1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
use crate::check::FnCtxt;
use rustc_ast as ast;

use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::pat_util::EnumerateAndAdjustIterator;
use rustc_hir::{HirId, Pat, PatKind};
use rustc_infer::infer;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_middle::ty::subst::GenericArg;
use rustc_middle::ty::{self, Adt, BindingMode, Ty, TypeFoldable};
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::source_map::{Span, Spanned};
use rustc_span::symbol::Ident;
use rustc_span::{BytePos, MultiSpan, DUMMY_SP};
use rustc_trait_selection::autoderef::Autoderef;
use rustc_trait_selection::traits::{ObligationCause, Pattern};
use ty::VariantDef;

use std::cmp;
use std::collections::hash_map::Entry::{Occupied, Vacant};

use super::report_unexpected_variant_res;

const CANNOT_IMPLICITLY_DEREF_POINTER_TRAIT_OBJ: &str = "\
This error indicates that a pointer to a trait type cannot be implicitly dereferenced by a \
pattern. Every trait defines a type, but because the size of trait implementors isn't fixed, \
this type has no compile-time size. Therefore, all accesses to trait types must be through \
pointers. If you encounter this error you should try to avoid dereferencing the pointer.

You can read more about trait objects in the Trait Objects section of the Reference: \
https://doc.rust-lang.org/reference/types.html#trait-objects";

/// Information about the expected type at the top level of type checking a pattern.
///
/// **NOTE:** This is only for use by diagnostics. Do NOT use for type checking logic!
#[derive(Copy, Clone)]
struct TopInfo<'tcx> {
    /// The `expected` type at the top level of type checking a pattern.
    expected: Ty<'tcx>,
    /// Was the origin of the `span` from a scrutinee expression?
    ///
    /// Otherwise there is no scrutinee and it could be e.g. from the type of a formal parameter.
    origin_expr: bool,
    /// The span giving rise to the `expected` type, if one could be provided.
    ///
    /// If `origin_expr` is `true`, then this is the span of the scrutinee as in:
    ///
    /// - `match scrutinee { ... }`
    /// - `let _ = scrutinee;`
    ///
    /// This is used to point to add context in type errors.
    /// In the following example, `span` corresponds to the `a + b` expression:
    ///
    /// ```text
    /// error[E0308]: mismatched types
    ///  --> src/main.rs:L:C
    ///   |
    /// L |    let temp: usize = match a + b {
    ///   |                            ----- this expression has type `usize`
    /// L |         Ok(num) => num,
    ///   |         ^^^^^^^ expected `usize`, found enum `std::result::Result`
    ///   |
    ///   = note: expected type `usize`
    ///              found type `std::result::Result<_, _>`
    /// ```
    span: Option<Span>,
    /// This refers to the parent pattern. Used to provide extra diagnostic information on errors.
    /// ```text
    /// error[E0308]: mismatched types
    ///   --> $DIR/const-in-struct-pat.rs:8:17
    ///   |
    /// L | struct f;
    ///   | --------- unit struct defined here
    /// ...
    /// L |     let Thing { f } = t;
    ///   |                 ^
    ///   |                 |
    ///   |                 expected struct `std::string::String`, found struct `f`
    ///   |                 `f` is interpreted as a unit struct, not a new binding
    ///   |                 help: bind the struct field to a different name instead: `f: other_f`
    /// ```
    parent_pat: Option<&'tcx Pat<'tcx>>,
}

impl<'tcx> FnCtxt<'_, 'tcx> {
    fn pattern_cause(&self, ti: TopInfo<'tcx>, cause_span: Span) -> ObligationCause<'tcx> {
        let code = Pattern { span: ti.span, root_ty: ti.expected, origin_expr: ti.origin_expr };
        self.cause(cause_span, code)
    }

    fn demand_eqtype_pat_diag(
        &self,
        cause_span: Span,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
        ti: TopInfo<'tcx>,
    ) -> Option<DiagnosticBuilder<'tcx>> {
        self.demand_eqtype_with_origin(&self.pattern_cause(ti, cause_span), expected, actual)
    }

    fn demand_eqtype_pat(
        &self,
        cause_span: Span,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
        ti: TopInfo<'tcx>,
    ) {
        if let Some(mut err) = self.demand_eqtype_pat_diag(cause_span, expected, actual, ti) {
            err.emit();
        }
    }
}

const INITIAL_BM: BindingMode = BindingMode::BindByValue(hir::Mutability::Not);

/// Mode for adjusting the expected type and binding mode.
enum AdjustMode {
    /// Peel off all immediate reference types.
    Peel,
    /// Reset binding mode to the initial mode.
    Reset,
    /// Pass on the input binding mode and expected type.
    Pass,
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    /// Type check the given top level pattern against the `expected` type.
    ///
    /// If a `Some(span)` is provided and `origin_expr` holds,
    /// then the `span` represents the scrutinee's span.
    /// The scrutinee is found in e.g. `match scrutinee { ... }` and `let pat = scrutinee;`.
    ///
    /// Otherwise, `Some(span)` represents the span of a type expression
    /// which originated the `expected` type.
    pub fn check_pat_top(
        &self,
        pat: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        span: Option<Span>,
        origin_expr: bool,
    ) {
        let info = TopInfo { expected, origin_expr, span, parent_pat: None };
        self.check_pat(pat, expected, INITIAL_BM, info);
    }

    /// Type check the given `pat` against the `expected` type
    /// with the provided `def_bm` (default binding mode).
    ///
    /// Outside of this module, `check_pat_top` should always be used.
    /// Conversely, inside this module, `check_pat_top` should never be used.
    #[instrument(level = "debug", skip(self, ti))]
    fn check_pat(
        &self,
        pat: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) {
        let path_res = match &pat.kind {
            PatKind::Path(qpath) => {
                Some(self.resolve_ty_and_res_fully_qualified_call(qpath, pat.hir_id, pat.span))
            }
            _ => None,
        };
        let adjust_mode = self.calc_adjust_mode(pat, path_res.map(|(res, ..)| res));
        let (expected, def_bm) = self.calc_default_binding_mode(pat, expected, def_bm, adjust_mode);

        let ty = match pat.kind {
            PatKind::Wild => expected,
            PatKind::Lit(lt) => self.check_pat_lit(pat.span, lt, expected, ti),
            PatKind::Range(lhs, rhs, _) => self.check_pat_range(pat.span, lhs, rhs, expected, ti),
            PatKind::Binding(ba, var_id, _, sub) => {
                self.check_pat_ident(pat, ba, var_id, sub, expected, def_bm, ti)
            }
            PatKind::TupleStruct(ref qpath, subpats, ddpos) => {
                self.check_pat_tuple_struct(pat, qpath, subpats, ddpos, expected, def_bm, ti)
            }
            PatKind::Path(_) => self.check_pat_path(pat, path_res.unwrap(), expected, ti),
            PatKind::Struct(ref qpath, fields, has_rest_pat) => {
                self.check_pat_struct(pat, qpath, fields, has_rest_pat, expected, def_bm, ti)
            }
            PatKind::Or(pats) => {
                let parent_pat = Some(pat);
                for pat in pats {
                    self.check_pat(pat, expected, def_bm, TopInfo { parent_pat, ..ti });
                }
                expected
            }
            PatKind::Tuple(elements, ddpos) => {
                self.check_pat_tuple(pat.span, elements, ddpos, expected, def_bm, ti)
            }
            PatKind::Box(inner) => self.check_pat_box(pat.span, inner, expected, def_bm, ti),
            PatKind::Ref(inner, mutbl) => {
                self.check_pat_ref(pat, inner, mutbl, expected, def_bm, ti)
            }
            PatKind::Slice(before, slice, after) => {
                self.check_pat_slice(pat.span, before, slice, after, expected, def_bm, ti)
            }
        };

        self.write_ty(pat.hir_id, ty);

        // (note_1): In most of the cases where (note_1) is referenced
        // (literals and constants being the exception), we relate types
        // using strict equality, even though subtyping would be sufficient.
        // There are a few reasons for this, some of which are fairly subtle
        // and which cost me (nmatsakis) an hour or two debugging to remember,
        // so I thought I'd write them down this time.
        //
        // 1. There is no loss of expressiveness here, though it does
        // cause some inconvenience. What we are saying is that the type
        // of `x` becomes *exactly* what is expected. This can cause unnecessary
        // errors in some cases, such as this one:
        //
        // ```
        // fn foo<'x>(x: &'x i32) {
        //    let a = 1;
        //    let mut z = x;
        //    z = &a;
        // }
        // ```
        //
        // The reason we might get an error is that `z` might be
        // assigned a type like `&'x i32`, and then we would have
        // a problem when we try to assign `&a` to `z`, because
        // the lifetime of `&a` (i.e., the enclosing block) is
        // shorter than `'x`.
        //
        // HOWEVER, this code works fine. The reason is that the
        // expected type here is whatever type the user wrote, not
        // the initializer's type. In this case the user wrote
        // nothing, so we are going to create a type variable `Z`.
        // Then we will assign the type of the initializer (`&'x i32`)
        // as a subtype of `Z`: `&'x i32 <: Z`. And hence we
        // will instantiate `Z` as a type `&'0 i32` where `'0` is
        // a fresh region variable, with the constraint that `'x : '0`.
        // So basically we're all set.
        //
        // Note that there are two tests to check that this remains true
        // (`regions-reassign-{match,let}-bound-pointer.rs`).
        //
        // 2. Things go horribly wrong if we use subtype. The reason for
        // THIS is a fairly subtle case involving bound regions. See the
        // `givens` field in `region_constraints`, as well as the test
        // `regions-relate-bound-regions-on-closures-to-inference-variables.rs`,
        // for details. Short version is that we must sometimes detect
        // relationships between specific region variables and regions
        // bound in a closure signature, and that detection gets thrown
        // off when we substitute fresh region variables here to enable
        // subtyping.
    }

