1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
use crate::errors::LifetimesOrBoundsMismatchOnTrait;
use rustc_data_structures::stable_set::FxHashSet;
use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorReported};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::intravisit;
use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
use rustc_infer::traits::util;
use rustc_middle::ty;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::subst::{InternalSubsts, Subst};
use rustc_middle::ty::util::ExplicitSelf;
use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
use rustc_span::Span;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode, Reveal};
use std::iter;

use super::{potentially_plural_count, FnCtxt, Inherited};

/// Checks that a method from an impl conforms to the signature of
/// the same method as declared in the trait.
///
/// # Parameters
///
/// - `impl_m`: type of the method we are checking
/// - `impl_m_span`: span to use for reporting errors
/// - `trait_m`: the method in the trait
/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation

crate fn compare_impl_method<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: &ty::AssocItem,
    impl_m_span: Span,
    trait_m: &ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
    trait_item_span: Option<Span>,
) {
    debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);

    let impl_m_span = tcx.sess.source_map().guess_head_span(impl_m_span);

    if let Err(ErrorReported) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
    {
        return;
    }

    if let Err(ErrorReported) =
        compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
    {
        return;
    }

    if let Err(ErrorReported) =
        compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
    {
        return;
    }

    if let Err(ErrorReported) = compare_synthetic_generics(tcx, impl_m, trait_m) {
        return;
    }

    if let Err(ErrorReported) =
        compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
    {
        return;
    }

    if let Err(ErrorReported) = compare_const_param_types(tcx, impl_m, trait_m, trait_item_span) {
        return;
    }
}

fn compare_predicate_entailment<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: &ty::AssocItem,
    impl_m_span: Span,
    trait_m: &ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
    let trait_to_impl_substs = impl_trait_ref.substs;

    // This node-id should be used for the `body_id` field on each
    // `ObligationCause` (and the `FnCtxt`). This is what
    // `regionck_item` expects.
    let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());

    // We sometimes modify the span further down.
    let mut cause = ObligationCause::new(
        impl_m_span,
        impl_m_hir_id,
        ObligationCauseCode::CompareImplMethodObligation {
            item_name: impl_m.ident.name,
            impl_item_def_id: impl_m.def_id,
            trait_item_def_id: trait_m.def_id,
        },
    );

    // This code is best explained by example. Consider a trait:
    //
    //     trait Trait<'t, T> {
    //         fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
    //     }
    //
    // And an impl:
    //
    //     impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
    //          fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
    //     }
    //
    // We wish to decide if those two method types are compatible.
    //
    // We start out with trait_to_impl_substs, that maps the trait
    // type parameters to impl type parameters. This is taken from the
    // impl trait reference:
    //
    //     trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
    //
    // We create a mapping `dummy_substs` that maps from the impl type
    // parameters to fresh types and regions. For type parameters,
    // this is the identity transform, but we could as well use any
    // placeholder types. For regions, we convert from bound to free
    // regions (Note: but only early-bound regions, i.e., those
    // declared on the impl or used in type parameter bounds).
    //
    //     impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
    //
    // Now we can apply placeholder_substs to the type of the impl method
    // to yield a new function type in terms of our fresh, placeholder
    // types:
    //
    //     <'b> fn(t: &'i0 U0, m: &'b) -> Foo
    //
    // We now want to extract and substitute the type of the *trait*
    // method and compare it. To do so, we must create a compound
    // substitution by combining trait_to_impl_substs and
    // impl_to_placeholder_substs, and also adding a mapping for the method
    // type parameters. We extend the mapping to also include
    // the method parameters.
    //
    //     trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
    //
    // Applying this to the trait method type yields:
    //
    //     <'a> fn(t: &'i0 U0, m: &'a) -> Foo
    //
    // This type is also the same but the name of the bound region ('a
    // vs 'b).  However, the normal subtyping rules on fn types handle
    // this kind of equivalency just fine.
    //
    // We now use these substitutions to ensure that all declared bounds are
    // satisfied by the implementation's method.
    //
    // We do this by creating a parameter environment which contains a
    // substitution corresponding to impl_to_placeholder_substs. We then build
    // trait_to_placeholder_substs and use it to convert the predicates contained
    // in the trait_m.generics to the placeholder form.
    //
    // Finally we register each of these predicates as an obligation in
    // a fresh FulfillmentCtxt, and invoke select_all_or_error.

    // Create mapping from impl to placeholder.
    let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);

    // Create mapping from trait to placeholder.
    let trait_to_placeholder_substs =
        impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container.id(), trait_to_impl_substs);
    debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);

    let impl_m_generics = tcx.generics_of(impl_m.def_id);
    let trait_m_generics = tcx.generics_of(trait_m.def_id);
    let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
    let trait_m_predicates = tcx.predicates_of(trait_m.def_id);

    // Check region bounds.
    check_region_bounds_on_impl_item(
        tcx,
        impl_m_span,
        impl_m,
        trait_m,
        &trait_m_generics,
        &impl_m_generics,
    )?;

    // Create obligations for each predicate declared by the impl
    // definition in the context of the trait's parameter
    // environment. We can't just use `impl_env.caller_bounds`,
    // however, because we want to replace all late-bound regions with
    // region variables.
    let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
    let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);

    debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);

