to merge.
    pub fn expected_ty(&self) -> Ty<'tcx> {
        self.expected_ty
    }

    /// Returns the current "merged type", representing our best-guess
    /// at the LUB of the expressions we've seen so far (if any). This
    /// isn't *final* until you call `self.final()`, which will return
    /// the merged type.
    pub fn merged_ty(&self) -> Ty<'tcx> {
        self.final_ty.unwrap_or(self.expected_ty)
    }

    /// Indicates that the value generated by `expression`, which is
    /// of type `expression_ty`, is one of the possibilities that we
    /// could coerce from. This will record `expression`, and later
    /// calls to `coerce` may come back and add adjustments and things
    /// if necessary.
    pub fn coerce<'a>(
        &mut self,
        fcx: &FnCtxt<'a, 'tcx>,
        cause: &ObligationCause<'tcx>,
        expression: &'tcx hir::Expr<'tcx>,
        expression_ty: Ty<'tcx>,
    ) {
        self.coerce_inner(fcx, cause, Some(expression), expression_ty, None, false)
    }

    /// Indicates that one of the inputs is a "forced unit". This
    /// occurs in a case like `if foo { ... };`, where the missing else
    /// generates a "forced unit". Another example is a `loop { break;
    /// }`, where the `break` has no argument expression. We treat
    /// these cases slightly differently for error-reporting
    /// purposes. Note that these tend to correspond to cases where
    /// the `()` expression is implicit in the source, and hence we do
    /// not take an expression argument.
    ///
    /// The `augment_error` gives you a chance to extend the error
    /// message, in case any results (e.g., we use this to suggest
    /// removing a `;`).
    pub fn coerce_forced_unit<'a>(
        &mut self,
        fcx: &FnCtxt<'a, 'tcx>,
        cause: &ObligationCause<'tcx>,
        augment_error: &mut dyn FnMut(&mut DiagnosticBuilder<'_>),
        label_unit_as_expected: bool,
    ) {
        self.coerce_inner(
            fcx,
            cause,
            None,
            fcx.tcx.mk_unit(),
            Some(augment_error),
            label_unit_as_expected,
        )
    }

    /// The inner coercion "engine". If `expression` is `None`, this
    /// is a forced-unit case, and hence `expression_ty` must be
    /// `Nil`.
    #[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
    crate fn coerce_inner<'a>(
        &mut self,
        fcx: &FnCtxt<'a, 'tcx>,
        cause: &ObligationCause<'tcx>,
        expression: Option<&'tcx hir::Expr<'tcx>>,
        mut expression_ty: Ty<'tcx>,
        augment_error: Option<&mut dyn FnMut(&mut DiagnosticBuilder<'_>)>,
        label_expression_as_expected: bool,
    ) {
        // Incorporate whatever type inference information we have
        // until now; in principle we might also want to process
        // pending obligations, but doing so should only improve
        // compatibility (hopefully that is true) by helping us
        // uncover never types better.
        if expression_ty.is_ty_var() {
            expression_ty = fcx.infcx.shallow_resolve(expression_ty);
        }

        // If we see any error types, just propagate that error
        // upwards.
        if expression_ty.references_error() || self.merged_ty().references_error() {
            self.final_ty = Some(fcx.tcx.ty_error());
            return;
        }

        // Handle the actual type unification etc.
        let result = if let Some(expression) = expression {
            if self.pushed == 0 {
                // Special-case the first expression we are coercing.
                // To be honest, I'm not entirely sure why we do this.
                // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
                fcx.try_coerce(
                    expression,
                    expression_ty,
                    self.expected_ty,
                    AllowTwoPhase::No,
                    Some(cause.clone()),
                )
            } else {
                match self.expressions {
                    Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
                        cause,
                        exprs,
                        self.merged_ty(),
                        expression,
                        expression_ty,
                    ),
                    Expressions::UpFront(ref coercion_sites) => fcx.try_find_coercion_lub(
                        cause,
                        &coercion_sites[0..self.pushed],
                        self.merged_ty(),
                        expression,
                        expression_ty,
                    ),
                }
            }
        } else {
            // this is a hack for cases where we default to `()` because
            // the expression etc has been omitted from the source. An
            // example is an `if let` without an else:
            //
            //     if let Some(x) = ... { }
            //
            // we wind up with a second match arm that is like `_ =>
            // ()`.  That is the case we are considering here. We take
            // a different path to get the right "expected, found"
            // message and so forth (and because we know that
            // `expression_ty` will be unit).
            //
            // Another example is `break` with no argument expression.
            assert!(expression_ty.is_unit(), "if let hack without unit type");
            fcx.at(cause, fcx.param_env)
                .eq_exp(label_expression_as_expected, expression_ty, self.merged_ty())
                .map(|infer_ok| {
                    fcx.register_infer_ok_obligations(infer_ok);
                    expression_ty
                })
        };