    /// Compute the new expected type and default binding mode from the old ones
    /// as well as the pattern form we are currently checking.
    fn calc_default_binding_mode(
        &self,
        pat: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        adjust_mode: AdjustMode,
    ) -> (Ty<'tcx>, BindingMode) {
        match adjust_mode {
            AdjustMode::Pass => (expected, def_bm),
            AdjustMode::Reset => (expected, INITIAL_BM),
            AdjustMode::Peel => self.peel_off_references(pat, expected, def_bm),
        }
    }

    /// How should the binding mode and expected type be adjusted?
    ///
    /// When the pattern is a path pattern, `opt_path_res` must be `Some(res)`.
    fn calc_adjust_mode(&self, pat: &'tcx Pat<'tcx>, opt_path_res: Option<Res>) -> AdjustMode {
        // When we perform destructuring assignment, we disable default match bindings, which are
        // unintuitive in this context.
        if !pat.default_binding_modes {
            return AdjustMode::Reset;
        }
        match &pat.kind {
            // Type checking these product-like types successfully always require
            // that the expected type be of those types and not reference types.
            PatKind::Struct(..)
            | PatKind::TupleStruct(..)
            | PatKind::Tuple(..)
            | PatKind::Box(_)
            | PatKind::Range(..)
            | PatKind::Slice(..) => AdjustMode::Peel,
            // String and byte-string literals result in types `&str` and `&[u8]` respectively.
            // All other literals result in non-reference types.
            // As a result, we allow `if let 0 = &&0 {}` but not `if let "foo" = &&"foo {}`.
            PatKind::Lit(lt) => match self.check_expr(lt).kind() {
                ty::Ref(..) => AdjustMode::Pass,
                _ => AdjustMode::Peel,
            },
            PatKind::Path(_) => match opt_path_res.unwrap() {
                // These constants can be of a reference type, e.g. `const X: &u8 = &0;`.
                // Peeling the reference types too early will cause type checking failures.
                // Although it would be possible to *also* peel the types of the constants too.
                Res::Def(DefKind::Const | DefKind::AssocConst, _) => AdjustMode::Pass,
                // In the `ValueNS`, we have `SelfCtor(..) | Ctor(_, Const), _)` remaining which
                // could successfully compile. The former being `Self` requires a unit struct.
                // In either case, and unlike constants, the pattern itself cannot be
                // a reference type wherefore peeling doesn't give up any expressivity.
                _ => AdjustMode::Peel,
            },
            // When encountering a `& mut? pat` pattern, reset to "by value".
            // This is so that `x` and `y` here are by value, as they appear to be:
            //
            // ```
            // match &(&22, &44) {
            //   (&x, &y) => ...
            // }
            // ```
            //
            // See issue #46688.
            PatKind::Ref(..) => AdjustMode::Reset,
            // A `_` pattern works with any expected type, so there's no need to do anything.
            PatKind::Wild
            // Bindings also work with whatever the expected type is,
            // and moreover if we peel references off, that will give us the wrong binding type.
            // Also, we can have a subpattern `binding @ pat`.
            // Each side of the `@` should be treated independently (like with OR-patterns).
            | PatKind::Binding(..)
            // An OR-pattern just propagates to each individual alternative.
            // This is maximally flexible, allowing e.g., `Some(mut x) | &Some(mut x)`.
            // In that example, `Some(mut x)` results in `Peel` whereas `&Some(mut x)` in `Reset`.
            | PatKind::Or(_) => AdjustMode::Pass,
        }
    }

    /// Peel off as many immediately nested `& mut?` from the expected type as possible
    /// and return the new expected type and binding default binding mode.
    /// The adjustments vector, if non-empty is stored in a table.
    fn peel_off_references(
        &self,
        pat: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        mut def_bm: BindingMode,
    ) -> (Ty<'tcx>, BindingMode) {
        let mut expected = self.resolve_vars_with_obligations(expected);

        // Peel off as many `&` or `&mut` from the scrutinee type as possible. For example,
        // for `match &&&mut Some(5)` the loop runs three times, aborting when it reaches
        // the `Some(5)` which is not of type Ref.
        //
        // For each ampersand peeled off, update the binding mode and push the original
        // type into the adjustments vector.
        //
        // See the examples in `ui/match-defbm*.rs`.
        let mut pat_adjustments = vec![];
        while let ty::Ref(_, inner_ty, inner_mutability) = *expected.kind() {
            debug!("inspecting {:?}", expected);

            debug!("current discriminant is Ref, inserting implicit deref");
            // Preserve the reference type. We'll need it later during THIR lowering.
            pat_adjustments.push(expected);

            expected = inner_ty;
            def_bm = ty::BindByReference(match def_bm {
                // If default binding mode is by value, make it `ref` or `ref mut`
                // (depending on whether we observe `&` or `&mut`).
                ty::BindByValue(_) |
                // When `ref mut`, stay a `ref mut` (on `&mut`) or downgrade to `ref` (on `&`).
                ty::BindByReference(hir::Mutability::Mut) => inner_mutability,
                // Once a `ref`, always a `ref`.
                // This is because a `& &mut` cannot mutate the underlying value.
                ty::BindByReference(m @ hir::Mutability::Not) => m,
            });
        }

        if !pat_adjustments.is_empty() {
            debug!("default binding mode is now {:?}", def_bm);
            self.inh
                .typeck_results
                .borrow_mut()
                .pat_adjustments_mut()
                .insert(pat.hir_id, pat_adjustments);
        }

        (expected, def_bm)
    }

    fn check_pat_lit(
        &self,
        span: Span,
        lt: &hir::Expr<'tcx>,
        expected: Ty<'tcx>,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        // We've already computed the type above (when checking for a non-ref pat),
        // so avoid computing it again.
        let ty = self.node_ty(lt.hir_id);

        // Byte string patterns behave the same way as array patterns
        // They can denote both statically and dynamically-sized byte arrays.
        let mut pat_ty = ty;
        if let hir::ExprKind::Lit(Spanned { node: ast::LitKind::ByteStr(_), .. }) = lt.kind {
            let expected = self.structurally_resolved_type(span, expected);
            if let ty::Ref(_, inner_ty, _) = expected.kind() {
                if matches!(inner_ty.kind(), ty::Slice(_)) {
                    let tcx = self.tcx;
                    trace!(?lt.hir_id.local_id, "polymorphic byte string lit");
                    self.typeck_results
                        .borrow_mut()
                        .treat_byte_string_as_slice
                        .insert(lt.hir_id.local_id);
                    pat_ty = tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_slice(tcx.types.u8));
                }
            }
        }

        // Somewhat surprising: in this case, the subtyping relation goes the
        // opposite way as the other cases. Actually what we really want is not
        // a subtyping relation at all but rather that there exists a LUB
        // (so that they can be compared). However, in practice, constants are
        // always scalars or strings. For scalars subtyping is irrelevant,
        // and for strings `ty` is type is `&'static str`, so if we say that
        //
        //     &'static str <: expected
        //
        // then that's equivalent to there existing a LUB.
        let cause = self.pattern_cause(ti, span);
        if let Some(mut err) = self.demand_suptype_with_origin(&cause, expected, pat_ty) {
            err.emit_unless(
                ti.span
                    .filter(|&s| {
                        // In the case of `if`- and `while`-expressions we've already checked
                        // that `scrutinee: bool`. We know that the pattern is `true`,
                        // so an error here would be a duplicate and from the wrong POV.
                        s.is_desugaring(DesugaringKind::CondTemporary)
                    })
                    .is_some(),
            );
        }

        pat_ty
    }

    fn check_pat_range(
        &self,
        span: Span,
        lhs: Option<&'tcx hir::Expr<'tcx>>,
        rhs: Option<&'tcx hir::Expr<'tcx>>,
        expected: Ty<'tcx>,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let calc_side = |opt_expr: Option<&'tcx hir::Expr<'tcx>>| match opt_expr {
            None => None,
            Some(expr) => {
                let ty = self.check_expr(expr);
                // Check that the end-point is possibly of numeric or char type.
                // The early check here is not for correctness, but rather better
                // diagnostics (e.g. when `&str` is being matched, `expected` will
                // be peeled to `str` while ty here is still `&str`, if we don't
                // err ealy here, a rather confusing unification error will be
                // emitted instead).
                let fail =
                    !(ty.is_numeric() || ty.is_char() || ty.is_ty_var() || ty.references_error());
                Some((fail, ty, expr.span))
            }
        };
        let mut lhs = calc_side(lhs);
        let mut rhs = calc_side(rhs);

        if let (Some((true, ..)), _) | (_, Some((true, ..))) = (lhs, rhs) {
            // There exists a side that didn't meet our criteria that the end-point
            // be of a numeric or char type, as checked in `calc_side` above.
            self.emit_err_pat_range(span, lhs, rhs);
            return self.tcx.ty_error();
        }