    // This is the only tricky bit of the new way we check implementation methods
    // We need to build a set of predicates where only the method-level bounds
    // are from the trait and we assume all other bounds from the implementation
    // to be previously satisfied.
    //
    // We then register the obligations from the impl_m and check to see
    // if all constraints hold.
    hybrid_preds
        .predicates
        .extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);

    // Construct trait parameter environment and then shift it into the placeholder viewpoint.
    // The key step here is to update the caller_bounds's predicates to be
    // the new hybrid bounds we computed.
    let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
    let param_env =
        ty::ParamEnv::new(tcx.intern_predicates(&hybrid_preds.predicates), Reveal::UserFacing);
    let param_env = traits::normalize_param_env_or_error(
        tcx,
        impl_m.def_id,
        param_env,
        normalize_cause.clone(),
    );

    tcx.infer_ctxt().enter(|infcx| {
        let inh = Inherited::new(infcx, impl_m.def_id.expect_local());
        let infcx = &inh.infcx;

        debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());

        let mut selcx = traits::SelectionContext::new(&infcx);

        let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
        for predicate in impl_m_own_bounds.predicates {
            let traits::Normalized { value: predicate, obligations } =
                traits::normalize(&mut selcx, param_env, normalize_cause.clone(), predicate);

            inh.register_predicates(obligations);
            inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
        }

        // We now need to check that the signature of the impl method is
        // compatible with that of the trait method. We do this by
        // checking that `impl_fty <: trait_fty`.
        //
        // FIXME. Unfortunately, this doesn't quite work right now because
        // associated type normalization is not integrated into subtype
        // checks. For the comparison to be valid, we need to
        // normalize the associated types in the impl/trait methods
        // first. However, because function types bind regions, just
        // calling `normalize_associated_types_in` would have no effect on
        // any associated types appearing in the fn arguments or return
        // type.

        // Compute placeholder form of impl and trait method tys.
        let tcx = infcx.tcx;

        let mut wf_tys = FxHashSet::default();

        let (impl_sig, _) = infcx.replace_bound_vars_with_fresh_vars(
            impl_m_span,
            infer::HigherRankedType,
            tcx.fn_sig(impl_m.def_id),
        );
        let impl_sig =
            inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, impl_sig);
        let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
        debug!("compare_impl_method: impl_fty={:?}", impl_fty);

        // First liberate late bound regions and subst placeholders
        let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, tcx.fn_sig(trait_m.def_id));
        let trait_sig = trait_sig.subst(tcx, trait_to_placeholder_substs);
        // Next, add all inputs and output as well-formed tys. Importantly,
        // we have to do this before normalization, since the normalized ty may
        // not contain the input parameters. See issue #87748.
        wf_tys.extend(trait_sig.inputs_and_output.iter());
        let trait_sig =
            inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, trait_sig);
        // Also add the resulting inputs and output as well-formed.
        // This probably isn't strictly necessary.
        wf_tys.extend(trait_sig.inputs_and_output.iter());
        let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));

        debug!("compare_impl_method: trait_fty={:?}", trait_fty);

        let sub_result = infcx.at(&cause, param_env).sup(trait_fty, impl_fty).map(
            |InferOk { obligations, .. }| {
                inh.register_predicates(obligations);
            },
        );

        if let Err(terr) = sub_result {
            debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);

            let (impl_err_span, trait_err_span) =
                extract_spans_for_error_reporting(&infcx, &terr, &cause, impl_m, trait_m);

            cause.make_mut().span = impl_err_span;

            let mut diag = struct_span_err!(
                tcx.sess,
                cause.span(tcx),
                E0053,
                "method `{}` has an incompatible type for trait",
                trait_m.ident
            );
            match &terr {
                TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
                    if trait_m.fn_has_self_parameter =>
                {
                    let ty = trait_sig.inputs()[0];
                    let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty())
                    {
                        ExplicitSelf::ByValue => "self".to_owned(),
                        ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
                        ExplicitSelf::ByReference(_, hir::Mutability::Mut) => {
                            "&mut self".to_owned()
                        }
                        _ => format!("self: {}", ty),
                    };

                    // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
                    // span points only at the type `Box<Self`>, but we want to cover the whole
                    // argument pattern and type.
                    let impl_m_hir_id =
                        tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
                    let span = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
                        ImplItemKind::Fn(ref sig, body) => tcx
                            .hir()
                            .body_param_names(body)
                            .zip(sig.decl.inputs.iter())
                            .map(|(param, ty)| param.span.to(ty.span))
                            .next()
                            .unwrap_or(impl_err_span),
                        _ => bug!("{:?} is not a method", impl_m),
                    };

                    diag.span_suggestion(
                        span,
                        "change the self-receiver type to match the trait",
                        sugg,
                        Applicability::MachineApplicable,
                    );
                }
                TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
                    if trait_sig.inputs().len() == *i {
                        // Suggestion to change output type. We do not suggest in `async` functions
                        // to avoid complex logic or incorrect output.
                        let impl_m_hir_id =
                            tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
                        match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
                            ImplItemKind::Fn(ref sig, _)
                                if sig.header.asyncness == hir::IsAsync::NotAsync =>
                            {
                                let msg = "change the output type to match the trait";
                                let ap = Applicability::MachineApplicable;
                                match sig.decl.output {
                                    hir::FnRetTy::DefaultReturn(sp) => {
                                        let sugg = format!("-> {} ", trait_sig.output());
                                        diag.span_suggestion_verbose(sp, msg, sugg, ap);
                                    }
                                    hir::FnRetTy::Return(hir_ty) => {
                                        let sugg = trait_sig.output().to_string();
                                        diag.span_suggestion(hir_ty.span, msg, sugg, ap);
                                    }
                                };
                            }
                            _ => {}
                        };
                    } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
                        diag.span_suggestion(
                            impl_err_span,
                            "change the parameter type to match the trait",
                            trait_ty.to_string(),
                            Applicability::MachineApplicable,
                        );
                    }
                }
                _ => {}
            }