        match result {
            Ok(v) => {
                self.final_ty = Some(v);
                if let Some(e) = expression {
                    match self.expressions {
                        Expressions::Dynamic(ref mut buffer) => buffer.push(e),
                        Expressions::UpFront(coercion_sites) => {
                            // if the user gave us an array to validate, check that we got
                            // the next expression in the list, as expected
                            assert_eq!(
                                coercion_sites[self.pushed].as_coercion_site().hir_id,
                                e.hir_id
                            );
                        }
                    }
                    self.pushed += 1;
                }
            }
            Err(coercion_error) => {
                let (expected, found) = if label_expression_as_expected {
                    // In the case where this is a "forced unit", like
                    // `break`, we want to call the `()` "expected"
                    // since it is implied by the syntax.
                    // (Note: not all force-units work this way.)"
                    (expression_ty, self.final_ty.unwrap_or(self.expected_ty))
                } else {
                    // Otherwise, the "expected" type for error
                    // reporting is the current unification type,
                    // which is basically the LUB of the expressions
                    // we've seen so far (combined with the expected
                    // type)
                    (self.final_ty.unwrap_or(self.expected_ty), expression_ty)
                };

                let mut err;
                let mut unsized_return = false;
                match cause.code {
                    ObligationCauseCode::ReturnNoExpression => {
                        err = struct_span_err!(
                            fcx.tcx.sess,
                            cause.span,
                            E0069,
                            "`return;` in a function whose return type is not `()`"
                        );
                        err.span_label(cause.span, "return type is not `()`");
                    }
                    ObligationCauseCode::BlockTailExpression(blk_id) => {
                        let parent_id = fcx.tcx.hir().get_parent_node(blk_id);
                        err = self.report_return_mismatched_types(
                            cause,
                            expected,
                            found,
                            coercion_error,
                            fcx,
                            parent_id,
                            expression.map(|expr| (expr, blk_id)),
                        );
                        if !fcx.tcx.features().unsized_locals {
                            unsized_return = self.is_return_ty_unsized(fcx, blk_id);
                        }
                    }
                    ObligationCauseCode::ReturnValue(id) => {
                        err = self.report_return_mismatched_types(
                            cause,
                            expected,
                            found,
                            coercion_error,
                            fcx,
                            id,
                            None,
                        );
                        if !fcx.tcx.features().unsized_locals {
                            let id = fcx.tcx.hir().get_parent_node(id);
                            unsized_return = self.is_return_ty_unsized(fcx, id);
                        }
                    }
                    _ => {
                        err = fcx.report_mismatched_types(cause, expected, found, coercion_error);
                    }
                }

                if let Some(augment_error) = augment_error {
                    augment_error(&mut err);
                }

                if let Some(expr) = expression {
                    fcx.emit_coerce_suggestions(&mut err, expr, found, expected, None);
                }

                err.emit_unless(unsized_return);

                self.final_ty = Some(fcx.tcx.ty_error());
            }
        }
    }

    fn report_return_mismatched_types<'a>(
        &self,
        cause: &ObligationCause<'tcx>,
        expected: Ty<'tcx>,
        found: Ty<'tcx>,
        ty_err: TypeError<'tcx>,
        fcx: &FnCtxt<'a, 'tcx>,
        id: hir::HirId,
        expression: Option<(&'tcx hir::Expr<'tcx>, hir::HirId)>,
    ) -> DiagnosticBuilder<'a> {
        let mut err = fcx.report_mismatched_types(cause, expected, found, ty_err);

        let mut pointing_at_return_type = false;
        let mut fn_output = None;