        // Unify each side with `expected`.
        // Subtyping doesn't matter here, as the value is some kind of scalar.
        let demand_eqtype = |x: &mut _, y| {
            if let Some((ref mut fail, x_ty, x_span)) = *x {
                if let Some(mut err) = self.demand_eqtype_pat_diag(x_span, expected, x_ty, ti) {
                    if let Some((_, y_ty, y_span)) = y {
                        self.endpoint_has_type(&mut err, y_span, y_ty);
                    }
                    err.emit();
                    *fail = true;
                };
            }
        };
        demand_eqtype(&mut lhs, rhs);
        demand_eqtype(&mut rhs, lhs);

        if let (Some((true, ..)), _) | (_, Some((true, ..))) = (lhs, rhs) {
            return self.tcx.ty_error();
        }

        // Find the unified type and check if it's of numeric or char type again.
        // This check is needed if both sides are inference variables.
        // We require types to be resolved here so that we emit inference failure
        // rather than "_ is not a char or numeric".
        let ty = self.structurally_resolved_type(span, expected);
        if !(ty.is_numeric() || ty.is_char() || ty.references_error()) {
            if let Some((ref mut fail, _, _)) = lhs {
                *fail = true;
            }
            if let Some((ref mut fail, _, _)) = rhs {
                *fail = true;
            }
            self.emit_err_pat_range(span, lhs, rhs);
            return self.tcx.ty_error();
        }
        ty
    }

    fn endpoint_has_type(&self, err: &mut DiagnosticBuilder<'_>, span: Span, ty: Ty<'_>) {
        if !ty.references_error() {
            err.span_label(span, &format!("this is of type `{}`", ty));
        }
    }

    fn emit_err_pat_range(
        &self,
        span: Span,
        lhs: Option<(bool, Ty<'tcx>, Span)>,
        rhs: Option<(bool, Ty<'tcx>, Span)>,
    ) {
        let span = match (lhs, rhs) {
            (Some((true, ..)), Some((true, ..))) => span,
            (Some((true, _, sp)), _) => sp,
            (_, Some((true, _, sp))) => sp,
            _ => span_bug!(span, "emit_err_pat_range: no side failed or exists but still error?"),
        };
        let mut err = struct_span_err!(
            self.tcx.sess,
            span,
            E0029,
            "only `char` and numeric types are allowed in range patterns"
        );
        let msg = |ty| {
            let ty = self.resolve_vars_if_possible(ty);
            format!("this is of type `{}` but it should be `char` or numeric", ty)
        };
        let mut one_side_err = |first_span, first_ty, second: Option<(bool, Ty<'tcx>, Span)>| {
            err.span_label(first_span, &msg(first_ty));
            if let Some((_, ty, sp)) = second {
                let ty = self.resolve_vars_if_possible(ty);
                self.endpoint_has_type(&mut err, sp, ty);
            }
        };
        match (lhs, rhs) {
            (Some((true, lhs_ty, lhs_sp)), Some((true, rhs_ty, rhs_sp))) => {
                err.span_label(lhs_sp, &msg(lhs_ty));
                err.span_label(rhs_sp, &msg(rhs_ty));
            }
            (Some((true, lhs_ty, lhs_sp)), rhs) => one_side_err(lhs_sp, lhs_ty, rhs),
            (lhs, Some((true, rhs_ty, rhs_sp))) => one_side_err(rhs_sp, rhs_ty, lhs),
            _ => span_bug!(span, "Impossible, verified above."),
        }
        if self.tcx.sess.teach(&err.get_code().unwrap()) {
            err.note(
                "In a match expression, only numbers and characters can be matched \
                    against a range. This is because the compiler checks that the range \
                    is non-empty at compile-time, and is unable to evaluate arbitrary \
                    comparison functions. If you want to capture values of an orderable \
                    type between two end-points, you can use a guard.",
            );
        }
        err.emit();
    }

    fn check_pat_ident(
        &self,
        pat: &'tcx Pat<'tcx>,
        ba: hir::BindingAnnotation,
        var_id: HirId,
        sub: Option<&'tcx Pat<'tcx>>,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        // Determine the binding mode...
        let bm = match ba {
            hir::BindingAnnotation::Unannotated => def_bm,
            _ => BindingMode::convert(ba),
        };
        // ...and store it in a side table:
        self.inh.typeck_results.borrow_mut().pat_binding_modes_mut().insert(pat.hir_id, bm);

        debug!("check_pat_ident: pat.hir_id={:?} bm={:?}", pat.hir_id, bm);

        let local_ty = self.local_ty(pat.span, pat.hir_id).decl_ty;
        let eq_ty = match bm {
            ty::BindByReference(mutbl) => {
                // If the binding is like `ref x | ref mut x`,
                // then `x` is assigned a value of type `&M T` where M is the
                // mutability and T is the expected type.
                //
                // `x` is assigned a value of type `&M T`, hence `&M T <: typeof(x)`
                // is required. However, we use equality, which is stronger.
                // See (note_1) for an explanation.
                self.new_ref_ty(pat.span, mutbl, expected)
            }
            // Otherwise, the type of x is the expected type `T`.
            ty::BindByValue(_) => {
                // As above, `T <: typeof(x)` is required, but we use equality, see (note_1).
                expected
            }
        };
        self.demand_eqtype_pat(pat.span, eq_ty, local_ty, ti);

        // If there are multiple arms, make sure they all agree on
        // what the type of the binding `x` ought to be.
        if var_id != pat.hir_id {
            self.check_binding_alt_eq_ty(pat.span, var_id, local_ty, ti);
        }

        if let Some(p) = sub {
            self.check_pat(p, expected, def_bm, TopInfo { parent_pat: Some(pat), ..ti });
        }

        local_ty
    }

    fn check_binding_alt_eq_ty(&self, span: Span, var_id: HirId, ty: Ty<'tcx>, ti: TopInfo<'tcx>) {
        let var_ty = self.local_ty(span, var_id).decl_ty;
        if let Some(mut err) = self.demand_eqtype_pat_diag(span, var_ty, ty, ti) {
            let hir = self.tcx.hir();
            let var_ty = self.resolve_vars_with_obligations(var_ty);
            let msg = format!("first introduced with type `{}` here", var_ty);
            err.span_label(hir.span(var_id), msg);
            let in_match = hir.parent_iter(var_id).any(|(_, n)| {
                matches!(
                    n,
                    hir::Node::Expr(hir::Expr {
                        kind: hir::ExprKind::Match(.., hir::MatchSource::Normal),
                        ..
                    })
                )
            });
            let pre = if in_match { "in the same arm, " } else { "" };
            err.note(&format!("{}a binding must have the same type in all alternatives", pre));
            err.emit();
        }
    }

    fn borrow_pat_suggestion(
        &self,
        err: &mut DiagnosticBuilder<'_>,
        pat: &Pat<'_>,
        inner: &Pat<'_>,
        expected: Ty<'tcx>,
    ) {
        let tcx = self.tcx;
        if let PatKind::Binding(..) = inner.kind {
            let binding_parent_id = tcx.hir().get_parent_node(pat.hir_id);
            let binding_parent = tcx.hir().get(binding_parent_id);
            debug!("inner {:?} pat {:?} parent {:?}", inner, pat, binding_parent);
            match binding_parent {
                hir::Node::Param(hir::Param { span, .. })
                    if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(inner.span) =>
                {
                    err.span_suggestion(
                        *span,
                        &format!("did you mean `{}`", snippet),
                        format!(" &{}", expected),
                        Applicability::MachineApplicable,
                    );
                }
                hir::Node::Arm(_) | hir::Node::Pat(_) => {
                    // rely on match ergonomics or it might be nested `&&pat`
                    if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(inner.span) {
                        err.span_suggestion(
                            pat.span,
                            "you can probably remove the explicit borrow",
                            snippet,
                            Applicability::MaybeIncorrect,
                        );
                    }
                }
                _ => {} // don't provide suggestions in other cases #55175
            }
        }
    }

    pub fn check_dereferenceable(&self, span: Span, expected: Ty<'tcx>, inner: &Pat<'_>) -> bool {
        if let PatKind::Binding(..) = inner.kind {
            if let Some(mt) = self.shallow_resolve(expected).builtin_deref(true) {
                if let ty::Dynamic(..) = mt.ty.kind() {
                    // This is "x = SomeTrait" being reduced from
                    // "let &x = &SomeTrait" or "let box x = Box<SomeTrait>", an error.
                    let type_str = self.ty_to_string(expected);
                    let mut err = struct_span_err!(
                        self.tcx.sess,
                        span,
                        E0033,
                        "type `{}` cannot be dereferenced",
                        type_str
                    );
                    err.span_label(span, format!("type `{}` cannot be dereferenced", type_str));
                    if self.tcx.sess.teach(&err.get_code().unwrap()) {
                        err.note(CANNOT_IMPLICITLY_DEREF_POINTER_TRAIT_OBJ);
                    }
                    err.emit();
                    return false;
                }
            }
        }
        true
    }

    fn check_pat_struct(
        &self,
        pat: &'tcx Pat<'tcx>,
        qpath: &hir::QPath<'_>,
        fields: &'tcx [hir::PatField<'tcx>],
        has_rest_pat: bool,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        // Resolve the path and check the definition for errors.
        let Some((variant, pat_ty)) = self.check_struct_path(qpath, pat.hir_id) else {
            let err = self.tcx.ty_error();
            for field in fields {
                let ti = TopInfo { parent_pat: Some(pat), ..ti };
                self.check_pat(field.pat, err, def_bm, ti);
            }
            return err;
        };