            infcx.note_type_err(
                &mut diag,
                &cause,
                trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
                Some(infer::ValuePairs::Types(ExpectedFound {
                    expected: trait_fty,
                    found: impl_fty,
                })),
                &terr,
            );
            diag.emit();
            return Err(ErrorReported);
        }

        // Check that all obligations are satisfied by the implementation's
        // version.
        if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
            infcx.report_fulfillment_errors(errors, None, false);
            return Err(ErrorReported);
        }

        // Finally, resolve all regions. This catches wily misuses of
        // lifetime parameters.
        let fcx = FnCtxt::new(&inh, param_env, impl_m_hir_id);
        fcx.regionck_item(impl_m_hir_id, impl_m_span, wf_tys);

        Ok(())
    })
}

fn check_region_bounds_on_impl_item<'tcx>(
    tcx: TyCtxt<'tcx>,
    span: Span,
    impl_m: &ty::AssocItem,
    trait_m: &ty::AssocItem,
    trait_generics: &ty::Generics,
    impl_generics: &ty::Generics,
) -> Result<(), ErrorReported> {
    let trait_params = trait_generics.own_counts().lifetimes;
    let impl_params = impl_generics.own_counts().lifetimes;

    debug!(
        "check_region_bounds_on_impl_item: \
            trait_generics={:?} \
            impl_generics={:?}",
        trait_generics, impl_generics
    );

    // Must have same number of early-bound lifetime parameters.
    // Unfortunately, if the user screws up the bounds, then this
    // will change classification between early and late.  E.g.,
    // if in trait we have `<'a,'b:'a>`, and in impl we just have
    // `<'a,'b>`, then we have 2 early-bound lifetime parameters
    // in trait but 0 in the impl. But if we report "expected 2
    // but found 0" it's confusing, because it looks like there
    // are zero. Since I don't quite know how to phrase things at
    // the moment, give a kind of vague error message.
    if trait_params != impl_params {
        let item_kind = assoc_item_kind_str(impl_m);
        let def_span = tcx.sess.source_map().guess_head_span(span);
        let span = tcx.hir().get_generics(impl_m.def_id).map_or(def_span, |g| g.span);
        let generics_span = tcx.hir().span_if_local(trait_m.def_id).map(|sp| {
            let def_sp = tcx.sess.source_map().guess_head_span(sp);
            tcx.hir().get_generics(trait_m.def_id).map_or(def_sp, |g| g.span)
        });

        tcx.sess.emit_err(LifetimesOrBoundsMismatchOnTrait {
            span,
            item_kind,
            ident: impl_m.ident,
            generics_span,
        });
        return Err(ErrorReported);
    }

    Ok(())
}

fn extract_spans_for_error_reporting<'a, 'tcx>(
    infcx: &infer::InferCtxt<'a, 'tcx>,
    terr: &TypeError<'_>,
    cause: &ObligationCause<'tcx>,
    impl_m: &ty::AssocItem,
    trait_m: &ty::AssocItem,
) -> (Span, Option<Span>) {
    let tcx = infcx.tcx;
    let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
    let mut impl_args = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
        ImplItemKind::Fn(ref sig, _) => {
            sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
        }
        _ => bug!("{:?} is not a method", impl_m),
    };
    let trait_args = trait_m.def_id.as_local().map(|def_id| {
        let trait_m_hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
        match tcx.hir().expect_trait_item(trait_m_hir_id).kind {
            TraitItemKind::Fn(ref sig, _) => {
                sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
            }
            _ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
        }
    });

    match *terr {
        TypeError::ArgumentMutability(i) => {
            (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
        }
        TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
            (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
        }
        _ => (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id)),
    }
}

fn compare_self_type<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: &ty::AssocItem,
    impl_m_span: Span,
    trait_m: &ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
    // Try to give more informative error messages about self typing
    // mismatches.  Note that any mismatch will also be detected
    // below, where we construct a canonical function type that
    // includes the self parameter as a normal parameter.  It's just
    // that the error messages you get out of this code are a bit more
    // inscrutable, particularly for cases where one method has no
    // self.

    let self_string = |method: &ty::AssocItem| {
        let untransformed_self_ty = match method.container {
            ty::ImplContainer(_) => impl_trait_ref.self_ty(),
            ty::TraitContainer(_) => tcx.types.self_param,
        };
        let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
        let param_env = ty::ParamEnv::reveal_all();

        tcx.infer_ctxt().enter(|infcx| {
            let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
            let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
            match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
                ExplicitSelf::ByValue => "self".to_owned(),
                ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
                ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
                _ => format!("self: {}", self_arg_ty),
            }
        })
    };

    match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
        (false, false) | (true, true) => {}