        // Verify that this is a tail expression of a function, otherwise the
        // label pointing out the cause for the type coercion will be wrong
        // as prior return coercions would not be relevant (#57664).
        let parent_id = fcx.tcx.hir().get_parent_node(id);
        let fn_decl = if let Some((expr, blk_id)) = expression {
            pointing_at_return_type =
                fcx.suggest_mismatched_types_on_tail(&mut err, expr, expected, found, blk_id);
            let parent = fcx.tcx.hir().get(parent_id);
            if let (Some(cond_expr), true, false) = (
                fcx.tcx.hir().get_if_cause(expr.hir_id),
                expected.is_unit(),
                pointing_at_return_type,
            ) {
                // If the block is from an external macro or try (`?`) desugaring, then
                // do not suggest adding a semicolon, because there's nowhere to put it.
                // See issues #81943 and #87051.
                if matches!(
                    cond_expr.span.desugaring_kind(),
                    None | Some(DesugaringKind::WhileLoop)
                ) && !in_external_macro(fcx.tcx.sess, cond_expr.span)
                    && !matches!(
                        cond_expr.kind,
                        hir::ExprKind::Match(.., hir::MatchSource::TryDesugar)
                    )
                {
                    err.span_label(cond_expr.span, "expected this to be `()`");
                    if expr.can_have_side_effects() {
                        fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
                    }
                }
            }
            fcx.get_node_fn_decl(parent).map(|(fn_decl, _, is_main)| (fn_decl, is_main))
        } else {
            fcx.get_fn_decl(parent_id)
        };

        if let Some((fn_decl, can_suggest)) = fn_decl {
            if expression.is_none() {
                pointing_at_return_type |= fcx.suggest_missing_return_type(
                    &mut err,
                    &fn_decl,
                    expected,
                    found,
                    can_suggest,
                    fcx.tcx.hir().get_parent_item(id),
                );
            }
            if !pointing_at_return_type {
                fn_output = Some(&fn_decl.output); // `impl Trait` return type
            }
        }

        let parent_id = fcx.tcx.hir().get_parent_item(id);
        let parent_item = fcx.tcx.hir().get(parent_id);

        if let (Some((expr, _)), Some((fn_decl, _, _))) =
            (expression, fcx.get_node_fn_decl(parent_item))
        {
            fcx.suggest_missing_break_or_return_expr(
                &mut err, expr, fn_decl, expected, found, id, parent_id,
            );
        }

        if let (Some(sp), Some(fn_output)) = (fcx.ret_coercion_span.get(), fn_output) {
            self.add_impl_trait_explanation(&mut err, cause, fcx, expected, sp, fn_output);
        }
        err
    }