        // Type-check the path.
        self.demand_eqtype_pat(pat.span, expected, pat_ty, ti);

        // Type-check subpatterns.
        if self.check_struct_pat_fields(pat_ty, &pat, variant, fields, has_rest_pat, def_bm, ti) {
            pat_ty
        } else {
            self.tcx.ty_error()
        }
    }

    fn check_pat_path(
        &self,
        pat: &Pat<'_>,
        path_resolution: (Res, Option<Ty<'tcx>>, &'b [hir::PathSegment<'b>]),
        expected: Ty<'tcx>,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;

        // We have already resolved the path.
        let (res, opt_ty, segments) = path_resolution;
        match res {
            Res::Err => {
                self.set_tainted_by_errors();
                return tcx.ty_error();
            }
            Res::Def(DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fictive | CtorKind::Fn), _) => {
                report_unexpected_variant_res(tcx, res, pat.span);
                return tcx.ty_error();
            }
            Res::SelfCtor(..)
            | Res::Def(
                DefKind::Ctor(_, CtorKind::Const)
                | DefKind::Const
                | DefKind::AssocConst
                | DefKind::ConstParam,
                _,
            ) => {} // OK
            _ => bug!("unexpected pattern resolution: {:?}", res),
        }

        // Type-check the path.
        let (pat_ty, pat_res) =
            self.instantiate_value_path(segments, opt_ty, res, pat.span, pat.hir_id);
        if let Some(err) =
            self.demand_suptype_with_origin(&self.pattern_cause(ti, pat.span), expected, pat_ty)
        {
            self.emit_bad_pat_path(err, pat.span, res, pat_res, pat_ty, segments, ti.parent_pat);
        }
        pat_ty
    }

    fn maybe_suggest_range_literal(
        &self,
        e: &mut DiagnosticBuilder<'_>,
        opt_def_id: Option<hir::def_id::DefId>,
        ident: Ident,
    ) -> bool {
        match opt_def_id {
            Some(def_id) => match self.tcx.hir().get_if_local(def_id) {
                Some(hir::Node::Item(hir::Item {
                    kind: hir::ItemKind::Const(_, body_id), ..
                })) => match self.tcx.hir().get(body_id.hir_id) {
                    hir::Node::Expr(expr) => {
                        if hir::is_range_literal(expr) {
                            let span = self.tcx.hir().span(body_id.hir_id);
                            if let Ok(snip) = self.tcx.sess.source_map().span_to_snippet(span) {
                                e.span_suggestion_verbose(
                                    ident.span,
                                    "you may want to move the range into the match block",
                                    snip,
                                    Applicability::MachineApplicable,
                                );
                                return true;
                            }
                        }
                    }
                    _ => (),
                },
                _ => (),
            },
            _ => (),
        }
        false
    }

    fn emit_bad_pat_path(
        &self,
        mut e: DiagnosticBuilder<'_>,
        pat_span: Span,
        res: Res,
        pat_res: Res,
        pat_ty: Ty<'tcx>,
        segments: &'b [hir::PathSegment<'b>],
        parent_pat: Option<&Pat<'_>>,
    ) {
        if let Some(span) = self.tcx.hir().res_span(pat_res) {
            e.span_label(span, &format!("{} defined here", res.descr()));
            if let [hir::PathSegment { ident, .. }] = &*segments {
                e.span_label(
                    pat_span,
                    &format!(
                        "`{}` is interpreted as {} {}, not a new binding",
                        ident,
                        res.article(),
                        res.descr(),
                    ),
                );
                match parent_pat {
                    Some(Pat { kind: hir::PatKind::Struct(..), .. }) => {
                        e.span_suggestion_verbose(
                            ident.span.shrink_to_hi(),
                            "bind the struct field to a different name instead",
                            format!(": other_{}", ident.as_str().to_lowercase()),
                            Applicability::HasPlaceholders,
                        );
                    }
                    _ => {
                        let (type_def_id, item_def_id) = match pat_ty.kind() {
                            Adt(def, _) => match res {
                                Res::Def(DefKind::Const, def_id) => (Some(def.did), Some(def_id)),
                                _ => (None, None),
                            },
                            _ => (None, None),
                        };

                        let ranges = &[
                            self.tcx.lang_items().range_struct(),
                            self.tcx.lang_items().range_from_struct(),
                            self.tcx.lang_items().range_to_struct(),
                            self.tcx.lang_items().range_full_struct(),
                            self.tcx.lang_items().range_inclusive_struct(),
                            self.tcx.lang_items().range_to_inclusive_struct(),
                        ];
                        if type_def_id != None && ranges.contains(&type_def_id) {
                            if !self.maybe_suggest_range_literal(&mut e, item_def_id, *ident) {
                                let msg = "constants only support matching by type, \
                                    if you meant to match against a range of values, \
                                    consider using a range pattern like `min ..= max` in the match block";
                                e.note(msg);
                            }
                        } else {
                            let msg = "introduce a new binding instead";
                            let sugg = format!("other_{}", ident.as_str().to_lowercase());
                            e.span_suggestion(
                                ident.span,
                                msg,
                                sugg,
                                Applicability::HasPlaceholders,
                            );
                        }
                    }
                };
            }
        }
        e.emit();
    }

    fn check_pat_tuple_struct(
        &self,
        pat: &'tcx Pat<'tcx>,
        qpath: &'tcx hir::QPath<'tcx>,
        subpats: &'tcx [Pat<'tcx>],
        ddpos: Option<usize>,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let on_error = || {
            let parent_pat = Some(pat);
            for pat in subpats {
                self.check_pat(pat, tcx.ty_error(), def_bm, TopInfo { parent_pat, ..ti });
            }
        };
        let report_unexpected_res = |res: Res| {
            let sm = tcx.sess.source_map();
            let path_str = sm
                .span_to_snippet(sm.span_until_char(pat.span, '('))
                .map_or_else(|_| String::new(), |s| format!(" `{}`", s.trim_end()));
            let msg = format!(
                "expected tuple struct or tuple variant, found {}{}",
                res.descr(),
                path_str
            );

            let mut err = struct_span_err!(tcx.sess, pat.span, E0164, "{}", msg);
            match res {
                Res::Def(DefKind::Fn | DefKind::AssocFn, _) => {
                    err.span_label(pat.span, "`fn` calls are not allowed in patterns");
                    err.help(
                        "for more information, visit \
                              https://doc.rust-lang.org/book/ch18-00-patterns.html",
                    );
                }
                _ => {
                    err.span_label(pat.span, "not a tuple variant or struct");
                }
            }
            err.emit();
            on_error();
        };

        // Resolve the path and check the definition for errors.
        let (res, opt_ty, segments) =
            self.resolve_ty_and_res_fully_qualified_call(qpath, pat.hir_id, pat.span);
        if res == Res::Err {
            self.set_tainted_by_errors();
            on_error();
            return self.tcx.ty_error();
        }

        // Type-check the path.
        let (pat_ty, res) =
            self.instantiate_value_path(segments, opt_ty, res, pat.span, pat.hir_id);
        if !pat_ty.is_fn() {
            report_unexpected_res(res);
            return tcx.ty_error();
        }

        let variant = match res {
            Res::Err => {
                self.set_tainted_by_errors();
                on_error();
                return tcx.ty_error();
            }
            Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) => {
                report_unexpected_res(res);
                return tcx.ty_error();
            }
            Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) => tcx.expect_variant_res(res),
            _ => bug!("unexpected pattern resolution: {:?}", res),
        };

        // Replace constructor type with constructed type for tuple struct patterns.
        let pat_ty = pat_ty.fn_sig(tcx).output();
        let pat_ty = pat_ty.no_bound_vars().expect("expected fn type");

        // Type-check the tuple struct pattern against the expected type.
        let diag = self.demand_eqtype_pat_diag(pat.span, expected, pat_ty, ti);
        let had_err = if let Some(mut err) = diag {
            err.emit();
            true
        } else {
            false
        };