        (false, true) => {
            let self_descr = self_string(impl_m);
            let mut err = struct_span_err!(
                tcx.sess,
                impl_m_span,
                E0185,
                "method `{}` has a `{}` declaration in the impl, but not in the trait",
                trait_m.ident,
                self_descr
            );
            err.span_label(impl_m_span, format!("`{}` used in impl", self_descr));
            if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
                err.span_label(span, format!("trait method declared without `{}`", self_descr));
            } else {
                err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
            }
            err.emit();
            return Err(ErrorReported);
        }

        (true, false) => {
            let self_descr = self_string(trait_m);
            let mut err = struct_span_err!(
                tcx.sess,
                impl_m_span,
                E0186,
                "method `{}` has a `{}` declaration in the trait, but not in the impl",
                trait_m.ident,
                self_descr
            );
            err.span_label(impl_m_span, format!("expected `{}` in impl", self_descr));
            if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
                err.span_label(span, format!("`{}` used in trait", self_descr));
            } else {
                err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
            }
            err.emit();
            return Err(ErrorReported);
        }
    }

    Ok(())
}

fn compare_number_of_generics<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_: &ty::AssocItem,
    _impl_span: Span,
    trait_: &ty::AssocItem,
    trait_span: Option<Span>,
) -> Result<(), ErrorReported> {
    let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
    let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();

    let matchings = [
        ("type", trait_own_counts.types, impl_own_counts.types),
        ("const", trait_own_counts.consts, impl_own_counts.consts),
    ];

    let item_kind = assoc_item_kind_str(impl_);

    let mut err_occurred = false;
    for (kind, trait_count, impl_count) in matchings {
        if impl_count != trait_count {
            err_occurred = true;

            let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
                let trait_hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
                let trait_item = tcx.hir().expect_trait_item(trait_hir_id);
                if trait_item.generics.params.is_empty() {
                    (Some(vec![trait_item.generics.span]), vec![])
                } else {
                    let arg_spans: Vec<Span> =
                        trait_item.generics.params.iter().map(|p| p.span).collect();
                    let impl_trait_spans: Vec<Span> = trait_item
                        .generics
                        .params
                        .iter()
                        .filter_map(|p| match p.kind {
                            GenericParamKind::Type {
                                synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
                                ..
                            } => Some(p.span),
                            _ => None,
                        })
                        .collect();
                    (Some(arg_spans), impl_trait_spans)
                }
            } else {
                (trait_span.map(|s| vec![s]), vec![])
            };

            let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_.def_id.expect_local());
            let impl_item = tcx.hir().expect_impl_item(impl_hir_id);
            let impl_item_impl_trait_spans: Vec<Span> = impl_item
                .generics
                .params
                .iter()
                .filter_map(|p| match p.kind {
                    GenericParamKind::Type {
                        synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
                        ..
                    } => Some(p.span),
                    _ => None,
                })
                .collect();
            let spans = impl_item.generics.spans();
            let span = spans.primary_span();

            let mut err = tcx.sess.struct_span_err_with_code(
                spans,
                &format!(
                    "{} `{}` has {} {kind} parameter{} but its trait \
                     declaration has {} {kind} parameter{}",
                    item_kind,
                    trait_.ident,
                    impl_count,
                    pluralize!(impl_count),
                    trait_count,
                    pluralize!(trait_count),
                    kind = kind,
                ),
                DiagnosticId::Error("E0049".into()),
            );

            let mut suffix = None;

            if let Some(spans) = trait_spans {
                let mut spans = spans.iter();
                if let Some(span) = spans.next() {
                    err.span_label(
                        *span,
                        format!(
                            "expected {} {} parameter{}",
                            trait_count,
                            kind,
                            pluralize!(trait_count),
                        ),
                    );
                }
                for span in spans {
                    err.span_label(*span, "");
                }
            } else {
                suffix = Some(format!(", expected {}", trait_count));
            }

            if let Some(span) = span {
                err.span_label(
                    span,
                    format!(
                        "found {} {} parameter{}{}",
                        impl_count,
                        kind,
                        pluralize!(impl_count),
                        suffix.unwrap_or_else(String::new),
                    ),
                );
            }

            for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
                err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
            }