    fn add_impl_trait_explanation<'a>(
        &self,
        err: &mut DiagnosticBuilder<'a>,
        cause: &ObligationCause<'tcx>,
        fcx: &FnCtxt<'a, 'tcx>,
        expected: Ty<'tcx>,
        sp: Span,
        fn_output: &hir::FnRetTy<'_>,
    ) {
        let return_sp = fn_output.span();
        err.span_label(return_sp, "expected because this return type...");
        err.span_label(
            sp,
            format!("...is found to be `{}` here", fcx.resolve_vars_with_obligations(expected)),
        );
        let impl_trait_msg = "for information on `impl Trait`, see \
                <https://doc.rust-lang.org/book/ch10-02-traits.html\
                #returning-types-that-implement-traits>";
        let trait_obj_msg = "for information on trait objects, see \
                <https://doc.rust-lang.org/book/ch17-02-trait-objects.html\
                #using-trait-objects-that-allow-for-values-of-different-types>";
        err.note("to return `impl Trait`, all returned values must be of the same type");
        err.note(impl_trait_msg);
        let snippet = fcx
            .tcx
            .sess
            .source_map()
            .span_to_snippet(return_sp)
            .unwrap_or_else(|_| "dyn Trait".to_string());
        let mut snippet_iter = snippet.split_whitespace();
        let has_impl = snippet_iter.next().map_or(false, |s| s == "impl");
        // Only suggest `Box<dyn Trait>` if `Trait` in `impl Trait` is object safe.
        let mut is_object_safe = false;
        if let hir::FnRetTy::Return(ty) = fn_output {
            // Get the return type.
            if let hir::TyKind::OpaqueDef(..) = ty.kind {
                let ty = <dyn AstConv<'_>>::ast_ty_to_ty(fcx, ty);
                // Get the `impl Trait`'s `DefId`.
                if let ty::Opaque(def_id, _) = ty.kind() {
                    let hir_id = fcx.tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
                    // Get the `impl Trait`'s `Item` so that we can get its trait bounds and
                    // get the `Trait`'s `DefId`.
                    if let hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, .. }) =
                        fcx.tcx.hir().expect_item(hir_id).kind
                    {
                        // Are of this `impl Trait`'s traits object safe?
                        is_object_safe = bounds.iter().all(|bound| {
                            bound
                                .trait_ref()
                                .and_then(|t| t.trait_def_id())
                                .map_or(false, |def_id| {
                                    fcx.tcx.object_safety_violations(def_id).is_empty()
                                })
                        })
                    }
                }
            }
        };
        if has_impl {
            if is_object_safe {
                err.multipart_suggestion(
                    "you could change the return type to be a boxed trait object",
                    vec![
                        (return_sp.with_hi(return_sp.lo() + BytePos(4)), "Box<dyn".to_string()),
                        (return_sp.shrink_to_hi(), ">".to_string()),
                    ],
                    Applicability::MachineApplicable,
                );
                let sugg = vec![sp, cause.span]
                    .into_iter()
                    .flat_map(|sp| {
                        vec![
                            (sp.shrink_to_lo(), "Box::new(".to_string()),
                            (sp.shrink_to_hi(), ")".to_string()),
                        ]
                        .into_iter()
                    })
                    .collect::<Vec<_>>();
                err.multipart_suggestion(
                    "if you change the return type to expect trait objects, box the returned \
                     expressions",
                    sugg,
                    Applicability::MaybeIncorrect,
                );
            } else {
                err.help(&format!(
                    "if the trait `{}` were object safe, you could return a boxed trait object",
                    &snippet[5..]
                ));
            }
            err.note(trait_obj_msg);
        }
        err.help("you could instead create a new `enum` with a variant for each returned type");
    }

    fn is_return_ty_unsized(&self, fcx: &FnCtxt<'a, 'tcx>, blk_id: hir::HirId) -> bool {
        if let Some((fn_decl, _)) = fcx.get_fn_decl(blk_id) {
            if let hir::FnRetTy::Return(ty) = fn_decl.output {
                let ty = <dyn AstConv<'_>>::ast_ty_to_ty(fcx, ty);
                if let ty::Dynamic(..) = ty.kind() {
                    return true;
                }
            }
        }
        false
    }

    pub fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
        if let Some(final_ty) = self.final_ty {
            final_ty
        } else {
            // If we only had inputs that were of type `!` (or no
            // inputs at all), then the final type is `!`.
            assert_eq!(self.pushed, 0);
            fcx.tcx.types.never
        }
    }
}

/// Something that can be converted into an expression to which we can
/// apply a coercion.
pub trait AsCoercionSite {
    fn as_coercion_site(&self) -> &hir::Expr<'_>;
}

impl AsCoercionSite for hir::Expr<'_> {
    fn as_coercion_site(&self) -> &hir::Expr<'_> {
        self
    }
}

impl<'a, T> AsCoercionSite for &'a T
where
    T: AsCoercionSite,
{
    fn as_coercion_site(&self) -> &hir::Expr<'_> {
        (**self).as_coercion_site()
    }
}

impl AsCoercionSite for ! {
    fn as_coercion_site(&self) -> &hir::Expr<'_> {
        unreachable!()
    }
}

impl AsCoercionSite for hir::Arm<'_> {
    fn as_coercion_site(&self) -> &hir::Expr<'_> {
        &self.body
    }
}