        // Type-check subpatterns.
        if subpats.len() == variant.fields.len()
            || subpats.len() < variant.fields.len() && ddpos.is_some()
        {
            let substs = match pat_ty.kind() {
                ty::Adt(_, substs) => substs,
                _ => bug!("unexpected pattern type {:?}", pat_ty),
            };
            for (i, subpat) in subpats.iter().enumerate_and_adjust(variant.fields.len(), ddpos) {
                let field_ty = self.field_ty(subpat.span, &variant.fields[i], substs);
                self.check_pat(subpat, field_ty, def_bm, TopInfo { parent_pat: Some(pat), ..ti });

                self.tcx.check_stability(
                    variant.fields[i].did,
                    Some(pat.hir_id),
                    subpat.span,
                    None,
                );
            }
        } else {
            // Pattern has wrong number of fields.
            self.e0023(pat.span, res, qpath, subpats, &variant.fields, expected, had_err);
            on_error();
            return tcx.ty_error();
        }
        pat_ty
    }

    fn e0023(
        &self,
        pat_span: Span,
        res: Res,
        qpath: &hir::QPath<'_>,
        subpats: &'tcx [Pat<'tcx>],
        fields: &'tcx [ty::FieldDef],
        expected: Ty<'tcx>,
        had_err: bool,
    ) {
        let subpats_ending = pluralize!(subpats.len());
        let fields_ending = pluralize!(fields.len());

        let subpat_spans = if subpats.is_empty() {
            vec![pat_span]
        } else {
            subpats.iter().map(|p| p.span).collect()
        };
        let last_subpat_span = *subpat_spans.last().unwrap();
        let res_span = self.tcx.def_span(res.def_id());
        let def_ident_span = self.tcx.def_ident_span(res.def_id()).unwrap_or(res_span);
        let field_def_spans = if fields.is_empty() {
            vec![res_span]
        } else {
            fields.iter().map(|f| f.ident.span).collect()
        };
        let last_field_def_span = *field_def_spans.last().unwrap();

        let mut err = struct_span_err!(
            self.tcx.sess,
            MultiSpan::from_spans(subpat_spans),
            E0023,
            "this pattern has {} field{}, but the corresponding {} has {} field{}",
            subpats.len(),
            subpats_ending,
            res.descr(),
            fields.len(),
            fields_ending,
        );
        err.span_label(
            last_subpat_span,
            &format!("expected {} field{}, found {}", fields.len(), fields_ending, subpats.len()),
        );
        if self.tcx.sess.source_map().is_multiline(qpath.span().between(last_subpat_span)) {
            err.span_label(qpath.span(), "");
        }
        if self.tcx.sess.source_map().is_multiline(def_ident_span.between(last_field_def_span)) {
            err.span_label(def_ident_span, format!("{} defined here", res.descr()));
        }
        for span in &field_def_spans[..field_def_spans.len() - 1] {
            err.span_label(*span, "");
        }
        err.span_label(
            last_field_def_span,
            &format!("{} has {} field{}", res.descr(), fields.len(), fields_ending),
        );

        // Identify the case `Some(x, y)` where the expected type is e.g. `Option<(T, U)>`.
        // More generally, the expected type wants a tuple variant with one field of an
        // N-arity-tuple, e.g., `V_i((p_0, .., p_N))`. Meanwhile, the user supplied a pattern
        // with the subpatterns directly in the tuple variant pattern, e.g., `V_i(p_0, .., p_N)`.
        let missing_parentheses = match (&expected.kind(), fields, had_err) {
            // #67037: only do this if we could successfully type-check the expected type against
            // the tuple struct pattern. Otherwise the substs could get out of range on e.g.,
            // `let P() = U;` where `P != U` with `struct P<T>(T);`.
            (ty::Adt(_, substs), [field], false) => {
                let field_ty = self.field_ty(pat_span, field, substs);
                match field_ty.kind() {
                    ty::Tuple(_) => field_ty.tuple_fields().count() == subpats.len(),
                    _ => false,
                }
            }
            _ => false,
        };
        if missing_parentheses {
            let (left, right) = match subpats {
                // This is the zero case; we aim to get the "hi" part of the `QPath`'s
                // span as the "lo" and then the "hi" part of the pattern's span as the "hi".
                // This looks like:
                //
                // help: missing parentheses
                //   |
                // L |     let A(()) = A(());
                //   |          ^  ^
                [] => (qpath.span().shrink_to_hi(), pat_span),
                // Easy case. Just take the "lo" of the first sub-pattern and the "hi" of the
                // last sub-pattern. In the case of `A(x)` the first and last may coincide.
                // This looks like:
                //
                // help: missing parentheses
                //   |
                // L |     let A((x, y)) = A((1, 2));
                //   |           ^    ^
                [first, ..] => (first.span.shrink_to_lo(), subpats.last().unwrap().span),
            };
            err.multipart_suggestion(
                "missing parentheses",
                vec![(left, "(".to_string()), (right.shrink_to_hi(), ")".to_string())],
                Applicability::MachineApplicable,
            );
        } else if fields.len() > subpats.len() && pat_span != DUMMY_SP {
            let after_fields_span = pat_span.with_hi(pat_span.hi() - BytePos(1)).shrink_to_hi();
            let all_fields_span = match subpats {
                [] => after_fields_span,
                [field] => field.span,
                [first, .., last] => first.span.to(last.span),
            };

            // Check if all the fields in the pattern are wildcards.
            let all_wildcards = subpats.iter().all(|pat| matches!(pat.kind, PatKind::Wild));
            let first_tail_wildcard =
                subpats.iter().enumerate().fold(None, |acc, (pos, pat)| match (acc, &pat.kind) {
                    (None, PatKind::Wild) => Some(pos),
                    (Some(_), PatKind::Wild) => acc,
                    _ => None,
                });
            let tail_span = match first_tail_wildcard {
                None => after_fields_span,
                Some(0) => subpats[0].span.to(after_fields_span),
                Some(pos) => subpats[pos - 1].span.shrink_to_hi().to(after_fields_span),
            };

            // FIXME: heuristic-based suggestion to check current types for where to add `_`.
            let mut wildcard_sugg = vec!["_"; fields.len() - subpats.len()].join(", ");
            if !subpats.is_empty() {
                wildcard_sugg = String::from(", ") + &wildcard_sugg;
            }

            err.span_suggestion_verbose(
                after_fields_span,
                "use `_` to explicitly ignore each field",
                wildcard_sugg,
                Applicability::MaybeIncorrect,
            );

            // Only suggest `..` if more than one field is missing
            // or the pattern consists of all wildcards.
            if fields.len() - subpats.len() > 1 || all_wildcards {
                if subpats.is_empty() || all_wildcards {
                    err.span_suggestion_verbose(
                        all_fields_span,
                        "use `..` to ignore all fields",
                        String::from(".."),
                        Applicability::MaybeIncorrect,
                    );
                } else {
                    err.span_suggestion_verbose(
                        tail_span,
                        "use `..` to ignore the rest of the fields",
                        String::from(", .."),
                        Applicability::MaybeIncorrect,
                    );
                }
            }
        }

        err.emit();
    }

    fn check_pat_tuple(
        &self,
        span: Span,
        elements: &'tcx [Pat<'tcx>],
        ddpos: Option<usize>,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let mut expected_len = elements.len();
        if ddpos.is_some() {
            // Require known type only when `..` is present.
            if let ty::Tuple(tys) = self.structurally_resolved_type(span, expected).kind() {
                expected_len = tys.len();
            }
        }
        let max_len = cmp::max(expected_len, elements.len());

        let element_tys_iter = (0..max_len).map(|_| {
            GenericArg::from(self.next_ty_var(
                // FIXME: `MiscVariable` for now -- obtaining the span and name information
                // from all tuple elements isn't trivial.
                TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span },
            ))
        });
        let element_tys = tcx.mk_substs(element_tys_iter);
        let pat_ty = tcx.mk_ty(ty::Tuple(element_tys));
        if let Some(mut err) = self.demand_eqtype_pat_diag(span, expected, pat_ty, ti) {
            err.emit();
            // Walk subpatterns with an expected type of `err` in this case to silence
            // further errors being emitted when using the bindings. #50333
            let element_tys_iter = (0..max_len).map(|_| tcx.ty_error());
            for (_, elem) in elements.iter().enumerate_and_adjust(max_len, ddpos) {
                self.check_pat(elem, tcx.ty_error(), def_bm, ti);
            }
            tcx.mk_tup(element_tys_iter)
        } else {
            for (i, elem) in elements.iter().enumerate_and_adjust(max_len, ddpos) {
                self.check_pat(elem, element_tys[i].expect_ty(), def_bm, ti);
            }
            pat_ty
        }
    }

    fn check_struct_pat_fields(
        &self,
        adt_ty: Ty<'tcx>,
        pat: &'tcx Pat<'tcx>,
        variant: &'tcx ty::VariantDef,
        fields: &'tcx [hir::PatField<'tcx>],
        has_rest_pat: bool,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> bool {
        let tcx = self.tcx;

        let (substs, adt) = match adt_ty.kind() {
            ty::Adt(adt, substs) => (substs, adt),
            _ => span_bug!(pat.span, "struct pattern is not an ADT"),
        };

        // Index the struct fields' types.
        let field_map = variant
            .fields
            .iter()
            .enumerate()
            .map(|(i, field)| (field.ident.normalize_to_macros_2_0(), (i, field)))
            .collect::<FxHashMap<_, _>>();