            err.emit();
        }
    }

    if err_occurred { Err(ErrorReported) } else { Ok(()) }
}

fn compare_number_of_method_arguments<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: &ty::AssocItem,
    impl_m_span: Span,
    trait_m: &ty::AssocItem,
    trait_item_span: Option<Span>,
) -> Result<(), ErrorReported> {
    let impl_m_fty = tcx.fn_sig(impl_m.def_id);
    let trait_m_fty = tcx.fn_sig(trait_m.def_id);
    let trait_number_args = trait_m_fty.inputs().skip_binder().len();
    let impl_number_args = impl_m_fty.inputs().skip_binder().len();
    if trait_number_args != impl_number_args {
        let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
            let trait_id = tcx.hir().local_def_id_to_hir_id(def_id);
            match tcx.hir().expect_trait_item(trait_id).kind {
                TraitItemKind::Fn(ref trait_m_sig, _) => {
                    let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
                    if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
                        Some(if pos == 0 {
                            arg.span
                        } else {
                            arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
                        })
                    } else {
                        trait_item_span
                    }
                }
                _ => bug!("{:?} is not a method", impl_m),
            }
        } else {
            trait_item_span
        };
        let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
        let impl_span = match tcx.hir().expect_impl_item(impl_m_hir_id).kind {
            ImplItemKind::Fn(ref impl_m_sig, _) => {
                let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
                if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
                    if pos == 0 {
                        arg.span
                    } else {
                        arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
                    }
                } else {
                    impl_m_span
                }
            }
            _ => bug!("{:?} is not a method", impl_m),
        };
        let mut err = struct_span_err!(
            tcx.sess,
            impl_span,
            E0050,
            "method `{}` has {} but the declaration in \
                                        trait `{}` has {}",
            trait_m.ident,
            potentially_plural_count(impl_number_args, "parameter"),
            tcx.def_path_str(trait_m.def_id),
            trait_number_args
        );
        if let Some(trait_span) = trait_span {
            err.span_label(
                trait_span,
                format!(
                    "trait requires {}",
                    potentially_plural_count(trait_number_args, "parameter")
                ),
            );
        } else {
            err.note_trait_signature(trait_m.ident.to_string(), trait_m.signature(tcx));
        }
        err.span_label(
            impl_span,
            format!(
                "expected {}, found {}",
                potentially_plural_count(trait_number_args, "parameter"),
                impl_number_args
            ),
        );
        err.emit();
        return Err(ErrorReported);
    }

    Ok(())
}

fn compare_synthetic_generics<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: &ty::AssocItem,
    trait_m: &ty::AssocItem,
) -> Result<(), ErrorReported> {
    // FIXME(chrisvittal) Clean up this function, list of FIXME items:
    //     1. Better messages for the span labels
    //     2. Explanation as to what is going on
    // If we get here, we already have the same number of generics, so the zip will
    // be okay.
    let mut error_found = false;
    let impl_m_generics = tcx.generics_of(impl_m.def_id);
    let trait_m_generics = tcx.generics_of(trait_m.def_id);
    let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
        GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
        GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
    });
    let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
        GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
        GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
    });
    for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
        iter::zip(impl_m_type_params, trait_m_type_params)
    {
        if impl_synthetic != trait_synthetic {
            let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_def_id.expect_local());
            let impl_span = tcx.hir().span(impl_hir_id);
            let trait_span = tcx.def_span(trait_def_id);
            let mut err = struct_span_err!(
                tcx.sess,
                impl_span,
                E0643,
                "method `{}` has incompatible signature for trait",
                trait_m.ident
            );
            err.span_label(trait_span, "declaration in trait here");
            match (impl_synthetic, trait_synthetic) {
                // The case where the impl method uses `impl Trait` but the trait method uses
                // explicit generics
                (Some(hir::SyntheticTyParamKind::ImplTrait), None) => {
                    err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
                    (|| {
                        // try taking the name from the trait impl
                        // FIXME: this is obviously suboptimal since the name can already be used
                        // as another generic argument
                        let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
                        let trait_m = trait_m.def_id.as_local()?;
                        let trait_m = tcx.hir().trait_item(hir::TraitItemId { def_id: trait_m });

                        let impl_m = impl_m.def_id.as_local()?;
                        let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });

                        // in case there are no generics, take the spot between the function name
                        // and the opening paren of the argument list
                        let new_generics_span =
                            tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
                        // in case there are generics, just replace them
                        let generics_span =
                            impl_m.generics.span.substitute_dummy(new_generics_span);
                        // replace with the generics from the trait
                        let new_generics =
                            tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;

                        err.multipart_suggestion(
                            "try changing the `impl Trait` argument to a generic parameter",
                            vec![
                                // replace `impl Trait` with `T`
                                (impl_span, new_name),
                                // replace impl method generics with trait method generics
                                // This isn't quite right, as users might have changed the names
                                // of the generics, but it works for the common case
                                (generics_span, new_generics),
                            ],
                            Applicability::MaybeIncorrect,
                        );
                        Some(())
                    })();
                }
                // The case where the trait method uses `impl Trait`, but the impl method uses
                // explicit generics.
                (None, Some(hir::SyntheticTyParamKind::ImplTrait)) => {
                    err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
                    (|| {
                        let impl_m = impl_m.def_id.as_local()?;
                        let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
                        let input_tys = match impl_m.kind {
                            hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
                            _ => unreachable!(),
                        };
                        struct Visitor(Option<Span>, hir::def_id::DefId);
                        impl<'v> intravisit::Visitor<'v> for Visitor {
                            fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
                                intravisit::walk_ty(self, ty);
                                if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
                                    ty.kind
                                {
                                    if let Res::Def(DefKind::TyParam, def_id) = path.res {
                                        if def_id == self.1 {
                                            self.0 = Some(ty.span);
                                        }
                                    }
                                }
                            }
                            type Map = intravisit::ErasedMap<'v>;
                            fn nested_visit_map(
                                &mut self,
                            ) -> intravisit::NestedVisitorMap<Self::Map>
                            {
                                intravisit::NestedVisitorMap::None
                            }
                        }
                        let mut visitor = Visitor(None, impl_def_id);
                        for ty in input_tys {
                            intravisit::Visitor::visit_ty(&mut visitor, ty);
                        }
                        let span = visitor.0?;

                        let bounds =
                            impl_m.generics.params.iter().find_map(|param| match param.kind {
                                GenericParamKind::Lifetime { .. } => None,
                                GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
                                    if param.hir_id == impl_hir_id {
                                        Some(&param.bounds)
                                    } else {
                                        None
                                    }
                                }
                            })?;
                        let bounds = bounds.first()?.span().to(bounds.last()?.span());
                        let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;

                        err.multipart_suggestion(
                            "try removing the generic parameter and using `impl Trait` instead",
                            vec![
                                // delete generic parameters
                                (impl_m.generics.span, String::new()),
                                // replace param usage with `impl Trait`
                                (span, format!("impl {}", bounds)),
                            ],
                            Applicability::MaybeIncorrect,
                        );
                        Some(())
                    })();
                }
                _ => unreachable!(),
            }
            err.emit();
            error_found = true;
        }
    }
    if error_found { Err(ErrorReported) } else { Ok(()) }
}

fn compare_const_param_types<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: &ty::AssocItem,
    trait_m: &ty::AssocItem,
    trait_item_span: Option<Span>,
) -> Result<(), ErrorReported> {
    let const_params_of = |def_id| {
        tcx.generics_of(def_id).params.iter().filter_map(|param| match param.kind {
            GenericParamDefKind::Const { .. } => Some(param.def_id),
            _ => None,
        })
    };
    let const_params_impl = const_params_of(impl_m.def_id);
    let const_params_trait = const_params_of(trait_m.def_id);

    for (const_param_impl, const_param_trait) in iter::zip(const_params_impl, const_params_trait) {
        let impl_ty = tcx.type_of(const_param_impl);
        let trait_ty = tcx.type_of(const_param_trait);
        if impl_ty != trait_ty {
            let (impl_span, impl_ident) = match tcx.hir().get_if_local(const_param_impl) {
                Some(hir::Node::GenericParam(hir::GenericParam { span, name, .. })) => (
                    span,
                    match name {
                        hir::ParamName::Plain(ident) => Some(ident),
                        _ => None,
                    },
                ),
                other => bug!(
                    "expected GenericParam, found {:?}",
                    other.map_or_else(|| "nothing".to_string(), |n| format!("{:?}", n))
                ),
            };
            let trait_span = match tcx.hir().get_if_local(const_param_trait) {
                Some(hir::Node::GenericParam(hir::GenericParam { span, .. })) => Some(span),
                _ => None,
            };
            let mut err = struct_span_err!(
                tcx.sess,
                *impl_span,
                E0053,
                "method `{}` has an incompatible const parameter type for trait",
                trait_m.ident
            );
            err.span_note(
                trait_span.map_or_else(|| trait_item_span.unwrap_or(*impl_span), |span| *span),
                &format!(
                    "the const parameter{} has type `{}`, but the declaration \
                              in trait `{}` has type `{}`",
                    &impl_ident.map_or_else(|| "".to_string(), |ident| format!(" `{}`", ident)),
                    impl_ty,
                    tcx.def_path_str(trait_m.def_id),
                    trait_ty
                ),
            );
            err.emit();
            return Err(ErrorReported);
        }
    }

    Ok(())
}

crate fn compare_const_impl<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_c: &ty::AssocItem,
    impl_c_span: Span,
    trait_c: &ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) {
    debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);

    tcx.infer_ctxt().enter(|infcx| {
        let param_env = tcx.param_env(impl_c.def_id);
        let inh = Inherited::new(infcx, impl_c.def_id.expect_local());
        let infcx = &inh.infcx;

        // The below is for the most part highly similar to the procedure
        // for methods above. It is simpler in many respects, especially
        // because we shouldn't really have to deal with lifetimes or
        // predicates. In fact some of this should probably be put into
        // shared functions because of DRY violations...
        let trait_to_impl_substs = impl_trait_ref.substs;

        // Create a parameter environment that represents the implementation's
        // method.
        let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_c.def_id.expect_local());

        // Compute placeholder form of impl and trait const tys.
        let impl_ty = tcx.type_of(impl_c.def_id);
        let trait_ty = tcx.type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
        let mut cause = ObligationCause::new(
            impl_c_span,
            impl_c_hir_id,
            ObligationCauseCode::CompareImplConstObligation,
        );

        // There is no "body" here, so just pass dummy id.
        let impl_ty =
            inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, impl_ty);

        debug!("compare_const_impl: impl_ty={:?}", impl_ty);

        let trait_ty =
            inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, trait_ty);

        debug!("compare_const_impl: trait_ty={:?}", trait_ty);

        let err = infcx
            .at(&cause, param_env)
            .sup(trait_ty, impl_ty)
            .map(|ok| inh.register_infer_ok_obligations(ok));

        if let Err(terr) = err {
            debug!(
                "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
                impl_ty, trait_ty
            );

            // Locate the Span containing just the type of the offending impl
            match tcx.hir().expect_impl_item(impl_c_hir_id).kind {
                ImplItemKind::Const(ref ty, _) => cause.make_mut().span = ty.span,
                _ => bug!("{:?} is not a impl const", impl_c),
            }

            let mut diag = struct_span_err!(
                tcx.sess,
                cause.span,
                E0326,
                "implemented const `{}` has an incompatible type for trait",
                trait_c.ident
            );

            let trait_c_hir_id =
                trait_c.def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id));
            let trait_c_span = trait_c_hir_id.map(|trait_c_hir_id| {
                // Add a label to the Span containing just the type of the const
                match tcx.hir().expect_trait_item(trait_c_hir_id).kind {
                    TraitItemKind::Const(ref ty, _) => ty.span,
                    _ => bug!("{:?} is not a trait const", trait_c),
                }
            });

            infcx.note_type_err(
                &mut diag,
                &cause,
                trait_c_span.map(|span| (span, "type in trait".to_owned())),
                Some(infer::ValuePairs::Types(ExpectedFound {
                    expected: trait_ty,
                    found: impl_ty,
                })),
                &terr,
            );
            diag.emit();
        }