        // Keep track of which fields have already appeared in the pattern.
        let mut used_fields = FxHashMap::default();
        let mut no_field_errors = true;

        let mut inexistent_fields = vec![];
        // Typecheck each field.
        for field in fields {
            let span = field.span;
            let ident = tcx.adjust_ident(field.ident, variant.def_id);
            let field_ty = match used_fields.entry(ident) {
                Occupied(occupied) => {
                    self.error_field_already_bound(span, field.ident, *occupied.get());
                    no_field_errors = false;
                    tcx.ty_error()
                }
                Vacant(vacant) => {
                    vacant.insert(span);
                    field_map
                        .get(&ident)
                        .map(|(i, f)| {
                            self.write_field_index(field.hir_id, *i);
                            self.tcx.check_stability(f.did, Some(pat.hir_id), span, None);
                            self.field_ty(span, f, substs)
                        })
                        .unwrap_or_else(|| {
                            inexistent_fields.push(field.ident);
                            no_field_errors = false;
                            tcx.ty_error()
                        })
                }
            };

            self.check_pat(field.pat, field_ty, def_bm, TopInfo { parent_pat: Some(pat), ..ti });
        }

        let mut unmentioned_fields = variant
            .fields
            .iter()
            .map(|field| (field, field.ident.normalize_to_macros_2_0()))
            .filter(|(_, ident)| !used_fields.contains_key(ident))
            .collect::<Vec<_>>();

        let inexistent_fields_err = if !(inexistent_fields.is_empty() || variant.is_recovered()) {
            Some(self.error_inexistent_fields(
                adt.variant_descr(),
                &inexistent_fields,
                &mut unmentioned_fields,
                variant,
            ))
        } else {
            None
        };

        // Require `..` if struct has non_exhaustive attribute.
        let non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did.is_local();
        if non_exhaustive && !has_rest_pat {
            self.error_foreign_non_exhaustive_spat(pat, adt.variant_descr(), fields.is_empty());
        }

        let mut unmentioned_err = None;
        // Report an error if an incorrect number of fields was specified.
        if adt.is_union() {
            if fields.len() != 1 {
                tcx.sess
                    .struct_span_err(pat.span, "union patterns should have exactly one field")
                    .emit();
            }
            if has_rest_pat {
                tcx.sess.struct_span_err(pat.span, "`..` cannot be used in union patterns").emit();
            }
        } else if !unmentioned_fields.is_empty() {
            let accessible_unmentioned_fields: Vec<_> = unmentioned_fields
                .iter()
                .copied()
                .filter(|(field, _)| {
                    field.vis.is_accessible_from(tcx.parent_module(pat.hir_id).to_def_id(), tcx)
                })
                .collect();

            if !has_rest_pat {
                if accessible_unmentioned_fields.is_empty() {
                    unmentioned_err = Some(self.error_no_accessible_fields(pat, fields));
                } else {
                    unmentioned_err = Some(self.error_unmentioned_fields(
                        pat,
                        &accessible_unmentioned_fields,
                        accessible_unmentioned_fields.len() != unmentioned_fields.len(),
                        fields,
                    ));
                }
            } else if non_exhaustive && !accessible_unmentioned_fields.is_empty() {
                self.lint_non_exhaustive_omitted_patterns(
                    pat,
                    &accessible_unmentioned_fields,
                    adt_ty,
                )
            }
        }
        match (inexistent_fields_err, unmentioned_err) {
            (Some(mut i), Some(mut u)) => {
                if let Some(mut e) = self.error_tuple_variant_as_struct_pat(pat, fields, variant) {
                    // We don't want to show the inexistent fields error when this was
                    // `Foo { a, b }` when it should have been `Foo(a, b)`.
                    i.delay_as_bug();
                    u.delay_as_bug();
                    e.emit();
                } else {
                    i.emit();
                    u.emit();
                }
            }
            (None, Some(mut u)) => {
                if let Some(mut e) = self.error_tuple_variant_as_struct_pat(pat, fields, variant) {
                    u.delay_as_bug();
                    e.emit();
                } else {
                    u.emit();
                }
            }
            (Some(mut err), None) => {
                err.emit();
            }
            (None, None) if let Some(mut err) =
                    self.error_tuple_variant_index_shorthand(variant, pat, fields) =>
            {
                err.emit();
            }
            (None, None) => {}
        }
        no_field_errors
    }

    fn error_tuple_variant_index_shorthand(
        &self,
        variant: &VariantDef,
        pat: &'_ Pat<'_>,
        fields: &[hir::PatField<'_>],
    ) -> Option<DiagnosticBuilder<'_>> {
        // if this is a tuple struct, then all field names will be numbers
        // so if any fields in a struct pattern use shorthand syntax, they will
        // be invalid identifiers (for example, Foo { 0, 1 }).
        if let (CtorKind::Fn, PatKind::Struct(qpath, field_patterns, ..)) =
            (variant.ctor_kind, &pat.kind)
        {
            let has_shorthand_field_name = field_patterns.iter().any(|field| field.is_shorthand);
            if has_shorthand_field_name {
                let path = rustc_hir_pretty::to_string(rustc_hir_pretty::NO_ANN, |s| {
                    s.print_qpath(qpath, false)
                });
                let mut err = struct_span_err!(
                    self.tcx.sess,
                    pat.span,
                    E0769,
                    "tuple variant `{}` written as struct variant",
                    path
                );
                err.span_suggestion_verbose(
                    qpath.span().shrink_to_hi().to(pat.span.shrink_to_hi()),
                    "use the tuple variant pattern syntax instead",
                    format!("({})", self.get_suggested_tuple_struct_pattern(fields, variant)),
                    Applicability::MaybeIncorrect,
                );
                return Some(err);
            }
        }
        None
    }

    fn error_foreign_non_exhaustive_spat(&self, pat: &Pat<'_>, descr: &str, no_fields: bool) {
        let sess = self.tcx.sess;
        let sm = sess.source_map();
        let sp_brace = sm.end_point(pat.span);
        let sp_comma = sm.end_point(pat.span.with_hi(sp_brace.hi()));
        let sugg = if no_fields || sp_brace != sp_comma { ".. }" } else { ", .. }" };

        let mut err = struct_span_err!(
            sess,
            pat.span,
            E0638,
            "`..` required with {} marked as non-exhaustive",
            descr
        );
        err.span_suggestion_verbose(
            sp_comma,
            "add `..` at the end of the field list to ignore all other fields",
            sugg.to_string(),
            Applicability::MachineApplicable,
        );
        err.emit();
    }

    fn error_field_already_bound(&self, span: Span, ident: Ident, other_field: Span) {
        struct_span_err!(
            self.tcx.sess,
            span,
            E0025,
            "field `{}` bound multiple times in the pattern",
            ident
        )
        .span_label(span, format!("multiple uses of `{}` in pattern", ident))
        .span_label(other_field, format!("first use of `{}`", ident))
        .emit();
    }

    fn error_inexistent_fields(
        &self,
        kind_name: &str,
        inexistent_fields: &[Ident],
        unmentioned_fields: &mut Vec<(&ty::FieldDef, Ident)>,
        variant: &ty::VariantDef,
    ) -> DiagnosticBuilder<'tcx> {
        let tcx = self.tcx;
        let (field_names, t, plural) = if inexistent_fields.len() == 1 {
            (format!("a field named `{}`", inexistent_fields[0]), "this", "")
        } else {
            (
                format!(
                    "fields named {}",
                    inexistent_fields
                        .iter()
                        .map(|ident| format!("`{}`", ident))
                        .collect::<Vec<String>>()
                        .join(", ")
                ),
                "these",
                "s",
            )
        };
        let spans = inexistent_fields.iter().map(|ident| ident.span).collect::<Vec<_>>();
        let mut err = struct_span_err!(
            tcx.sess,
            spans,
            E0026,
            "{} `{}` does not have {}",
            kind_name,
            tcx.def_path_str(variant.def_id),
            field_names
        );
        if let Some(ident) = inexistent_fields.last() {
            err.span_label(
                ident.span,
                format!(
                    "{} `{}` does not have {} field{}",
                    kind_name,
                    tcx.def_path_str(variant.def_id),
                    t,
                    plural
                ),
            );

            if unmentioned_fields.len() == 1 {
                let input =
                    unmentioned_fields.iter().map(|(_, field)| field.name).collect::<Vec<_>>();
                let suggested_name = find_best_match_for_name(&input, ident.name, None);
                if let Some(suggested_name) = suggested_name {
                    err.span_suggestion(
                        ident.span,
                        "a field with a similar name exists",
                        suggested_name.to_string(),
                        Applicability::MaybeIncorrect,
                    );

                    // When we have a tuple struct used with struct we don't want to suggest using
                    // the (valid) struct syntax with numeric field names. Instead we want to
                    // suggest the expected syntax. We infer that this is the case by parsing the
                    // `Ident` into an unsized integer. The suggestion will be emitted elsewhere in
                    // `smart_resolve_context_dependent_help`.
                    if suggested_name.to_ident_string().parse::<usize>().is_err() {
                        // We don't want to throw `E0027` in case we have thrown `E0026` for them.
                        unmentioned_fields.retain(|&(_, x)| x.name != suggested_name);
                    }
                } else if inexistent_fields.len() == 1 {
                    let unmentioned_field = unmentioned_fields[0].1.name;
                    err.span_suggestion_short(
                        ident.span,
                        &format!(
                            "`{}` has a field named `{}`",
                            tcx.def_path_str(variant.def_id),
                            unmentioned_field
                        ),
                        unmentioned_field.to_string(),
                        Applicability::MaybeIncorrect,
                    );
                }
            }
        }
        if tcx.sess.teach(&err.get_code().unwrap()) {
            err.note(
                "This error indicates that a struct pattern attempted to \
                 extract a non-existent field from a struct. Struct fields \
                 are identified by the name used before the colon : so struct \
                 patterns should resemble the declaration of the struct type \
                 being matched.\n\n\
                 If you are using shorthand field patterns but want to refer \
                 to the struct field by a different name, you should rename \
                 it explicitly.",
            );
        }
        err
    }

    fn error_tuple_variant_as_struct_pat(
        &self,
        pat: &Pat<'_>,
        fields: &'tcx [hir::PatField<'tcx>],
        variant: &ty::VariantDef,
    ) -> Option<DiagnosticBuilder<'tcx>> {
        if let (CtorKind::Fn, PatKind::Struct(qpath, ..)) = (variant.ctor_kind, &pat.kind) {
            let path = rustc_hir_pretty::to_string(rustc_hir_pretty::NO_ANN, |s| {
                s.print_qpath(qpath, false)
            });
            let mut err = struct_span_err!(
                self.tcx.sess,
                pat.span,
                E0769,
                "tuple variant `{}` written as struct variant",
                path
            );
            let (sugg, appl) = if fields.len() == variant.fields.len() {
                (
                    self.get_suggested_tuple_struct_pattern(fields, variant),
                    Applicability::MachineApplicable,
                )
            } else {
                (
                    variant.fields.iter().map(|_| "_").collect::<Vec<&str>>().join(", "),
                    Applicability::MaybeIncorrect,
                )
            };
            err.span_suggestion_verbose(
                qpath.span().shrink_to_hi().to(pat.span.shrink_to_hi()),
                "use the tuple variant pattern syntax instead",
                format!("({})", sugg),
                appl,
            );
            return Some(err);
        }
        None
    }

    fn get_suggested_tuple_struct_pattern(
        &self,
        fields: &[hir::PatField<'_>],
        variant: &VariantDef,
    ) -> String {
        let variant_field_idents = variant.fields.iter().map(|f| f.ident).collect::<Vec<Ident>>();
        fields
            .iter()
            .map(|field| {
                match self.tcx.sess.source_map().span_to_snippet(field.pat.span) {
                    Ok(f) => {
                        // Field names are numbers, but numbers
                        // are not valid identifiers
                        if variant_field_idents.contains(&field.ident) {
                            String::from("_")
                        } else {
                            f
                        }
                    }
                    Err(_) => rustc_hir_pretty::to_string(rustc_hir_pretty::NO_ANN, |s| {
                        s.print_pat(field.pat)
                    }),
                }
            })
            .collect::<Vec<String>>()
            .join(", ")
    }

    /// Returns a diagnostic reporting a struct pattern which is missing an `..` due to
    /// inaccessible fields.
    ///
    /// ```text
    /// error: pattern requires `..` due to inaccessible fields
    ///   --> src/main.rs:10:9
    ///    |
    /// LL |     let foo::Foo {} = foo::Foo::default();
    ///    |         ^^^^^^^^^^^
    ///    |
    /// help: add a `..`
    ///    |
    /// LL |     let foo::Foo { .. } = foo::Foo::default();
    ///    |                  ^^^^^^
    /// ```
    fn error_no_accessible_fields(
        &self,
        pat: &Pat<'_>,
        fields: &'tcx [hir::PatField<'tcx>],
    ) -> DiagnosticBuilder<'tcx> {
        let mut err = self
            .tcx
            .sess
            .struct_span_err(pat.span, "pattern requires `..` due to inaccessible fields");

        if let Some(field) = fields.last() {
            err.span_suggestion_verbose(
                field.span.shrink_to_hi(),
                "ignore the inaccessible and unused fields",
                ", ..".to_string(),
                Applicability::MachineApplicable,
            );
        } else {
            let qpath_span = if let PatKind::Struct(qpath, ..) = &pat.kind {
                qpath.span()
            } else {
                bug!("`error_no_accessible_fields` called on non-struct pattern");
            };

            // Shrink the span to exclude the `foo:Foo` in `foo::Foo { }`.
            let span = pat.span.with_lo(qpath_span.shrink_to_hi().hi());
            err.span_suggestion_verbose(
                span,
                "ignore the inaccessible and unused fields",
                " { .. }".to_string(),
                Applicability::MachineApplicable,
            );
        }
        err
    }

    /// Report that a pattern for a `#[non_exhaustive]` struct marked with `non_exhaustive_omitted_patterns`
    /// is not exhaustive enough.
    ///
    /// Nb: the partner lint for enums lives in `compiler/rustc_mir_build/src/thir/pattern/usefulness.rs`.
    fn lint_non_exhaustive_omitted_patterns(
        &self,
        pat: &Pat<'_>,
        unmentioned_fields: &[(&ty::FieldDef, Ident)],
        ty: Ty<'tcx>,
    ) {
        fn joined_uncovered_patterns(witnesses: &[&Ident]) -> String {
            const LIMIT: usize = 3;
            match witnesses {
                [] => bug!(),
                [witness] => format!("`{}`", witness),
                [head @ .., tail] if head.len() < LIMIT => {
                    let head: Vec<_> = head.iter().map(<_>::to_string).collect();
                    format!("`{}` and `{}`", head.join("`, `"), tail)
                }
                _ => {
                    let (head, tail) = witnesses.split_at(LIMIT);
                    let head: Vec<_> = head.iter().map(<_>::to_string).collect();
                    format!("`{}` and {} more", head.join("`, `"), tail.len())
                }
            }
        }
        let joined_patterns = joined_uncovered_patterns(
            &unmentioned_fields.iter().map(|(_, i)| i).collect::<Vec<_>>(),
        );

        self.tcx.struct_span_lint_hir(NON_EXHAUSTIVE_OMITTED_PATTERNS, pat.hir_id, pat.span, |build| {
        let mut lint = build.build("some fields are not explicitly listed");
        lint.span_label(pat.span, format!("field{} {} not listed", rustc_errors::pluralize!(unmentioned_fields.len()), joined_patterns));

        lint.help(
            "ensure that all fields are mentioned explicitly by adding the suggested fields",
        );
        lint.note(&format!(
            "the pattern is of type `{}` and the `non_exhaustive_omitted_patterns` attribute was found",
            ty,
        ));
        lint.emit();
    });
    }

    /// Returns a diagnostic reporting a struct pattern which does not mention some fields.
    ///
    /// ```text
    /// error[E0027]: pattern does not mention field `bar`
    ///   --> src/main.rs:15:9
    ///    |
    /// LL |     let foo::Foo {} = foo::Foo::new();
    ///    |         ^^^^^^^^^^^ missing field `bar`
    /// ```
    fn error_unmentioned_fields(
        &self,
        pat: &Pat<'_>,
        unmentioned_fields: &[(&ty::FieldDef, Ident)],
        have_inaccessible_fields: bool,
        fields: &'tcx [hir::PatField<'tcx>],
    ) -> DiagnosticBuilder<'tcx> {
        let inaccessible = if have_inaccessible_fields { " and inaccessible fields" } else { "" };
        let field_names = if unmentioned_fields.len() == 1 {
            format!("field `{}`{}", unmentioned_fields[0].1, inaccessible)
        } else {
            let fields = unmentioned_fields
                .iter()
                .map(|(_, name)| format!("`{}`", name))
                .collect::<Vec<String>>()
                .join(", ");
            format!("fields {}{}", fields, inaccessible)
        };
        let mut err = struct_span_err!(
            self.tcx.sess,
            pat.span,
            E0027,
            "pattern does not mention {}",
            field_names
        );
        err.span_label(pat.span, format!("missing {}", field_names));
        let len = unmentioned_fields.len();
        let (prefix, postfix, sp) = match fields {
            [] => match &pat.kind {
                PatKind::Struct(path, [], false) => {
                    (" { ", " }", path.span().shrink_to_hi().until(pat.span.shrink_to_hi()))
                }
                _ => return err,
            },
            [.., field] => {
                // Account for last field having a trailing comma or parse recovery at the tail of
                // the pattern to avoid invalid suggestion (#78511).
                let tail = field.span.shrink_to_hi().with_hi(pat.span.hi());
                match &pat.kind {
                    PatKind::Struct(..) => (", ", " }", tail),
                    _ => return err,
                }
            }
        };
        err.span_suggestion(
            sp,
            &format!(
                "include the missing field{} in the pattern{}",
                if len == 1 { "" } else { "s" },
                if have_inaccessible_fields { " and ignore the inaccessible fields" } else { "" }
            ),
            format!(
                "{}{}{}{}",
                prefix,
                unmentioned_fields
                    .iter()
                    .map(|(_, name)| name.to_string())
                    .collect::<Vec<_>>()
                    .join(", "),
                if have_inaccessible_fields { ", .." } else { "" },
                postfix,
            ),
            Applicability::MachineApplicable,
        );
        err.span_suggestion(
            sp,
            &format!(
                "if you don't care about {} missing field{}, you can explicitly ignore {}",
                if len == 1 { "this" } else { "these" },
                if len == 1 { "" } else { "s" },
                if len == 1 { "it" } else { "them" },
            ),
            format!("{}..{}", prefix, postfix),
            Applicability::MachineApplicable,
        );
        err
    }

    fn check_pat_box(
        &self,
        span: Span,
        inner: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let (box_ty, inner_ty) = if self.check_dereferenceable(span, expected, inner) {
            // Here, `demand::subtype` is good enough, but I don't
            // think any errors can be introduced by using `demand::eqtype`.
            let inner_ty = self.next_ty_var(TypeVariableOrigin {
                kind: TypeVariableOriginKind::TypeInference,
                span: inner.span,
            });
            let box_ty = tcx.mk_box(inner_ty);
            self.demand_eqtype_pat(span, expected, box_ty, ti);
            (box_ty, inner_ty)
        } else {
            let err = tcx.ty_error();
            (err, err)
        };
        self.check_pat(inner, inner_ty, def_bm, ti);
        box_ty
    }

    fn check_pat_ref(
        &self,
        pat: &'tcx Pat<'tcx>,
        inner: &'tcx Pat<'tcx>,
        mutbl: hir::Mutability,
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let expected = self.shallow_resolve(expected);
        let (rptr_ty, inner_ty) = if self.check_dereferenceable(pat.span, expected, inner) {
            // `demand::subtype` would be good enough, but using `eqtype` turns
            // out to be equally general. See (note_1) for details.