        // Check that all obligations are satisfied by the implementation's
        // version.
        if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
            infcx.report_fulfillment_errors(errors, None, false);
            return;
        }

        let fcx = FnCtxt::new(&inh, param_env, impl_c_hir_id);
        fcx.regionck_item(impl_c_hir_id, impl_c_span, FxHashSet::default());
    });
}

crate fn compare_ty_impl<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_ty: &ty::AssocItem,
    impl_ty_span: Span,
    trait_ty: &ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
    trait_item_span: Option<Span>,
) {
    debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);

    let _: Result<(), ErrorReported> = (|| {
        compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;

        compare_type_predicate_entailment(tcx, impl_ty, impl_ty_span, trait_ty, impl_trait_ref)?;

        check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
    })();
}

/// The equivalent of [compare_predicate_entailment], but for associated types
/// instead of associated functions.
fn compare_type_predicate_entailment<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_ty: &ty::AssocItem,
    impl_ty_span: Span,
    trait_ty: &ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
    let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
    let trait_to_impl_substs =
        impl_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);

    let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
    let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
    let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
    let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);

    check_region_bounds_on_impl_item(
        tcx,
        impl_ty_span,
        impl_ty,
        trait_ty,
        &trait_ty_generics,
        &impl_ty_generics,
    )?;

    let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);

    if impl_ty_own_bounds.is_empty() {
        // Nothing to check.
        return Ok(());
    }

    // This `HirId` should be used for the `body_id` field on each
    // `ObligationCause` (and the `FnCtxt`). This is what
    // `regionck_item` expects.
    let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
    let cause = ObligationCause::new(
        impl_ty_span,
        impl_ty_hir_id,
        ObligationCauseCode::CompareImplTypeObligation {
            item_name: impl_ty.ident.name,
            impl_item_def_id: impl_ty.def_id,
            trait_item_def_id: trait_ty.def_id,
        },
    );

    debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);

    // The predicates declared by the impl definition, the trait and the
    // associated type in the trait are assumed.
    let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
    let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
    hybrid_preds
        .predicates
        .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);

    debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);

    let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
    let param_env =
        ty::ParamEnv::new(tcx.intern_predicates(&hybrid_preds.predicates), Reveal::UserFacing);
    let param_env = traits::normalize_param_env_or_error(
        tcx,
        impl_ty.def_id,
        param_env,
        normalize_cause.clone(),
    );
    tcx.infer_ctxt().enter(|infcx| {
        let inh = Inherited::new(infcx, impl_ty.def_id.expect_local());
        let infcx = &inh.infcx;

        debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());

        let mut selcx = traits::SelectionContext::new(&infcx);

        for predicate in impl_ty_own_bounds.predicates {
            let traits::Normalized { value: predicate, obligations } =
                traits::normalize(&mut selcx, param_env, normalize_cause.clone(), predicate);

            inh.register_predicates(obligations);
            inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
        }

        // Check that all obligations are satisfied by the implementation's
        // version.
        if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
            infcx.report_fulfillment_errors(errors, None, false);
            return Err(ErrorReported);
        }

        // Finally, resolve all regions. This catches wily misuses of
        // lifetime parameters.
        let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
        fcx.regionck_item(impl_ty_hir_id, impl_ty_span, FxHashSet::default());

        Ok(())
    })
}

/// Validate that `ProjectionCandidate`s created for this associated type will
/// be valid.
///
/// Usually given
///
/// trait X { type Y: Copy } impl X for T { type Y = S; }
///
/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
/// impl is well-formed we have to prove `S: Copy`.
///
/// For default associated types the normalization is not possible (the value
/// from the impl could be overridden). We also can't normalize generic
/// associated types (yet) because they contain bound parameters.
#[tracing::instrument(level = "debug", skip(tcx))]
pub fn check_type_bounds<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ty: &ty::AssocItem,
    impl_ty: &ty::AssocItem,
    impl_ty_span: Span,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorReported> {
    // Given
    //
    // impl<A, B> Foo<u32> for (A, B) {
    //     type Bar<C> =...
    // }
    //
    // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
    // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
    // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
    //    the *trait* with the generic associated type parameters (as bound vars).
    //
    // A note regarding the use of bound vars here:
    // Imagine as an example
    // ```
    // trait Family {
    //     type Member<C: Eq>;
    // }
    //
    // impl Family for VecFamily {
    //     type Member<C: Eq> = i32;
    // }
    // ```
    // Here, we would generate
    // ```notrust
    // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
    // ```
    // when we really would like to generate
    // ```notrust
    // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
    // ```
    // But, this is probably fine, because although the first clause can be used with types C that
    // do not implement Eq, for it to cause some kind of problem, there would have to be a
    // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
    // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
    // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
    // the trait (notably, that X: Eq and T: Family).
    let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
    let mut substs = smallvec::SmallVec::with_capacity(defs.count());
    if let Some(def_id) = defs.parent {
        let parent_defs = tcx.generics_of(def_id);
        InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
            tcx.mk_param_from_def(param)
        });
    }
    let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
        smallvec::SmallVec::with_capacity(defs.count());
    InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
        GenericParamDefKind::Type { .. } => {
            let kind = ty::BoundTyKind::Param(param.name);
            let bound_var = ty::BoundVariableKind::Ty(kind);
            bound_vars.push(bound_var);
            tcx.mk_ty(ty::Bound(
                ty::INNERMOST,
                ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
            ))
            .into()
        }
        GenericParamDefKind::Lifetime => {
            let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
            let bound_var = ty::BoundVariableKind::Region(kind);
            bound_vars.push(bound_var);
            tcx.mk_region(ty::ReLateBound(
                ty::INNERMOST,
                ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
            ))
            .into()
        }
        GenericParamDefKind::Const { .. } => {
            let bound_var = ty::BoundVariableKind::Const;
            bound_vars.push(bound_var);
            tcx.mk_const(ty::Const {
                ty: tcx.type_of(param.def_id),
                val: ty::ConstKind::Bound(
                    ty::INNERMOST,
                    ty::BoundVar::from_usize(bound_vars.len() - 1),
                ),
            })
            .into()
        }
    });
    let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
    let impl_ty_substs = tcx.intern_substs(&substs);

    let rebased_substs =
        impl_ty_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
    let impl_ty_value = tcx.type_of(impl_ty.def_id);

    let param_env = tcx.param_env(impl_ty.def_id);

    // When checking something like
    //
    // trait X { type Y: PartialEq<<Self as X>::Y> }
    // impl X for T { default type Y = S; }
    //
    // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
    // we want <T as X>::Y to normalize to S. This is valid because we are
    // checking the default value specifically here. Add this equality to the
    // ParamEnv for normalization specifically.
    let normalize_param_env = {
        let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
        match impl_ty_value.kind() {
            ty::Projection(proj)
                if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
            {
                // Don't include this predicate if the projected type is
                // exactly the same as the projection. This can occur in
                // (somewhat dubious) code like this:
                //
                // impl<T> X for T where T: X { type Y = <T as X>::Y; }
            }
            _ => predicates.push(
                ty::Binder::bind_with_vars(
                    ty::ProjectionPredicate {
                        projection_ty: ty::ProjectionTy {
                            item_def_id: trait_ty.def_id,
                            substs: rebased_substs,
                        },
                        ty: impl_ty_value,
                    },
                    bound_vars,
                )
                .to_predicate(tcx),
            ),
        };
        ty::ParamEnv::new(tcx.intern_predicates(&predicates), Reveal::UserFacing)
    };
    debug!(?normalize_param_env);

    let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
    let rebased_substs =
        impl_ty_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);

    tcx.infer_ctxt().enter(move |infcx| {
        let constness = impl_ty
            .container
            .impl_def_id()
            .map(|did| tcx.impl_constness(did))
            .unwrap_or(hir::Constness::NotConst);

        let inh = Inherited::with_constness(infcx, impl_ty.def_id.expect_local(), constness);
        let infcx = &inh.infcx;
        let mut selcx = traits::SelectionContext::new(&infcx);

        let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
        let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
        let mk_cause = |span| {
            ObligationCause::new(
                impl_ty_span,
                impl_ty_hir_id,
                ObligationCauseCode::BindingObligation(trait_ty.def_id, span),
            )
        };

        let obligations = tcx
            .explicit_item_bounds(trait_ty.def_id)
            .iter()
            .map(|&(bound, span)| {
                debug!(?bound);
                let concrete_ty_bound = bound.subst(tcx, rebased_substs);
                debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);

                traits::Obligation::new(mk_cause(span), param_env, concrete_ty_bound)
            })
            .collect();
        debug!("check_type_bounds: item_bounds={:?}", obligations);

        for mut obligation in util::elaborate_obligations(tcx, obligations) {
            let traits::Normalized { value: normalized_predicate, obligations } = traits::normalize(
                &mut selcx,
                normalize_param_env,
                normalize_cause.clone(),
                obligation.predicate,
            );
            debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
            obligation.predicate = normalized_predicate;

            inh.register_predicates(obligations);
            inh.register_predicate(obligation);
        }

        // Check that all obligations are satisfied by the implementation's
        // version.
        if let Err(ref errors) =
            inh.fulfillment_cx.borrow_mut().select_all_with_constness_or_error(&infcx, constness)
        {
            infcx.report_fulfillment_errors(errors, None, false);
            return Err(ErrorReported);
        }

        // Finally, resolve all regions. This catches wily misuses of
        // lifetime parameters.
        let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
        let implied_bounds = match impl_ty.container {
            ty::TraitContainer(_) => FxHashSet::default(),
            ty::ImplContainer(def_id) => fcx.impl_implied_bounds(def_id, impl_ty_span),
        };
        fcx.regionck_item(impl_ty_hir_id, impl_ty_span, implied_bounds);

        Ok(())
    })
}

fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
    match impl_item.kind {
        ty::AssocKind::Const => "const",
        ty::AssocKind::Fn => "method",
        ty::AssocKind::Type => "type",
    }
}