            // Take region, inner-type from expected type if we can,
            // to avoid creating needless variables. This also helps with
            // the bad  interactions of the given hack detailed in (note_1).
            debug!("check_pat_ref: expected={:?}", expected);
            match *expected.kind() {
                ty::Ref(_, r_ty, r_mutbl) if r_mutbl == mutbl => (expected, r_ty),
                _ => {
                    let inner_ty = self.next_ty_var(TypeVariableOrigin {
                        kind: TypeVariableOriginKind::TypeInference,
                        span: inner.span,
                    });
                    let rptr_ty = self.new_ref_ty(pat.span, mutbl, inner_ty);
                    debug!("check_pat_ref: demanding {:?} = {:?}", expected, rptr_ty);
                    let err = self.demand_eqtype_pat_diag(pat.span, expected, rptr_ty, ti);

                    // Look for a case like `fn foo(&foo: u32)` and suggest
                    // `fn foo(foo: &u32)`
                    if let Some(mut err) = err {
                        self.borrow_pat_suggestion(&mut err, pat, inner, expected);
                        err.emit();
                    }
                    (rptr_ty, inner_ty)
                }
            }
        } else {
            let err = tcx.ty_error();
            (err, err)
        };
        self.check_pat(inner, inner_ty, def_bm, TopInfo { parent_pat: Some(pat), ..ti });
        rptr_ty
    }

    /// Create a reference type with a fresh region variable.
    fn new_ref_ty(&self, span: Span, mutbl: hir::Mutability, ty: Ty<'tcx>) -> Ty<'tcx> {
        let region = self.next_region_var(infer::PatternRegion(span));
        let mt = ty::TypeAndMut { ty, mutbl };
        self.tcx.mk_ref(region, mt)
    }

    /// Type check a slice pattern.
    ///
    /// Syntactically, these look like `[pat_0, ..., pat_n]`.
    /// Semantically, we are type checking a pattern with structure:
    /// ```
    /// [before_0, ..., before_n, (slice, after_0, ... after_n)?]
    /// ```
    /// The type of `slice`, if it is present, depends on the `expected` type.
    /// If `slice` is missing, then so is `after_i`.
    /// If `slice` is present, it can still represent 0 elements.
    fn check_pat_slice(
        &self,
        span: Span,
        before: &'tcx [Pat<'tcx>],
        slice: Option<&'tcx Pat<'tcx>>,
        after: &'tcx [Pat<'tcx>],
        expected: Ty<'tcx>,
        def_bm: BindingMode,
        ti: TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let expected = self.structurally_resolved_type(span, expected);
        let (element_ty, opt_slice_ty, inferred) = match *expected.kind() {
            // An array, so we might have something like `let [a, b, c] = [0, 1, 2];`.
            ty::Array(element_ty, len) => {
                let min = before.len() as u64 + after.len() as u64;
                let (opt_slice_ty, expected) =
                    self.check_array_pat_len(span, element_ty, expected, slice, len, min);
                // `opt_slice_ty.is_none()` => `slice.is_none()`.
                // Note, though, that opt_slice_ty could be `Some(error_ty)`.
                assert!(opt_slice_ty.is_some() || slice.is_none());
                (element_ty, opt_slice_ty, expected)
            }
            ty::Slice(element_ty) => (element_ty, Some(expected), expected),
            // The expected type must be an array or slice, but was neither, so error.
            _ => {
                if !expected.references_error() {
                    self.error_expected_array_or_slice(span, expected, ti);
                }
                let err = self.tcx.ty_error();
                (err, Some(err), err)
            }
        };

        // Type check all the patterns before `slice`.
        for elt in before {
            self.check_pat(elt, element_ty, def_bm, ti);
        }
        // Type check the `slice`, if present, against its expected type.
        if let Some(slice) = slice {
            self.check_pat(slice, opt_slice_ty.unwrap(), def_bm, ti);
        }
        // Type check the elements after `slice`, if present.
        for elt in after {
            self.check_pat(elt, element_ty, def_bm, ti);
        }
        inferred
    }

    /// Type check the length of an array pattern.
    ///
    /// Returns both the type of the variable length pattern (or `None`), and the potentially
    /// inferred array type. We only return `None` for the slice type if `slice.is_none()`.
    fn check_array_pat_len(
        &self,
        span: Span,
        element_ty: Ty<'tcx>,
        arr_ty: Ty<'tcx>,
        slice: Option<&'tcx Pat<'tcx>>,
        len: &ty::Const<'tcx>,
        min_len: u64,
    ) -> (Option<Ty<'tcx>>, Ty<'tcx>) {
        if let Some(len) = len.try_eval_usize(self.tcx, self.param_env) {
            // Now we know the length...
            if slice.is_none() {
                // ...and since there is no variable-length pattern,
                // we require an exact match between the number of elements
                // in the array pattern and as provided by the matched type.
                if min_len == len {
                    return (None, arr_ty);
                }

                self.error_scrutinee_inconsistent_length(span, min_len, len);
            } else if let Some(pat_len) = len.checked_sub(min_len) {
                // The variable-length pattern was there,
                // so it has an array type with the remaining elements left as its size...
                return (Some(self.tcx.mk_array(element_ty, pat_len)), arr_ty);
            } else {
                // ...however, in this case, there were no remaining elements.
                // That is, the slice pattern requires more than the array type offers.
                self.error_scrutinee_with_rest_inconsistent_length(span, min_len, len);
            }
        } else if slice.is_none() {
            // We have a pattern with a fixed length,
            // which we can use to infer the length of the array.
            let updated_arr_ty = self.tcx.mk_array(element_ty, min_len);
            self.demand_eqtype(span, updated_arr_ty, arr_ty);
            return (None, updated_arr_ty);
        } else {
            // We have a variable-length pattern and don't know the array length.
            // This happens if we have e.g.,
            // `let [a, b, ..] = arr` where `arr: [T; N]` where `const N: usize`.
            self.error_scrutinee_unfixed_length(span);
        }

        // If we get here, we must have emitted an error.
        (Some(self.tcx.ty_error()), arr_ty)
    }

    fn error_scrutinee_inconsistent_length(&self, span: Span, min_len: u64, size: u64) {
        struct_span_err!(
            self.tcx.sess,
            span,
            E0527,
            "pattern requires {} element{} but array has {}",
            min_len,
            pluralize!(min_len),
            size,
        )
        .span_label(span, format!("expected {} element{}", size, pluralize!(size)))
        .emit();
    }

    fn error_scrutinee_with_rest_inconsistent_length(&self, span: Span, min_len: u64, size: u64) {
        struct_span_err!(
            self.tcx.sess,
            span,
            E0528,
            "pattern requires at least {} element{} but array has {}",
            min_len,
            pluralize!(min_len),
            size,
        )
        .span_label(
            span,
            format!("pattern cannot match array of {} element{}", size, pluralize!(size),),
        )
        .emit();
    }

    fn error_scrutinee_unfixed_length(&self, span: Span) {
        struct_span_err!(
            self.tcx.sess,
            span,
            E0730,
            "cannot pattern-match on an array without a fixed length",
        )
        .emit();
    }

    fn error_expected_array_or_slice(&self, span: Span, expected_ty: Ty<'tcx>, ti: TopInfo<'tcx>) {
        let mut err = struct_span_err!(
            self.tcx.sess,
            span,
            E0529,
            "expected an array or slice, found `{}`",
            expected_ty
        );
        if let ty::Ref(_, ty, _) = expected_ty.kind() {
            if let ty::Array(..) | ty::Slice(..) = ty.kind() {
                err.help("the semantics of slice patterns changed recently; see issue #62254");
            }
        } else if Autoderef::new(&self.infcx, self.param_env, self.body_id, span, expected_ty, span)
            .any(|(ty, _)| matches!(ty.kind(), ty::Slice(..)))
        {
            if let (Some(span), true) = (ti.span, ti.origin_expr) {
                if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
                    err.span_suggestion(
                        span,
                        "consider slicing here",
                        format!("{}[..]", snippet),
                        Applicability::MachineApplicable,
                    );
                }
            }
        }
        err.span_label(span, format!("pattern cannot match with input type `{}`", expected_ty));
        err.emit();
    }
}